शून्य क्षेत्र विभाजन: Difference between revisions

From Vigyanwiki
(Created page with "{{refimprove|date=April 2018}}{{technical|date=November 2020}} शून्य क्षेत्र विभाजन (ZFS) एक से अधिक अयुग्मि...")
 
No edit summary
Line 1: Line 1:
{{refimprove|date=April 2018}}{{technical|date=November 2020}}
शून्य क्षेत्र विभाजन (ZFS) एक से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में, एक ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत दर्जे की अवस्थाओं के अनुरूप हो। एक चुंबकीय क्षेत्र की उपस्थिति में, Zeeman प्रभाव पतित राज्यों को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में, कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। एक से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में, इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। ZFS सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए जिम्मेदार है, जैसा कि उनके [[इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी]] और चुंबकत्व में प्रकट होता है।<ref>{{cite book|last1=Atherton|first1=N.M.|title=इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत|journal=Biochemical Education|volume=23|pages=48|year=1993|publisher=Ellis Horwood PTR Prentice Hall|isbn=978-0-137-21762-5 |doi= 10.1016/0307-4412(95)90208-2}}</ref>
शून्य क्षेत्र विभाजन (ZFS) एक से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में, एक ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत दर्जे की अवस्थाओं के अनुरूप हो। एक चुंबकीय क्षेत्र की उपस्थिति में, Zeeman प्रभाव पतित राज्यों को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में, कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। एक से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में, इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। ZFS सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए जिम्मेदार है, जैसा कि उनके [[इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी]] और चुंबकत्व में प्रकट होता है।<ref>{{cite book|last1=Atherton|first1=N.M.|title=इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत|journal=Biochemical Education|volume=23|pages=48|year=1993|publisher=Ellis Horwood PTR Prentice Hall|isbn=978-0-137-21762-5 |doi= 10.1016/0307-4412(95)90208-2}}</ref>
ZFS के लिए क्लासिक केस स्पिन ट्रिपलेट है, यानी S=1 स्पिन सिस्टम। एक चुंबकीय क्षेत्र की उपस्थिति में, चुंबकीय [[स्पिन क्वांटम संख्या]] के विभिन्न मूल्यों वाले स्तर (एम<sub>S</sub>= 0, ± 1) अलग हो जाते हैं और [[Zeeman विभाजन]] उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में, त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। हालांकि, जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है, तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार ZFS का एक उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।
ZFS के लिए क्लासिक केस स्पिन ट्रिपलेट है, यानी S=1 स्पिन सिस्टम। एक चुंबकीय क्षेत्र की उपस्थिति में, चुंबकीय [[स्पिन क्वांटम संख्या]] के विभिन्न मूल्यों वाले स्तर (एम<sub>S</sub>= 0, ± 1) अलग हो जाते हैं और [[Zeeman विभाजन]] उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में, त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। हालांकि, जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है, तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार ZFS का एक उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।
Line 8: Line 7:
:<math id="ZFS">\hat{\mathcal{H}}=D\left(S_z^2-\frac{1}{3}S(S+1)\right)+E(S_x^2-S_y^2) </math>
:<math id="ZFS">\hat{\mathcal{H}}=D\left(S_z^2-\frac{1}{3}S(S+1)\right)+E(S_x^2-S_y^2) </math>
जहाँ S कुल स्पिन क्वांटम संख्या है, और <math>S_{x,y,z}</math> स्पिन मैट्रिसेस हैं।
जहाँ S कुल स्पिन क्वांटम संख्या है, और <math>S_{x,y,z}</math> स्पिन मैट्रिसेस हैं।
ZFS पैरामीटर का मान आमतौर पर D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। डी चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है, और ई अनुप्रस्थ घटक। [[ इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद ]] मापन द्वारा कार्बनिक बायोरैडिकल की एक विस्तृत संख्या के लिए डी मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री तकनीकों जैसे [[SQUID]] द्वारा मापा जा सकता है; हालांकि, ज्यादातर मामलों में ईपीआर माप अधिक सटीक डेटा प्रदान करते हैं। यह मान अन्य तकनीकों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ODMR; एक दोहरी अनुनाद तकनीक जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ EPR को जोड़ती है), एक एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण [[एन-वी केंद्र]]) या [[ सिलिकन कार्बाइड ]]।
ZFS पैरामीटर का मान आमतौर पर D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। डी चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है, और ई अनुप्रस्थ घटक। [[ इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद |इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद]] मापन द्वारा कार्बनिक बायोरैडिकल की एक विस्तृत संख्या के लिए डी मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री तकनीकों जैसे [[SQUID]] द्वारा मापा जा सकता है; हालांकि, ज्यादातर मामलों में ईपीआर माप अधिक सटीक डेटा प्रदान करते हैं। यह मान अन्य तकनीकों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ODMR; एक दोहरी अनुनाद तकनीक जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ EPR को जोड़ती है), एक एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण [[एन-वी केंद्र]]) या [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] ।


=== बीजगणितीय व्युत्पत्ति ===
=== बीजगणितीय व्युत्पत्ति ===

Revision as of 08:35, 2 June 2023

शून्य क्षेत्र विभाजन (ZFS) एक से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में, एक ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत दर्जे की अवस्थाओं के अनुरूप हो। एक चुंबकीय क्षेत्र की उपस्थिति में, Zeeman प्रभाव पतित राज्यों को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में, कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। एक से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में, इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। ZFS सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए जिम्मेदार है, जैसा कि उनके इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी और चुंबकत्व में प्रकट होता है।[1] ZFS के लिए क्लासिक केस स्पिन ट्रिपलेट है, यानी S=1 स्पिन सिस्टम। एक चुंबकीय क्षेत्र की उपस्थिति में, चुंबकीय स्पिन क्वांटम संख्या के विभिन्न मूल्यों वाले स्तर (एमS= 0, ± 1) अलग हो जाते हैं और Zeeman विभाजन उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में, त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। हालांकि, जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है, तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार ZFS का एक उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।

क्वांटम यांत्रिक विवरण

इसी हैमिल्टनियन (क्वांटम यांत्रिकी) को इस प्रकार लिखा जा सकता है:

जहाँ S कुल स्पिन क्वांटम संख्या है, और स्पिन मैट्रिसेस हैं। ZFS पैरामीटर का मान आमतौर पर D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। डी चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है, और ई अनुप्रस्थ घटक। इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद मापन द्वारा कार्बनिक बायोरैडिकल की एक विस्तृत संख्या के लिए डी मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री तकनीकों जैसे SQUID द्वारा मापा जा सकता है; हालांकि, ज्यादातर मामलों में ईपीआर माप अधिक सटीक डेटा प्रदान करते हैं। यह मान अन्य तकनीकों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ODMR; एक दोहरी अनुनाद तकनीक जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ EPR को जोड़ती है), एक एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण एन-वी केंद्र) या सिलिकन कार्बाइड

बीजगणितीय व्युत्पत्ति

शुरुआत इसी हैमिल्टनियन है . दो अयुग्मित चक्रणों के बीच द्विध्रुव प्रचक्रण-प्रचक्रण अंतःक्रिया का वर्णन करता है ( और ). कहाँ कुल स्पिन है , और एक सममित और ट्रेसलेस होने के नाते (जो कि यह तब होता है द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया से उत्पन्न होता है) मैट्रिक्स, जिसका अर्थ है कि यह विकर्ण है।

 

 

 

 

(1)

साथ ट्रेसलेस होना (). सरलता के लिए परिभाषित किया जाता है . हैमिल्टन बन जाता है:

 

 

 

 

(2)

कुंजी व्यक्त करना है इसके औसत मूल्य और विचलन के रूप में

 

 

 

 

(3)

विचलन का मान ज्ञात करना जो तब पुनर्व्यवस्थित समीकरण द्वारा है (3):

 

 

 

 

(4)

डालने से (4) और (3) में (2) परिणाम इस प्रकार पढ़ता है:

 

 

 

 

(5)

ध्यान दें, कि दूसरी पंक्ति में (5) संकलित था। ऐसा करने से आगे उपयोग किया जा सकता है। तथ्य का उपयोग करके, कि ट्रेसलेस है () समीकरण (5) इसे सरल करता है:

 

 

 

 

(6)

डी और ई पैरामीटर समीकरण को परिभाषित करके (6) हो जाता है:

 

 

 

 

(7)

साथ और (मापने योग्य) शून्य फ़ील्ड विभाजन मान।

संदर्भ

  1. Atherton, N.M. (1993). इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत. p. 48. doi:10.1016/0307-4412(95)90208-2. ISBN 978-0-137-21762-5. {{cite book}}: |journal= ignored (help)


अग्रिम पठन


बाहरी संबंध