समूह 11 तत्व: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
| (One intermediate revision by one other user not shown) | |||
| Line 72: | Line 72: | ||
{{Group 11 elements}} | {{Group 11 elements}} | ||
{{DEFAULTSORT:Group 11 Element}} | {{DEFAULTSORT:Group 11 Element}} | ||
[[Category:All articles with unsourced statements|Group 11 Element]] | |||
[[Category:Articles with unsourced statements from March 2022|Group 11 Element]] | |||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 19/05/2023]] | [[Category:Collapse templates|Group 11 Element]] | ||
[[Category:Vigyan Ready]] | [[Category:Created On 19/05/2023|Group 11 Element]] | ||
[[Category:Lua-based templates|Group 11 Element]] | |||
[[Category:Machine Translated Page|Group 11 Element]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Group 11 Element]] | |||
[[Category:Pages with script errors|Group 11 Element]] | |||
[[Category:Sidebars with styles needing conversion|Group 11 Element]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Group 11 Element]] | |||
[[Category:Templates generating microformats|Group 11 Element]] | |||
[[Category:Templates that add a tracking category|Group 11 Element]] | |||
[[Category:Templates that are not mobile friendly|Group 11 Element]] | |||
[[Category:Templates that generate short descriptions|Group 11 Element]] | |||
[[Category:Templates using TemplateData|Group 11 Element]] | |||
[[Category:Wikipedia metatemplates|Group 11 Element]] | |||
[[Category:मुद्रा उत्पादन|Group 11 Element]] | |||
[[Category:समूह (आवर्त सारणी)|Group 11 Element]] | |||
Latest revision as of 16:40, 8 June 2023
| Group 11 in the periodic table | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
| ↓ Period | |||||||||||
| 4 | Copper (Cu) 29 Transition metal | ||||||||||
| 5 | Silver (Ag) 47 Transition metal | ||||||||||
| 6 | Gold (Au) 79 Transition metal | ||||||||||
| 7 | Roentgenium (Rg) 111 unknown chemical properties | ||||||||||
|
Legend
| |||||||||||
समूह 11, आधुनिक आईयूपीएसी संख्या द्वारा,[1] आवर्त सारणी में रासायनिक तत्वों का एक आवर्त सारणी समूह है, जिसमें कॉपर (Cu), सिल्वर (Ag), और गोल्ड (Au), और रेन्टजेनियम (Rg) सम्मिलित हैं, चूँकि अभी तक कोई रासायनिक प्रयोग नहीं किया गया है जो इस बात की पुष्टि करता है कि रेंटजेनियम सोने के लिए भारी समरूपता (रसायन विज्ञान) की तरह व्यवहार करता है। समूह 11 को सिक्कों की ढलाई में उनके उपयोग के कारण सिक्का धातु के रूप में भी जाना जाता है,[2] जबकि धातु के मूल्यों में वृद्धि का अर्थ है कि चांदी और सोने का उपयोग अब प्रचलन मुद्रा के लिए नहीं किया जाता है, जो बुलियन के लिए उपयोग में रहती है, तांबे के सिक्के के रूप में या कप्रोनिकेल मिश्र धातु के हिस्से के रूप में आज तक तांबे के सिक्कों में एक सामान्य धातु बनी हुई है।[citation needed] सबसे अधिक संभावना है कि वे खोजे गए पहले तीन तत्व थे।[3] तांबा, चांदी और सोना सभी मूल तत्व में प्राकृतिक रूप से पाए जाते हैं।[4][5]
इतिहास
रेंटजेनियम को छोड़कर समूह के सभी तत्व प्रागैतिहासिक काल से ज्ञात हैं,[2] चूंकि ये सभी प्रकृति में धात्विक रूप में पाए जाते हैं और इनका उत्पादन करने के लिए किसी निष्कर्षण धातु विज्ञान की आवश्यकता नहीं होती है।
तांबे को लगभग 4000 ईसा पूर्व जाना और उपयोग किया गया था और कई वस्तुओं, हथियारों और सामग्रियों को तांबे के साथ बनाया और उपयोग किया गया था।
आरएससी के अनुसार, तुर्की और ग्रीस में चांदी के खनन का पहला प्रमाण 3000 ईसा पूर्व का है। प्राचीन लोगों ने यह भी पता लगाया कि चांदी को कैसे शुद्ध किया जाए।
मनुष्यों द्वारा उपयोग में लाई जाने वाली सबसे पहली अंकित की गई धातु सोना प्रतीत होती है, जिसे मुफ्त या "देशी" पाया जा सकता है। उत्तर पुरापाषाण काल c. 40,000 ई.पू. के समय उपयोग की जाने वाली स्पेनिश गुफाओं में कम मात्रा में प्राकृतिक सोना पाया गया है। पांचवीं सहस्राब्दी ईसा पूर्व के अंत में और चौथी सहस्राब्दी के प्रारंभ में, मिस्र में पूर्व-वंश काल के प्रारंभ में सोने की कलाकृतियों ने अपनी पहली उपस्थिति अंकित की, और चौथी सहस्राब्दी के समय गलाने का विकास किया गया; चौथी सहस्राब्दी के प्रारंभ के समय निचले मेसोपोटामिया के पुरातत्व में सोने की कलाकृतियाँ दिखाई देती हैं।
रेन्टजेनियम-272 बनाने के लिए 1994 में बिस्मथ-209 में निकल-64 परमाणुओं की बमबारी करके रेन्टजेनियम बनाया गया था।[6]
विशेषताएं
अन्य समूहों की तरह, इस परिवार के सदस्य इलेक्ट्रॉन विन्यास में पैटर्न दिखाते हैं, विशेष रूप से सबसे बाहरी कोश में, जिसके परिणामस्वरूप रासायनिक व्यवहार में रुझान होता है, चूंकि रेंटजेनियम संभवतः एक अपवाद है:
| Z | तत्व | इलेक्ट्रॉनों/कोश की संख्या |
|---|---|---|
| 29 | कॉपर | 2, 8, 18, 1 |
| 47 | सिल्वर | 2, 8, 18, 18, 1 |
| 79 | गोल्ड | 2, 8, 18, 32, 18, 1 |
| 111 | रेन्टजेनियम | 2, 8, 18, 32, 32, 17, 2 (अनुमानित) |
सभी समूह 11 तत्व अपेक्षाकृत निष्क्रिय, संक्षारण प्रतिरोधी धातु हैं। तांबा और सोना रंगीन होते हैं, किन्तु चांदी रंगीन नहीं होती है। रोएंटजेनियम के चांदी जैसे होने की आशा है, चूंकि इसकी पुष्टि करने के लिए इसे पर्याप्त मात्रा में उत्पादित नहीं किया गया है।
इन तत्वों की विद्युत प्रतिरोधकता कम होती है इसलिए इनका उपयोग वायरिंग के लिए किया जाता है। ताँबा सबसे सस्ता और सबसे व्यापक रूप से उपयोग किया जाने वाला धातु है। एकीकृत परिपथों के लिए बंधन तार सामान्यतः सोने के होते हैं। कुछ विशेष अनुप्रयोगों में सिल्वर और सिल्वर प्लेटेड कॉपर वायरिंग पाई जाती है।
घटना
कॉपर चिली, चीन, मैक्सिको, रूस और संयुक्त राज्य अमेरिका में अपने मूल रूप में होता है। तांबे के विभिन्न प्राकृतिक अयस्कों में कॉपर पाइराइट्स (CuFeS2), क्यूप्राइट या रूबी कॉपर (Cu2O), कॉपर ग्लांस (Cu2S), मैलाकाइट, (Cu(OH)2CuCO3), और अज़ूराइट (Cu(OH))22CuCO3) हैं।
कॉपर पाइराइट प्रमुख अयस्क है, और तांबे के विश्व उत्पादन का लगभग 76% उत्पादन करता है।
उत्पादन
चांदी देशी रूप में, सोने (एलेक्ट्रम ) के साथ एक मिश्र धातु के रूप में, और सल्फर , आर्सेनिक , सुरमा या क्लोरीन युक्त अयस्कों में पाई जाती है। अयस्कों में अर्जेंटाइट (Ag2S), क्लोरार्जाइट (AgCl) सम्मिलित हैं जिसमें हॉर्न सिल्वर , और पाइरार्जाइट (Ag3SbS3) सम्मिलित हैं। चांदी को पार्क्स प्रक्रिया का उपयोग करके निकाला जाता है।
अनुप्रयोग
इन धातुओं, विशेष रूप से चांदी में असामान्य गुण होते हैं जो उन्हें उनके मौद्रिक या सजावटी मूल्य के बाहर औद्योगिक अनुप्रयोगों के लिए आवश्यक बनाते हैं। वे सभी बिजली के उत्कृष्ट संवाहक (सामग्री) हैं। सभी धातुओं में सबसे अधिक सुचालक (मात्रा के अनुसार) चांदी, तांबा और सोना इसी क्रम में हैं। चांदी भी सबसे अधिक ऊष्मीय प्रवाहकीय तत्व है, और सबसे अधिक प्रकाश परावर्तक तत्व है। चांदी में यह भी असामान्य गुण होता है कि चांदी पर बनने वाला टार्निश अभी भी अत्यधिक विद्युत प्रवाहकीय है।
कॉपर का उपयोग बिजली के तारों और सर्किटरी में बड़े पैमाने पर किया जाता है। जंग-मुक्त रहने की क्षमता के लिए सोने के संपर्क कभी-कभी त्रुटिहीन उपकरणों में पाए जाते हैं। चांदी का व्यापक रूप से मिशन-महत्वपूर्ण अनुप्रयोगों में विद्युत संपर्कों के रूप में उपयोग किया जाता है, और इसका उपयोग फोटोग्राफी (क्योंकि चांदी नाइट्रेट प्रकाश के संपर्क में आने पर धातु में बदल जाता है), कृषि, चिकित्सा, ऑडियोफाइल और वैज्ञानिक अनुप्रयोगों में भी किया जाता है।
सोना, चांदी और तांबा काफी नरम धातु हैं और इसलिए सिक्कों के रूप में दैनिक उपयोग में आसानी से क्षतिग्रस्त हो जाते हैं। मूल्यवान धातु भी आसानी से घिस सकती है और उपयोग के माध्यम से दूर हो सकती है। उनके संख्यात्मक कार्यों में सिक्कों को अधिक स्थायित्व प्रदान करने के लिए इन धातुओं को अन्य धातुओं के साथ मिश्रित किया जाना चाहिए। अन्य धातुओं के साथ मिश्र धातु परिणामी सिक्कों को कठिन बना देता है, विकृत होने की संभावना कम होती है और पहनने के लिए अधिक प्रतिरोधी होती है।
सोने के सिक्के: सोने के सिक्के सामान्यतः या तो 90% सोने (जैसे 1933 से पहले के अमेरिकी सिक्कों के साथ), या 22 कैरेट (शुद्धता) (91.66%) सोने (जैसे वर्तमान संग्रहणीय सिक्के और क्रूगरैंड्स) के रूप में उत्पादित किए जाते हैं, जिसमें तांबा और चांदी प्रत्येक मामले में शेष वजन बनाते हैं। बुलियन सोने के सिक्कों का उत्पादन 99.999% तक सोने (कैनेडियन गोल्ड मेपल लीफ श्रृंखला में) के साथ किया जा रहा है।
चांदी के सिक्के: चांदी के सिक्के सामान्यतः या तो 90% चांदी के रूप में उत्पादित किए जाते हैं - 1965 के पूर्व के अमेरिकी सिक्कों के मामले में (जो कई देशों में परिचालित किए गए थे), या 1920 के पूर्व ब्रिटिश राष्ट्रमंडल और अन्य चांदी के लिए स्टर्लिंग चांदी (92.5%) के सिक्के सिक्का, तांबे के साथ प्रत्येक मामले में शेष वजन बनाते हैं। पुराने यूरोपीय सिक्के सामान्यतः 83.5% चांदी के साथ बनाए जाते थे। आधुनिक चांदी के बुलियन सिक्के अक्सर शुद्धता के साथ 99.9% से 99.999% तक भिन्न होते हैं।
तांबे के सिक्के: तांबे के सिक्के अक्सर काफी उच्च शुद्धता के होते हैं, लगभग 97%, और सामान्यतः थोड़ी मात्रा में जस्ता और विश्वास करना के साथ मिश्रित होते हैं।
मुद्रास्फीति के कारण सिक्कों का अंकित मूल्य ऐतिहासिक रूप से प्रयुक्त धातुओं के कठिन मुद्रा मूल्य से नीचे गिर गया है। इसने अधिकांश आधुनिक सिक्कों को आधार धातुओं से बनाया था - क्यूप्रोनिक्ल (लगभग 80:20, चांदी के रंग में) निकल-पीतल (तांबा (75), निकल (5) और जस्ता (20), सोने के रंग के रूप में लोकप्रिय है। ), मैंगनीज-पीतल (तांबा, जस्ता, मैंगनीज और निकल), कांस्य, या साधारण चढ़ाया हुआ इस्पात के रूप में लोकप्रिय है।।
जैविक भूमिका और विषाक्तता
कॉपर अत्यधिक मात्रा में विषैला होते हुए भी जीवन के लिए आवश्यक है। यह हेमोसायनिन, साइटोक्रोम सी ऑक्सीडेज और सुपरऑक्साइड डिसम्यूटेज़ में पाया जा सकता है। कॉपर में रोगाणुरोधी गुण पाए जाते हैं जो इसे अस्पताल के दरवाज़ों के लिए उपयोगी बनाते हैं ताकि बीमारियों को फैलने से रोका जा सके। तांबे के बर्तन में खाना खाने से तांबे की विषाक्तता का खतरा बढ़ जाता है। विल्सन की बीमारी एक आनुवंशिक स्थिति है जिसमें अतिरिक्त तांबे के उत्सर्जन के लिए महत्वपूर्ण एक प्रोटीन उत्परिवर्तित होता है जैसे तांबा शरीर के ऊतकों में बनता है, जिससे उल्टी, कमजोरी, कंपकंपी, चिंता और मांसपेशियों की जकड़न जैसे लक्षण उत्पन्न होते हैं।
तात्विक सोने और चांदी का कोई ज्ञात विषैला प्रभाव या जैविक उपयोग नहीं है, चूंकि सोना नमक (रसायन विज्ञान) जिगर और गुर्दे के ऊतकों के लिए विषाक्त हो सकता है।[7][8] तांबे की तरह चांदी के भी चांदी के चिकित्सीय उपयोग हैं। सोने या चांदी युक्त उत्पादों के लंबे समय तक उपयोग से शरीर के ऊतकों में इन धातुओं का संचय भी हो सकता है; जिसके परिणाम अपरिवर्तनीय किन्तु स्पष्ट रूप से हानिरहित रंजकता की स्थिति हैं जिन्हें क्रमशः सोने का पानी और चाँदी के रूप में जाना जाता है।
अल्पकालिक और रेडियोधर्मी होने के कारण, रेंटजेनियम का कोई जैविक उपयोग नहीं है, किन्तु इसकी रेडियोधर्मिता के कारण यह अत्यधिक हानिकारक है।
संदर्भ
- ↑ Fluck, E. (1988). "आवर्त सारणी में नए अंकन" (PDF). Pure Appl. Chem. IUPAC. 60 (3): 431–436. doi:10.1351/pac198860030431. Retrieved 24 March 2012.
- ↑ 2.0 2.1 "23.6: Group 11: Copper, Silver, and Gold". Chemistry LibreTexts (in English). 2015-01-18. Retrieved 2022-03-25.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1173. ISBN 978-0-08-037941-8.
- ↑ "ये प्रकृति में पाए जाने वाले मूल तत्व हैं". ThoughtCo (in English). Retrieved 2022-03-25.
- ↑ "शुद्ध रूप में मूल तत्व खनिज और स्वाभाविक रूप से होने वाली धातुओं की सूची बनाएं". Mineral Processing & Metallurgy (in English). 2016-09-27. Retrieved 2022-03-25.
- ↑ Hofmann, S.; Ninov, V.; Heßberger, F.P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "नया तत्व 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182.
- ↑ Wright, I. H.; Vesey, C. J. (1986). "सोना साइनाइड के साथ तीव्र जहर". Anaesthesia. 41 (79): 936–939. doi:10.1111/j.1365-2044.1986.tb12920.x. PMID 3022615.
- ↑ Wu, Ming-Ling; Tsai, Wei-Jen; Ger, Jiin; Deng, Jou-Fang; Tsay, Shyh-Haw; Yang, Mo-Hsiung. (2001). "एक्यूट गोल्ड पोटेशियम साइनाइड विषाक्तता के कारण कोलेस्टेटिक हेपेटाइटिस". Clinical Toxicology. 39 (7): 739–743. doi:10.1081/CLT-100108516. PMID 11778673.