मूनशाइन सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 43: Line 43:
कॉनवे और नॉर्टन के अनुमान के रिचर्ड बोरचर्ड्स के प्रमाण को निम्नलिखित प्रमुख चरणों में विभाजित किया जा सकता है:
कॉनवे और नॉर्टन के अनुमान के रिचर्ड बोरचर्ड्स के प्रमाण को निम्नलिखित प्रमुख चरणों में विभाजित किया जा सकता है:


# शीर्ष संकारक बीजगणित वी के साथ अपरिवर्तनीय बिलिनियर फॉर्म के साथ प्रारंभ होता है, ऑटोमोर्फिज्म द्वारा एम की क्रिया, और सात निम्नतम डिग्री के सजातीय रिक्त स्थान के इर्रिडिएबल एम-प्रतिनिधित्व में ज्ञात अपघटन के साथ। यह फ्रेंकेल-लेपोव्स्की-मेरमैन के मूनशाइन मॉड्यूल के निर्माण और विश्लेषण द्वारा प्रदान किया गया था।
# शीर्ष संकारक बीजगणित ''V''  के साथ प्रारम्भ होता है, जिसमें ऑटोमोर्फिज्म द्वारा ''M'' की क्रिया के रूप में अपरिवर्तनीय द्विरैखिक रूप होता है, और सात निम्नतम डिग्री के सजातीय समष्टि के इर्रिडिएबल ''M''-प्रतिनिधित्व में ज्ञात अपघटन होता है। यह फ्रेंकेल-लेपोव्स्की-मेरमैन के मूनशाइन मॉड्यूल के निर्माण और विश्लेषण द्वारा प्रदान किया गया था।
# [[झूठ बीजगणित]] <math>\mathfrak{m}</math>, जिसे मॉन्स्टर लाइ बीजगणित कहा जाता है, का निर्माण V से  क्वांटिज़ेशन फ़ंक्टर का उपयोग करके किया गया है। यह सामान्यीकृत केएसी-मूडी बीजगणित है। ऑटोमोर्फिज्म द्वारा  मॉन्स्टरस क्रिया के साथ सामान्यीकृत केएसी-मूडी लाइ बीजगणित। स्ट्रिंग थ्योरी से गोडार्ड-थॉर्न नो-घोस्ट प्रमेय | गोडार्ड-थॉर्न नो-घोस्ट प्रमेय का उपयोग करते हुए, रूट बहुगुणता जे के गुणांक पाए जाते हैं।
# [[झूठ बीजगणित|लाई बीजगणित]] <math>\mathfrak{m}</math>, जिसे मॉन्स्टर लाइ बीजगणित कहा जाता है, इसका निर्माण V से  क्वांटिज़ेशन फ़ंक्टर का उपयोग करके किया गया है। यह सामान्यीकृत केएसी-मूडी बीजगणित है। स्ट्रिंग सिद्धांत से गोडार्ड-थॉर्न नो-घोस्ट प्रमेय का उपयोग करते हुए, मूल गुणक ''J'' के गुणांक प्राप्त किये जाते हैं।
# जनरेटर और संबंधों द्वारा सामान्यीकृत केएसी-मूडी लाइ बीजगणित बनाने के लिए कोई कोइके-नॉर्टन-ज़गियर अनंत उत्पाद पहचान का उपयोग करता है। इस तथ्य का उपयोग करके पहचान सिद्ध की जाती है कि [[हेज ऑपरेटर|हेज]] संचालन ने जे में जे उपज बहुपदों पर लागू किया।
# जनरेटर और संबंधों द्वारा सामान्यीकृत केएसी-मूडी लाइ बीजगणित बनाने के लिए कोइके-नॉर्टन-ज़गियर अपरिमित गुणनफल प्रमाण का उपयोग किया जाता है। इस तथ्य का उपयोग करके पहचान सिद्ध की जाती है कि [[हेज ऑपरेटर|हेज]] संकारकों ने ''J'' के बहुपदों को ''J'' में प्रयुक्त किया।
# मूल गुणकों की तुलना करने पर, यह पता चलता है कि दो ले बीजगणित समरूपी हैं, और विशेष रूप से, के लिए वेइल विभाजक सूत्र <math>\mathfrak{m}</math> बिल्कुल कोइके-नॉर्टन-ज़ैगियर पहचान है।
# मूल गुणकों की तुलना करने पर, यह ज्ञात होता है कि दो लाइ बीजगणित समरूपी हैं, और विशेष रूप से, <math>\mathfrak{m}</math> के लिए वेइल भाजक सूत्र निश्चित रूप से कोइके-नॉर्टन-ज़ैगियर प्रमाण है।
# [[झूठ बीजगणित समरूपता]] और [[एडम्स ऑपरेशन]] का उपयोग करते हुए, प्रत्येक तत्व के लिए ट्विस्टेड डिनोमिनेटर आइडेंटिटी दी गई है। ये पहचान मैके-थॉम्पसन श्रृंखला टी से संबंधित हैं<sub>g</sub> ठीक उसी तरह जैसे कि कोइके-नॉर्टन-ज़गियर की पहचान जे से संबंधित है।
# [[झूठ बीजगणित समरूपता|लाइ बीजगणित समरूपता]] और [[एडम्स ऑपरेशन|एडम्स संक्रियाओं]] का उपयोग करते हुए, प्रत्येक तत्व के लिए ट्विस्टेड भाजक प्रमाण दिया गया है। ये प्रमाण मैके-थॉम्पसन श्रृंखला ''T''<sub>g</sub> से संबंधित हैं उसी प्रकार, जिस प्रकार कोइके-नॉर्टन-ज़गियर की पहचान ''J'' से संबंधित है।
# मुड़ भाजक पहचान टी के गुणांकों पर पुनरावर्ती संबंध दर्शाती है<sub>g</sub>, और कोइके के अप्रकाशित कार्य ने दिखाया कि कॉनवे और नॉर्टन के उम्मीदवार कार्य इन पुनरावर्तन संबंधों को संतुष्ट करते हैं। ये संबंध इतने मजबूत हैं कि केवल यह जांचने की जरूरत है कि पहले सात शब्द कॉनवे और नॉर्टन द्वारा दिए गए कार्यों से सहमत हैं। पहले चरण में दिए गए सात सबसे कम डिग्री सजातीय रिक्त स्थान के अपघटन द्वारा निम्नतम शब्द दिए गए हैं।
# ट्विस्टेड भाजक प्रमाण T<sub>g</sub> के गुणांकों पर पुनरावर्ती संबंधों को दर्शाता है, और कोइके के अप्रकाशित कार्य ने दिखाया कि कॉनवे और नॉर्टन के फलन इन पुनरावर्तन संबंधों को संतुष्ट करते हैं। ये संबंध इतने प्रबल हैं कि जिसमें केवल यह अन्वेषण करने की आवश्यकता है कि प्रथम सात शब्द कॉनवे और नॉर्टन द्वारा दिए गए फलनों से सहमत हैं। प्रथम चरण में दिए गए सात सबसे कम डिग्री सजातीय समष्टि के अपघटन द्वारा निम्नतम शब्द दिए गए हैं।


इस प्रकार, प्रमाण पूरा हो गया है ({{harvtxt|Borcherds|1992}}). बोरचर्ड्स को पश्चात में यह कहते हुए उद्धृत किया गया था कि जब मैंने चन्द्रमा के अनुमान को सिद्ध किया तो मैं बहुत खुश था, और मुझे कभी-कभी आश्चर्य होता है कि जब आप कुछ दवाएं लेते हैं तो क्या यही भावना आपको मिलती है। मैं वास्तव में नहीं जानता, क्योंकि मैंने अपने इस सिद्धांत का परीक्षण नहीं किया है। {{harv|Roberts|2009|p=361}}
इस प्रकार, प्रमाण पूर्ण हो गया है ({{harvtxt|बोरचर्ड्स|1992}})बोरचर्ड्स को पश्चात में यह कहते हुए उद्धृत किया गया था कि जब मैंने चन्द्रमा के अनुमान को सिद्ध किया तो मैं बहुत प्रसन्न था, और मुझे कभी-कभी आश्चर्य होता है कि जब आप कुछ दवाएं लेते हैं तो क्या यही भावना आपको मिलती है। मैं वास्तव में नहीं जानता, क्योंकि मैंने अपने इस सिद्धांत का परीक्षण नहीं किया है। {{harv|रॉबर्ट्स|2009|p=361}}


अधिक हाल के कार्य ने प्रमाण के अंतिम चरणों को सरल और स्पष्ट किया है। ज्यूरिसिच ({{harvtxt|Jurisich|1998}}, {{harvtxt|Jurisich|Lepowsky|Wilson|1995}}) ने पाया कि मॉन्स्टर लाइ बीजगणित के सामान्य त्रिकोणीय अपघटन को ग्लो के योग में अपघटन के साथ बदलकर होमोलॉजी गणना को काफी हद तक छोटा किया जा सकता है।<sub>2</sub> और दो मुक्त झूठ बीजगणित। कमिंस और गैनन ने दिखाया कि पुनरावर्तन संबंध स्वचालित रूप से मैके थॉम्पसन श्रृंखला को या तो हॉन्टमॉडुलन या अधिकतम 3 शब्दों के पश्चात समाप्त कर देते हैं, इस प्रकार अंतिम चरण में गणना की आवश्यकता को समाप्त कर देते हैं।
अधिक हाल के कार्य ने प्रमाण के अंतिम चरणों को सरल और स्पष्ट किया है। ज्यूरिसिच ({{harvtxt|Jurisich|1998}}, {{harvtxt|Jurisich|Lepowsky|Wilson|1995}}) ने पाया कि मॉन्स्टर लाइ बीजगणित के सामान्य त्रिकोणीय अपघटन को ग्लो के योग में अपघटन के साथ बदलकर होमोलॉजी गणना को काफी हद तक छोटा किया जा सकता है।<sub>2</sub> और दो मुक्त झूठ बीजगणित। कमिंस और गैनन ने दिखाया कि पुनरावर्तन संबंध स्वचालित रूप से मैके थॉम्पसन श्रृंखला को या तो हॉन्टमॉडुलन या अधिकतम 3 शब्दों के पश्चात समाप्त कर देते हैं, इस प्रकार अंतिम चरण में गणना की आवश्यकता को समाप्त कर देते हैं।

Revision as of 08:40, 31 May 2023

गणित में, मॉन्स्टरस मूनशाइन, या मूनशाइन सिद्धांत, मॉन्स्टरस समूह M और मॉड्यूलर फलन के मध्य अप्रत्याशित संबंध है, विशेष रूप से, j-फलन यह शब्द 1979 में जॉन हॉर्टन कॉनवे और साइमन पी नॉर्टन द्वारा बनाया गया था।[1][2][3]

मॉन्स्टरस मूनशाइन को अब 1988 में इगोर फ्रेनकेल, जेम्स लेपोव्स्की और अर्ने म्योरमैन द्वारा निर्मित मूनशाइन मॉड्यूल (या मॉन्स्टरस शीर्ष बीजगणित) नामक शीर्ष संचालन बीजगणित द्वारा रेखांकित किया जाता है, जिसमें मॉन्स्टर समूह समरूपता के समूह के रूप में है। इस शीर्ष संचालन बीजगणित को सामान्यतः दो आयामी अनुरूप क्षेत्र सिद्धांत के अनुसार संरचना के रूप में व्याख्या किया जाता है, जिससे भौतिकी को दो गणितीय क्षेत्रों के मध्य ब्रिज बनाने की अनुमति मिलती है। कॉनवे और नॉर्टन द्वारा किए गए अनुमानों को 1992 में रिचर्ड बोरचर्ड्स द्वारा मूनशाइन मॉड्यूल के लिए स्ट्रिंग सिद्धांत से नो-घोस्ट प्रमेय और शीर्ष संचालन बीजगणित के सिद्धांत और सामान्यीकृत केएसी-मूडी बीजगणित का उपयोग करके सिद्ध किया गया था।

इतिहास

1978 में, जॉन मैकके ने पाया कि सामान्यीकृत J-संस्करण में के फूरियर विस्तार में प्रथम कुछ शब्द (sequence A014708 in the OEIS) है:

और τ अर्ध-अवधि अनुपात के रूप में अलघुकरणीय अभ्यावेदन के आयामों को रैखिक संयोजनों के संदर्भ में व्यक्त किया जा सकता है छोटे गैर-नकारात्मक गुणांक वाले मॉन्स्टरस समूह M (sequence A001379 in the OEIS) का है। मान लीजिये = 1, 196883, 21296876, 842609326, 18538750076, 19360062527, 293553734298, ... तो,
जहां एलएचएस के गुणांक हैं जबकि आरएचएस आयाम हैं मॉन्स्टरस समूह M हैं। (चूंकि इसके मध्य कई रैखिक संबंध हो सकते हैं जैसे कि , प्रतिनिधित्व एक से अधिक विधियों से हो सकता है।) मैकके ने इसे प्रमाण के रूप में देखा कि M स्वाभाविक रूप से होने वाली अनंत-आयामी ग्रेडेड वेक्टर स्पेस है, जिसे ग्रेडेड आयाम गुणांक द्वारा दिया गया है, जे के, और जिनके कम भार के खंड ऊपर के रूप में अप्रासंगिक अभ्यावेदन में विघटित हो जाते हैं। इस अवलोकन के बारे में जॉन जी थॉम्पसन को सूचित करने के पश्चात, थॉम्पसन ने अध्ययन किया कि वर्गीकृत श्रेणीबद्ध आयाम केवल पहचान तत्व का श्रेणीबद्ध संकेत है, इस प्रकार के प्रतिनिधित्व पर M के गैर-तुच्छ तत्व g के वर्गीकृत संकेत भी लोकप्रिय हो सकते हैं।

कॉनवे और नॉर्टन ने इस प्रकार के वर्गीकृत अंशों के निचले-क्रम के नियमों की गणना की, जिसे अब मैके-थॉम्पसन श्रृंखला Tg के रूप में जाना जाता है। और पाया कि वे सभी मुख्य मॉड्यूल के विस्तार प्रतीत होते हैं। दूसरे शब्दों में, Gg SL2(R)|SL का उपसमूह है जो 'Tg' को योग्य बनाता है, तो Gg द्वारा जटिल समतल के ऊपरी अर्ध समतल का भागफल समूह हटाए गए बिंदुओं की सीमित संख्या वाला गोला है, और इसके अतिरिक्त, Tg इस क्षेत्र पर मेरोमॉर्फिक फलन का क्षेत्र (गणित) उत्पन्न करता है।

उनकी संगणनाओं के आधार पर, कॉनवे और नॉर्टन ने हॉन्टमॉडुलन की सारिणी प्रस्तुत की, और M के अनंत आयामी वर्गीकृत प्रतिनिधित्व के अस्तित्व का अनुमान लगाया, जिसके वर्गीकृत संकेत Tg उनकी सारिणी प्रस्तुत में त्रुटिहीन कार्यों के फूरियर विस्तार हैं।

1980 में, ए. ओलिवर एल. एटकिन, पॉल फोंग और स्टीफन डी. स्मिथ ने स्थिर कम्प्यूटेशनल प्रमाण प्रस्तुत किए कि इस प्रकार का वर्गीकृत प्रतिनिधित्व उपस्थित है, M के प्रतिनिधित्व में बड़ी संख्या में J के गुणांकों को विघटित करके वर्गीकृत प्रतिनिधित्व जिसका ग्रेडेड आयाम J है, जिसे मूनशाइन मॉड्यूल कहा जाता है, स्पष्ट रूप से इगोर फ्रेंकेल, जेम्स लेपोव्स्की और अर्ने मेउरमैन द्वारा निर्मित किया गया था, जो मैकके-थॉम्पसन अनुमान का प्रभावी समाधान दे रहा था, और उन्होंने Mके समावेशन के केंद्रक में सभी तत्वों के लिए श्रेणीबद्ध संकेत भी निर्धारित किए। आंशिक रूप से कॉनवे-नॉर्टन अनुमान का समाधान किया। इसके अतिरिक्त, उन्होंने दिखाया कि उन्होंने जिस सदिश स्थल का निर्माण किया, उसे मूनशाइन मॉड्यूल कहा जाता है , शीर्ष संचालन बीजगणित की अतिरिक्त संरचना है, जिसका ऑटोमोर्फिज़्म समूह का योग्य M है।

1985 में, जॉन हॉर्टन कॉनवे सहित गणितज्ञों के समूह द्वारा परिमित समूहों के एटलस को प्रकाशित किया गया था। एटलस, जो सभी स्पोराडिक समूह की गणना करता है, और मॉन्स्टर समूह के उल्लेखनीय गुणों की सूची में खंड के रूप में मूनशाइन को सम्मिलित किया।[4] बोरचर्ड्स ने 1992 में मूनशाइन मॉड्यूल के लिए कॉनवे-नॉर्टन अनुमान को सिद्ध किया। उन्होंने अनुमान के समाधान के लिए 1998 में फील्ड मेडल जीता।

मूनशाइन मॉड्यूल

फ्रेंकेल-लेपोव्स्की-मेरमैन निर्माण दो मुख्य उपकरणों से प्रारंभ होता है:

  1. श्रेणी n की जाली L के लिए जाली शीर्ष संचालन बीजगणित VL का निर्माण है। भौतिक दृष्टि से, यह टोरस Rn/L पर संघनित (भौतिकी) बोसोनिक स्ट्रिंग के लिए चिराल बीजगणित है। इसे सामान्यतः n आयामों में दोलक प्रतिनिधित्व के साथ L के समूह वलय के टेंसर गुणनफल के रूप में वर्णित किया जा सकता है (जो अनगिनत रूप से कई जनरेटर आव्यूह में बहुपद वलय के लिए समरूपीय है)। विचाराधीन स्तिथि के लिए, L को जोंक जाली के रूप में सेट किया गया है, जिसकी श्रेणी 24 है।
  2. ऑर्बिफोल्ड निर्माण- भौतिक शब्दों में, यह ऑर्बिफोल्ड पर प्रसारित बोसोनिक स्ट्रिंग का वर्णन करता है। फ्रेंकेल-लेपोव्स्की-मेरमैन का निर्माण सर्वप्रथम ऑर्बिफोल्ड अनुरूप क्षेत्र सिद्धांत में प्रकट हुआ था। लीच जाली के 1 इनवोल्यूशन से जुड़ा हुआ है, VL का इनवोल्यूशन h है, और इरेड्यूसिबल-ट्विस्टेड VL-मॉड्यूल है, जो इनवोल्यूशन लिफ्टिंग h को विरासत में मिला है। मूनशाइन मॉड्यूल प्राप्त करने के लिए, VL और उसके ट्विस्टेड मॉड्यूल के प्रत्यक्ष योग में h का निश्चित बिंदु (गणित) उपसमष्टि लेता है।

फ्रेंकेल, लेपोव्स्की और मेरमैन ने तब दिखाया कि शीर्ष संकारक बीजगणित के रूप में मूनशाइन मॉड्यूल का ऑटोमोर्फिज़्म समूह, M है। इसके अतिरिक्त, उन्होंने उपसमूह 21+24 में तत्वों के ग्रेडेड संकेत को निर्धारित किया। Co1 कॉनवे और नॉर्टन द्वारा अनुमानित फलनों से युग्मित होता है (फ्रेंकेल, लेपोव्स्की & मेरमैन (1988))।

बोरचर्ड्स का प्रमाण

कॉनवे और नॉर्टन के अनुमान के रिचर्ड बोरचर्ड्स के प्रमाण को निम्नलिखित प्रमुख चरणों में विभाजित किया जा सकता है:

  1. शीर्ष संकारक बीजगणित V के साथ प्रारम्भ होता है, जिसमें ऑटोमोर्फिज्म द्वारा M की क्रिया के रूप में अपरिवर्तनीय द्विरैखिक रूप होता है, और सात निम्नतम डिग्री के सजातीय समष्टि के इर्रिडिएबल M-प्रतिनिधित्व में ज्ञात अपघटन होता है। यह फ्रेंकेल-लेपोव्स्की-मेरमैन के मूनशाइन मॉड्यूल के निर्माण और विश्लेषण द्वारा प्रदान किया गया था।
  2. लाई बीजगणित , जिसे मॉन्स्टर लाइ बीजगणित कहा जाता है, इसका निर्माण V से क्वांटिज़ेशन फ़ंक्टर का उपयोग करके किया गया है। यह सामान्यीकृत केएसी-मूडी बीजगणित है। स्ट्रिंग सिद्धांत से गोडार्ड-थॉर्न नो-घोस्ट प्रमेय का उपयोग करते हुए, मूल गुणक J के गुणांक प्राप्त किये जाते हैं।
  3. जनरेटर और संबंधों द्वारा सामान्यीकृत केएसी-मूडी लाइ बीजगणित बनाने के लिए कोइके-नॉर्टन-ज़गियर अपरिमित गुणनफल प्रमाण का उपयोग किया जाता है। इस तथ्य का उपयोग करके पहचान सिद्ध की जाती है कि हेज संकारकों ने J के बहुपदों को J में प्रयुक्त किया।
  4. मूल गुणकों की तुलना करने पर, यह ज्ञात होता है कि दो लाइ बीजगणित समरूपी हैं, और विशेष रूप से, के लिए वेइल भाजक सूत्र निश्चित रूप से कोइके-नॉर्टन-ज़ैगियर प्रमाण है।
  5. लाइ बीजगणित समरूपता और एडम्स संक्रियाओं का उपयोग करते हुए, प्रत्येक तत्व के लिए ट्विस्टेड भाजक प्रमाण दिया गया है। ये प्रमाण मैके-थॉम्पसन श्रृंखला Tg से संबंधित हैं उसी प्रकार, जिस प्रकार कोइके-नॉर्टन-ज़गियर की पहचान J से संबंधित है।
  6. ट्विस्टेड भाजक प्रमाण Tg के गुणांकों पर पुनरावर्ती संबंधों को दर्शाता है, और कोइके के अप्रकाशित कार्य ने दिखाया कि कॉनवे और नॉर्टन के फलन इन पुनरावर्तन संबंधों को संतुष्ट करते हैं। ये संबंध इतने प्रबल हैं कि जिसमें केवल यह अन्वेषण करने की आवश्यकता है कि प्रथम सात शब्द कॉनवे और नॉर्टन द्वारा दिए गए फलनों से सहमत हैं। प्रथम चरण में दिए गए सात सबसे कम डिग्री सजातीय समष्टि के अपघटन द्वारा निम्नतम शब्द दिए गए हैं।

इस प्रकार, प्रमाण पूर्ण हो गया है (बोरचर्ड्स (1992))। बोरचर्ड्स को पश्चात में यह कहते हुए उद्धृत किया गया था कि जब मैंने चन्द्रमा के अनुमान को सिद्ध किया तो मैं बहुत प्रसन्न था, और मुझे कभी-कभी आश्चर्य होता है कि जब आप कुछ दवाएं लेते हैं तो क्या यही भावना आपको मिलती है। मैं वास्तव में नहीं जानता, क्योंकि मैंने अपने इस सिद्धांत का परीक्षण नहीं किया है। (रॉबर्ट्स 2009, p. 361)

अधिक हाल के कार्य ने प्रमाण के अंतिम चरणों को सरल और स्पष्ट किया है। ज्यूरिसिच (Jurisich (1998), Jurisich, Lepowsky & Wilson (1995)) ने पाया कि मॉन्स्टर लाइ बीजगणित के सामान्य त्रिकोणीय अपघटन को ग्लो के योग में अपघटन के साथ बदलकर होमोलॉजी गणना को काफी हद तक छोटा किया जा सकता है।2 और दो मुक्त झूठ बीजगणित। कमिंस और गैनन ने दिखाया कि पुनरावर्तन संबंध स्वचालित रूप से मैके थॉम्पसन श्रृंखला को या तो हॉन्टमॉडुलन या अधिकतम 3 शब्दों के पश्चात समाप्त कर देते हैं, इस प्रकार अंतिम चरण में गणना की आवश्यकता को समाप्त कर देते हैं।

सामान्यीकृत मूनशाइन

कॉनवे और नॉर्टन ने अपने 1979 के पेपर में सुझाव दिया कि शायद चन्द्रमा केवल मॉन्स्टरस तक ही सीमित नहीं है, लेकिन अन्य समूहों के लिए भी इसी तरह की घटनाएं पाई जा सकती हैं।[lower-alpha 1] जबकि कॉनवे और नॉर्टन के दावे बहुत विशिष्ट नहीं थे, 1980 में लारिसा क्वीन द्वारा की गई संगणनाओं ने दृढ़ता से सुझाव दिया कि छिटपुट समूहों के इरेड्यूसिबल प्रतिनिधित्व के आयामों के सरल संयोजन से कई हॉन्टमॉडुलन के विस्तार का निर्माण किया जा सकता है। विशेष रूप से, उसने निम्नलिखित मामलों में मैकके-थॉम्पसन श्रृंखला के गुणांकों को मॉन्स्टरस के उप-भागों के प्रतिनिधित्व में विघटित कर दिया:

क्वीन ने पाया कि गैर-पहचान वाले तत्वों के अंशों से हॉन्टमॉडुलन का क्यू-विस्तार भी हुआ, जिनमें से कुछ मॉन्स्टर की मैके-थॉम्पसन श्रृंखला नहीं थे। 1987 में, नॉर्टन ने सामान्यीकृत मूनशाइन अनुमान तैयार करने के लिए रानी के परिणामों को अपनी संगणनाओं के साथ जोड़ा। यह अनुमान दावा करता है कि नियम है जो मॉन्स्टरस के प्रत्येक तत्व जी को ग्रेडेड वेक्टर स्पेस वी (जी), और तत्वों की प्रत्येक आने वाली जोड़ी (जी, एच) को होलोमॉर्फिक फलन एफ (जी, एच, τ) प्रदान करता है। ऊपरी अर्ध समतल पर, जैसे कि:

  1. प्रत्येक वी (जी) एम में जी के केंद्रीकरण का वर्गीकृत प्रोजेक्टिव प्रतिनिधित्व है।
  2. प्रत्येक f(g, h, τ) या तो स्थिर कार्य है, या हॉन्टमॉडुल है।
  3. प्रत्येक एफ (जी, एच, τ) स्केलर अस्पष्टता तक, एम में जी और एच के साथ संयुग्मन (समूह सिद्धांत) के तहत अपरिवर्तनीय है।
  4. प्रत्येक (जी, एच) के लिए, वी (जी) पर रैखिक परिवर्तन के लिए एच की लिफ्ट होती है, जैसे कि एफ (जी, एच, τ) का विस्तार ग्रेडेड ट्रेस द्वारा दिया जाता है।
  5. किसी के लिए , के लिए आनुपातिक है .
  6. f(g, h, τ) J के समानुपाती है यदि और केवल यदि g = h = 1।

यह कॉनवे-नॉर्टन अनुमान का सामान्यीकरण है, क्योंकि बोरचर्ड्स प्रमेय उस मामले से संबंधित है जहां जी को पहचान पर सेट किया गया है।

कॉनवे-नॉर्टन अनुमान की तरह, सामान्यीकृत मूनशाइन की भी भौतिकी में व्याख्या है, जिसे 1988 में डिक्सन-गिन्सपर्ग-हार्वे द्वारा प्रस्तावित किया गया था (Dixon, Ginsparg & Harvey (1989)). उन्होंने वेक्टर रिक्त स्थान वी (जी) को मॉन्स्टरस समरूपता के अनुरूप क्षेत्र सिद्धांत के मुड़ क्षेत्रों के रूप में व्याख्या की, और कार्यों एफ (जी, एच, τ) को जीनस (गणित) विभाजन समारोह (गणित) के रूप में व्याख्या की, जहां टोरस बनाता है मुड़ी हुई सीमा स्थितियों के साथ ग्लूइंग करके। गणितीय भाषा में, मुड़े हुए क्षेत्र अलघुकरणीय मुड़े हुए मॉड्यूल हैं, और विभाजन कार्यों को प्रमुख मॉन्स्टरस बंडलों के साथ अण्डाकार वक्रों को सौंपा गया है, जिनके समरूपता प्रकार को मोनोड्रोमी द्वारा होमोलॉजी (गणित) के समूह के उत्पन्न सेट के साथ वर्णित किया गया है। 1-चक्र, यानी, आने वाले तत्वों की जोड़ी।

मॉड्यूलर मूनशाइन

1990 के दशक की शुरुआत में, समूह सिद्धांतकार ए.जे.ई. रायबा ने मॉन्स्टरस की चरित्र तालिका के कुछ हिस्सों और कुछ उपसमूहों के मॉड्यूलर प्रतिनिधित्व सिद्धांत के मध्य उल्लेखनीय समानताएं खोजीं। विशेष रूप से, मॉन्स्टर में प्राइम ऑर्डर पी के तत्व जी के लिए, ऑर्डर केपी के तत्व के कई अप्रासंगिक वर्ण जिनकी केथ शक्ति जी है, जी के केंद्रक में ऑर्डर के तत्व के लिए ब्राउर वर्णों के सरल संयोजन हैं। यह मॉन्स्टरस चन्द्रमा के समान घटना के लिए संख्यात्मक प्रमाण था, लेकिन सकारात्मक विशेषता में प्रतिनिधित्व के लिए। विशेष रूप से, रायबा ने 1994 में अनुमान लगाया था कि मॉन्स्टरस के क्रम में प्रत्येक प्रमुख कारक पी के लिए परिमित क्षेत्र 'एफ' पर वर्गीकृत शीर्ष बीजगणित उपस्थित है।p ऑर्डर p तत्व g के केंद्रक की क्रिया के साथ, जैसे कि किसी भी p-नियमित ऑटोमोर्फिज्म h का ग्रेडेड Brauer कैरेक्टर gh के लिए मैके-थॉम्पसन श्रृंखला के बराबर है (Ryba (1996)).

1996 में, बोरचर्ड्स और रियाबा ने अनुमान की पुनर्व्याख्या स्व-दोहरी अभिन्न रूप के टेट कोहोलॉजी के बारे में बयान के रूप में की . यह अभिन्न रूप अस्तित्व में नहीं था, लेकिन उन्होंने जेड [1/2] पर आत्म-दोहरी रूप का निर्माण किया, जिसने उन्हें विषम अभाज्य पी के साथ काम करने की अनुमति दी। प्राइम ऑर्डर के तत्व के लिए टेट कोहोलॉजी में स्वाभाविक रूप से एफ पर सुपर शीर्ष बीजगणित की संरचना होती हैp, और उन्होंने मैकके-थॉम्पसन श्रृंखला के साथ ग्रेडेड ब्राउर सुपर-ट्रेस की बराबरी करने वाले आसान कदम में समस्या को तोड़ दिया, और कठिन कदम दिखा रहा है कि टेट कोहोलॉजी विषम डिग्री में गायब हो जाती है। उन्होंने जोंक जालक (जोंक जालक) से लुप्त हो जाने वाले परिणाम को स्थानांतरित करके, छोटे विषम अभाज्यों के लिए गायब होने वाले बयान को सिद्ध कर दिया।Borcherds & Ryba (1996)). 1998 में, बोरचर्ड्स ने दिखाया कि हॉज सिद्धांत के संयोजन और गोडार्ड-थॉर्न प्रमेय | नो-घोस्ट प्रमेय के अभिन्न शोधन का उपयोग करते हुए, शेष विषम अभाज्य संख्याओं के लिए लुप्त हो जाना है (Borcherds (1998), Borcherds (1999)).

आदेश 2 के मामले में रूप के अस्तित्व की आवश्यकता होती है 2-एडिक रिंग के ऊपर, यानी, निर्माण जो 2 से विभाजित नहीं होता है, और यह उस समय उपस्थित नहीं था। कई अतिरिक्त अनुत्तरित प्रश्न बने हुए हैं, जैसे कि रायबा के अनुमान को कैसे समग्र आदेश तत्वों के टेट कोहोलॉजी को सामान्यीकृत करना चाहिए, और सामान्यीकृत चन्द्रमा और अन्य चन्द्रमा की घटनाओं के लिए किसी भी कनेक्शन की प्रकृति।

क्वांटम ग्रेविटी के साथ अनुमानित संबंध

2007 में, एडवर्ड विटेन|ई. Witten ने सुझाव दिया कि AdS/CFT पत्राचार (2 + 1)-आयामी एंटी-डी सिटर स्पेस और एक्सट्रीमल होलोमॉर्फिक CFTs में शुद्ध क्वांटम ग्रेविटी के मध्य द्वंद्व पैदा करता है। 2 + 1 आयामों में शुद्ध गुरुत्व में स्वतंत्रता की कोई स्थानीय डिग्री नहीं होती है, लेकिन जब ब्रह्माण्ड संबंधी स्थिरांक ऋणात्मक होता है, तो BTZ ब्लैक होल समाधानों के अस्तित्व के कारण सिद्धांत में गैर-तुच्छ सामग्री होती है। G. Höhn द्वारा प्रस्तुत किए गए एक्स्ट्रीमल CFTs, ​​कम ऊर्जा में विरासोरो प्राथमिक क्षेत्रों की कमी से प्रतिष्ठित हैं, और मूनशाइन मॉड्यूल उदाहरण है।

विटन के प्रस्ताव के तहत (Witten (2007)), अधिकतम नकारात्मक ब्रह्माण्ड संबंधी स्थिरांक के साथ AdS अंतरिक्ष में गुरुत्वाकर्षण AdS/CFT सेंट्रल चार्ज c = 24 के साथ होलोमोर्फिक CFT के लिए दोहरी है, और CFT का विभाजन कार्य त्रुटिहीनरूप से j-744 है, यानी, मूनशाइन मॉड्यूल का श्रेणीबद्ध चरित्र . Frenkel-Lepowsky-Meurman के अनुमान को मानते हुए कि मूनशाइन मॉड्यूल केंद्रीय चार्ज 24 और चरित्र j-744 के साथ अद्वितीय होलोमोर्फिक VOA है, Witten ने निष्कर्ष निकाला कि अधिकतम नकारात्मक ब्रह्माण्ड संबंधी स्थिरांक के साथ शुद्ध गुरुत्वाकर्षण मॉन्स्टरस CFT के लिए दोहरा है। विट्टन के प्रस्ताव का हिस्सा यह है कि विरासोरो प्राथमिक क्षेत्र ब्लैक-होल बनाने वाले ऑपरेटरों के लिए दोहरे हैं, और स्थिरता की जांच के रूप में, उन्होंने पाया कि बड़े द्रव्यमान की सीमा में, ब्लैक होल ऊष्मप्रवैगिकी|बेकेंस्टीन-हॉकिंग दिए गए काले रंग के लिए अर्धशास्त्रीय एंट्रॉपी अनुमान होल मास, मूनशाइन मॉड्यूल में संबंधित विरासोरो प्राथमिक बहुलता के लघुगणक से सहमत है। निम्न-द्रव्यमान शासन में, एंट्रॉपी में छोटा सा क्वांटम सुधार होता है, उदाहरण के लिए, निम्नतम ऊर्जा प्राथमिक क्षेत्र ln(196883) ~ 12.19 उत्पन्न करते हैं, जबकि बेकनस्टीन-हॉकिंग अनुमान 4 देता हैπ ~ 12.57.

पश्चात के काम ने विट्टन के प्रस्ताव को परिष्कृत किया। विट्टन ने अनुमान लगाया था कि बड़े ब्रह्माण्ड संबंधी स्थिरांक वाले चरम सीएफटी में न्यूनतम मामले की तरह मॉन्स्टरस समरूपता हो सकती है, लेकिन गैओटो और हॉन के स्वतंत्र कार्य द्वारा इसे जल्दी से खारिज कर दिया गया था। विटन और मैलोनी द्वारा कार्य (Maloney & Witten (2007)) ने सुझाव दिया कि शुद्ध क्वांटम गुरुत्वाकर्षण अपने विभाजन कार्य से संबंधित कुछ स्थिरता जांचों को पूरा नहीं कर सकता है, जब तक कि जटिल काठी के कुछ सूक्ष्म गुण अनुकूल रूप से काम नहीं करते। हालांकि, ली-सॉन्ग-स्ट्रोमिंगर (Li, Song & Strominger (2008)) ने सुझाव दिया है कि 2007 में मैन्सकोट द्वारा प्रस्तावित चिराल क्वांटम ग्रेविटी सिद्धांत में बेहतर स्थिरता गुण हो सकते हैं, जबकि मॉन्स्टर सीएफटी के चिराल भाग, यानी मॉन्स्टर शीर्ष बीजगणित के दोहरे होने के कारण। डंकन-फ्रेनकेल (Duncan & Frenkel (2009)) ने मैके-थॉम्पसन श्रृंखला को (2 + 1)-आयामी गुरुत्व विभाजन कार्यों के रूप में वैश्विक टोरस-आइसोजेनी ज्यामिति पर नियमित योग द्वारा निर्मित करने के लिए रैडेमाकर रकम का उपयोग करके इस द्वैत के लिए अतिरिक्त साक्ष्य प्रस्तुत किए। इसके अतिरिक्त, उन्होंने मॉन्स्टरस के तत्वों द्वारा पैरामीट्रिज्ड ट्विस्टेड चिराल ग्रेविटी सिद्धांतों के परिवार के अस्तित्व का अनुमान लगाया, जो सामान्यीकृत चन्द्रमा और गुरुत्वाकर्षण तात्कालिक रकम के साथ संबंध का सुझाव देता है। वर्तमान में, ये सभी विचार अभी भी सट्टा हैं, आंशिक रूप से क्योंकि 3डी क्वांटम गुरुत्व में कठोर गणितीय आधार नहीं है।

मैथ्यू मूनशाइन

2010 में, Tohru Eguchi, Hirosi Ooguri, और Yuji Tachikawa ने देखा कि K3 सतह के अण्डाकार जीनस को के वर्णों में विघटित किया जा सकता है N = (4,4) सुपरकॉन्फॉर्मल बीजगणित, जैसे कि सुपर विरासोरो बीजगणित की बहुलताएं मैथ्यू समूह M24 के इरेड्यूसिबल अभ्यावेदन के सरल संयोजन प्रतीत होती हैं।[5] इससे पता चलता है कि K3 लक्ष्य के साथ सिग्मा-मॉडल अनुरूप क्षेत्र सिद्धांत है जो M24 समरूपता को वहन करता है। हालांकि, मुकाई-कोंडो वर्गीकरण के अनुसार, सिम्प्लेक्टोमोर्फिज्म द्वारा किसी भी K3 सतह पर इस समूह की कोई विश्वसनीय क्रिया नहीं है, और गैबरडील-होहेनेगर-वोल्पाटो के कार्य द्वारा, किसी भी K3 सिग्मा-मॉडल अनुरूप क्षेत्र सिद्धांत पर कोई विश्वसनीय कार्रवाई नहीं है, इसलिए अंतर्निहित हिल्बर्ट अंतरिक्ष पर कार्रवाई की उपस्थिति अभी भी रहस्य है।

मैके-थॉम्पसन श्रृंखला के अनुरूप, मिरांडा चेंग ने सुझाव दिया कि बहुलता कार्यों और M24 के गैर-तुच्छ तत्वों के वर्गीकृत संकेत नकली मॉड्यूलर रूपों का निर्माण करते हैं। 2012 में, गैनन ने सिद्ध किया कि बहुलताओं में से सभी एम 24 के प्रतिनिधित्व के गैर-नकारात्मक रैखिक संयोजन हैं, और गैबरडील-पर्सन-रोनेलेनफिट्स-वोल्पाटो ने सामान्यीकृत मूनशाइन कार्यों के सभी एनालॉग्स की गणना की, दृढ़ता से सुझाव दिया कि होलोमोर्फिक अनुरूप क्षेत्र के कुछ एनालॉग सिद्धांत मैथ्यू मूनशाइन के पीछे है। इसके अतिरिक्त 2012 में, चेंग, डंकन, और जेफरी ए। हार्वे ने उम्ब्रल मूनशाइन घटना के संख्यात्मक साक्ष्य एकत्र किए जहां नकली मॉड्यूलर रूपों के परिवार नीमेयर जाली से जुड़े हुए दिखाई देते हैं। ए. का विशेष मामला24
1
जाली से मैथ्यू मूनशाइन प्राप्त होता है, लेकिन सामान्य तौर पर इस घटना की अभी तक ज्यामिति के संदर्भ में कोई व्याख्या नहीं है।

शब्द की उत्पत्ति

मॉन्स्टरस मूनशाइन शब्द कॉनवे द्वारा गढ़ा गया था, जिन्होंने 1970 के दशक के अंत में जॉन मैकके (गणितज्ञ) द्वारा बताया गया था कि का गुणांक (अर्थात 196884) मॉन्स्टरस समूह (अर्थात् 196883) के सबसे छोटे वफादार जटिल प्रतिनिधित्व की डिग्री से ठीक अधिक था, ने उत्तर दिया कि यह विक्ट: मूनशाइन (पागल या मूर्ख विचार होने के अर्थ में) था।[lower-alpha 2] इस प्रकार, शब्द न केवल मॉन्स्टरस समूह एम को संदर्भित करता है; यह एम और मॉड्यूलर कार्यों के सिद्धांत के मध्य जटिल संबंधों की कथित पागलपन को भी संदर्भित करता है।

संबंधित अवलोकन

1970 के दशक में गणितज्ञ जीन पियरे सेरे , एंड्रयू ओग और जॉन जी थॉम्पसन द्वारा मॉन्स्टरस समूह की जांच की गई थी; उन्होंने एसएल के उपसमूहों द्वारा हाइपरबॉलिक अंतरिक्ष के भागफल समूह का अध्ययन किया2(आर), विशेष रूप से, सामान्यक Γ0(पी)मॉड्यूलर समूह का + Gamma0|हेके सर्वांगसम उपसमूह Γ0(पी) एसएल (2, 'आर') में। उन्होंने पाया कि रीमैन की सतह Γ द्वारा हाइपरबॉलिक समतल के भागफल लेने के परिणामस्वरूप हुई0(पी)+ का जीनस (गणित) शून्य है यदि और केवल यदि p 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 या 71 है। जब Ogg ने सुना पश्चात में मॉन्स्टरस समूह के बारे में, और देखा कि ये एम के आकार के मुख्य कारक थे, उन्होंने जैक डेनियल की व्हिस्की की बोतल की पेशकश करने वाले किसी भी व्यक्ति को पेपर प्रकाशित किया जो इस तथ्य को समझा सकता था (Ogg (1974)).

टिप्पणियाँ

स्रोत

बाहरी संबंध

  1. A short introduction to Monstrous Moonshine Valdo Tatitscheff January 24, 2019
  2. J. Conway and S. Norton. Monstrous Moonshine. Bull. Lond. Math. Soc., 11:308– 339, 1979
  3. Mathematicians Chase Moonshine’s Shadow Erica Klarreich March 12, 2015 https://www.quantamagazine.org/mathematicians-chase-moonshine-string-theory-connections-20150312/
  4. Atlas of finite groups : maximal subgroups and ordinary characters for simple groups. John H. Conway. Oxford [Oxfordshire]: Clarendon Press. 1985. ISBN 0-19-853199-0. OCLC 12106933.{{cite book}}: CS1 maint: others (link)
  5. T. Eguchi, H. Ooguri, Y. Tachikawa: Notes on the K3 surface and the Mathieu group M24. Exper. Math. 20 91–96 (2011)