पृथक्कृत समुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Type of relation for subsets of a topological space}} | {{Short description|Type of relation for subsets of a topological space}} | ||
{{Separation axioms}}[[टोपोलॉजी|सांस्थिति]] और गणित की संबंधित शाखाओं में, विलग्न समुच्चय किसी दिए गए [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] के [[सबसेट|उपसमुच्चय]] के युग्म होते हैं जो एक दूसरे से निश्चित विधि से संबंधित होते हैं: साधारणतया बोलना, न तो अतिव्यापी और न ही स्पर्श | {{Separation axioms}}[[टोपोलॉजी|सांस्थिति]] और गणित की संबंधित शाखाओं में, विलग्न समुच्चय किसी दिए गए [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] के [[सबसेट|उपसमुच्चय]] के युग्म होते हैं जो एक दूसरे से निश्चित विधि से संबंधित होते हैं: साधारणतया बोलना, न तो अतिव्यापी और न ही स्पर्श करना है। जब दो समुच्चय विलग्न होते हैं या नहीं, की धारणा [[ जुड़ा हुआ स्थान |संबद्ध समष्टि]] (और उनके संबद्ध अवयव) के साथ-साथ सांस्थितिक समष्टि के लिए [[पृथक्करण स्वयंसिद्ध|विलग्न स्वयंसिद्धों]] की धारणा के लिए महत्वपूर्ण है। | ||
विलग्न समुच्चय को विलग्न [[अलग जगह|समष्टि]] (नीचे परिभाषित) के साथ भ्रमित नहीं होना चाहिए, जो किंचित संबंधित हैं परन्तु विलग्न हैं। [[वियोज्य स्थान|वियोज्य समष्टि]] फिर से पूर्ण रूप से विलग्न सामयिक अवधारणा है। | विलग्न समुच्चय को विलग्न [[अलग जगह|समष्टि]] (नीचे परिभाषित) के साथ भ्रमित नहीं होना चाहिए, जो किंचित संबंधित हैं परन्तु विलग्न हैं। [[वियोज्य स्थान|वियोज्य समष्टि]] फिर से पूर्ण रूप से विलग्न सामयिक अवधारणा है। | ||
| Line 8: | Line 8: | ||
ऐसी कई विधि हैं जिनमें सांस्थितिक समष्टि <math>X</math> के दो उपसमुच्चय <math>A</math> और <math>B</math> को विलग्न करने पर विचार किया जा सकता है। सबसे मूलभूत विधि जिसमें दो समुच्चय को विलग्न किया जा सकता है, वह है यदि वे असंयुक्त समुच्चय हैं, अर्थात, यदि उनका प्रतिच्छेदन (समुच्चय सिद्धांत) [[खाली सेट|रिक्त समुच्चय]] है। इस गुण का सांस्थिति से कोई लेना-देना नहीं है, बल्कि मात्र सहज समुच्चय सिद्धांत है। नीचे दी गई प्रत्येक गुण असम्बद्धता की तुलना में जटिल है, जिसमें कुछ सामयिक सूचना सम्मिलित है। गुणों को विशिष्टता के बढ़ते क्रम में प्रस्तुत किया जाता है, प्रत्येक पूर्ववर्ती की तुलना में दृढ धारणा है। | ऐसी कई विधि हैं जिनमें सांस्थितिक समष्टि <math>X</math> के दो उपसमुच्चय <math>A</math> और <math>B</math> को विलग्न करने पर विचार किया जा सकता है। सबसे मूलभूत विधि जिसमें दो समुच्चय को विलग्न किया जा सकता है, वह है यदि वे असंयुक्त समुच्चय हैं, अर्थात, यदि उनका प्रतिच्छेदन (समुच्चय सिद्धांत) [[खाली सेट|रिक्त समुच्चय]] है। इस गुण का सांस्थिति से कोई लेना-देना नहीं है, बल्कि मात्र सहज समुच्चय सिद्धांत है। नीचे दी गई प्रत्येक गुण असम्बद्धता की तुलना में जटिल है, जिसमें कुछ सामयिक सूचना सम्मिलित है। गुणों को विशिष्टता के बढ़ते क्रम में प्रस्तुत किया जाता है, प्रत्येक पूर्ववर्ती की तुलना में दृढ धारणा है। | ||
अधिक प्रतिबंधात्मक गुण यह है कि <math>A</math> और <math>B</math> <math>X</math> में {{visible anchor| | अधिक प्रतिबंधात्मक गुण यह है कि <math>A</math> और <math>B</math> <math>X</math> में {{visible anchor|विलग्न}} हैं यदि प्रत्येक दूसरे के संवृत होने (सांस्थिति) से विभिन्न है: | ||
<math display=block>\left(A \cap \bar{B}\right) \cup \left(\bar{A} \cap B\right) = \varnothing.</math> | <math display=block>\left(A \cap \bar{B}\right) \cup \left(\bar{A} \cap B\right) = \varnothing.</math> | ||
इस गुण को {{em|हॉसडॉर्फ-लेन्स पृथक्करण स्थिति}} के रूप में जाना जाता है।<ref>{{harvnb|Pervin|1964|loc=p. 51}}</ref> चूंकि प्रत्येक समुच्चय इसके संवृत होने में समाहित है, दो विलग्न समुच्चय स्वचालित रूप से विलग्न होने चाहिए। संवरक को स्वयं एक दूसरे से विलग्न होने की आवश्यकता नहीं है; उदाहरण के लिए, [[अंतराल (गणित)]] <math>[0, 1)</math> और <math>(1, 2]</math> को [[वास्तविक रेखा]] <math>\Reals</math> में विलग्न हो जाते हैं यद्यपि बिंदु 1 उनके दोनों संवरक से संबंधित हो। अधिक सामान्य उदाहरण यह है कि किसी भी [[मीट्रिक स्थान|मापीय समष्टि]] में, जब भी <math>d(p, q) \geq r + s</math> दो [[खुली गेंदें|विवृत गेंदें]] <math>B_r(p) = \{x \in X : d(p, x) < r\}</math> और <math>B_s(q) = \{x \in X : d(q, x) < s\}</math> को विलग्न किया जाता है। विलग्न होने की गुण को [[व्युत्पन्न सेट (गणित)|व्युत्पन्न समुच्चय (गणित)]] के संदर्भ में भी व्यक्त किया जा सकता है (अभाज्य प्रतीक द्वारा दर्शाया गया है): <math>A</math> और <math>B</math> विलग्न हो जाते हैं जब वे विलग्न होते हैं और प्रत्येक दूसरे के व्युत्पन्न समुच्चय से विलग्न होते है, अर्थात, <math display="inline">A' \cap B = \varnothing = B' \cap A</math>। (परिभाषा के पहले संस्करण की स्थिति में, व्युत्पन्न समुच्चय <math>A'</math> और <math>B'</math> को एक दूसरे से विलग्न होने की आवश्यकता नहीं है।) | इस गुण को {{em|हॉसडॉर्फ-लेन्स पृथक्करण स्थिति}} के रूप में जाना जाता है।<ref>{{harvnb|Pervin|1964|loc=p. 51}}</ref> चूंकि प्रत्येक समुच्चय इसके संवृत होने में समाहित है, दो विलग्न समुच्चय स्वचालित रूप से विलग्न होने चाहिए। संवरक को स्वयं एक दूसरे से विलग्न होने की आवश्यकता नहीं है; उदाहरण के लिए, [[अंतराल (गणित)]] <math>[0, 1)</math> और <math>(1, 2]</math> को [[वास्तविक रेखा]] <math>\Reals</math> में विलग्न हो जाते हैं यद्यपि बिंदु 1 उनके दोनों संवरक से संबंधित हो। अधिक सामान्य उदाहरण यह है कि किसी भी [[मीट्रिक स्थान|मापीय समष्टि]] में, जब भी <math>d(p, q) \geq r + s</math> दो [[खुली गेंदें|विवृत गेंदें]] <math>B_r(p) = \{x \in X : d(p, x) < r\}</math> और <math>B_s(q) = \{x \in X : d(q, x) < s\}</math> को विलग्न किया जाता है। विलग्न होने की गुण को [[व्युत्पन्न सेट (गणित)|व्युत्पन्न समुच्चय (गणित)]] के संदर्भ में भी व्यक्त किया जा सकता है (अभाज्य प्रतीक द्वारा दर्शाया गया है): <math>A</math> और <math>B</math> विलग्न हो जाते हैं जब वे विलग्न होते हैं और प्रत्येक दूसरे के व्युत्पन्न समुच्चय से विलग्न होते है, अर्थात, <math display="inline">A' \cap B = \varnothing = B' \cap A</math>। (परिभाषा के पहले संस्करण की स्थिति में, व्युत्पन्न समुच्चय <math>A'</math> और <math>B'</math> को एक दूसरे से विलग्न होने की आवश्यकता नहीं है।) | ||
समुच्चय <math>A</math> और <math>B</math> {{visible anchor|निकटवर्ती द्वारा विलग्न किए जाते}} हैं यदि वहाँ <math>A</math> के [[पड़ोस (टोपोलॉजी)| | समुच्चय <math>A</math> और <math>B</math> {{visible anchor|निकटवर्ती द्वारा विलग्न किए जाते}} हैं यदि वहाँ <math>A</math> के [[पड़ोस (टोपोलॉजी)|निकटतम (सांस्थिति)]] <math>U</math> और <math>B</math> के <math>V</math> ऐसे हैं कि <math>U</math> और <math>V</math> असंबद्ध हैं। (कभी-कभी आपको यह आवश्यकता दिखाई देगी कि <math>U</math> और <math>V</math> [[ओपन (टोपोलॉजी)|विवृत (सांस्थिति)]] निकटतम हो, परन्तु इससे अंत में कोई अंतर नहीं पड़ता।) <math>A = [0, 1)</math> और <math>B = (1, 2]</math> के उदाहरण के लिए, आप <math>U = (-1, 1)</math> और <math>V = (1, 3)</math> ले सकते हैं। ध्यान दें कि यदि किन्हीं दो समुच्चय को निकटतम द्वारा विलग्न किया जाता है, तो निश्चित रूप से वे विलग्न हो जाते हैं। यदि <math>A</math> और <math>B</math> विवृत और विलग्न हैं, तो उन्हें निकटतम से विलग्न किया जाना चाहिए; मात्र <math>U = A</math> और <math>V = B</math> लें। इस कारण से, विलग्नता का उपयोग प्रायः संवृत समुच्चय के साथ किया जाता है (जैसा कि सामान्य विलग्न स्वयंसिद्ध में होता है)। | ||
समुच्चय <math>A</math> और <math>B</math> को [[बंद (टोपोलॉजी)|संवृत (सांस्थिति)]] | समुच्चय <math>A</math> और <math>B</math> को [[बंद (टोपोलॉजी)|संवृत (सांस्थिति)]] निकटतम {{visible anchor|संवृत निकटवर्ती से विलग्न}} किया जाता है यदि <math>A</math> का संवृत निकटतम <math>U</math> और <math>B</math> का संवृत निकटतम <math>V</math> ऐसा है कि <math>U</math> और <math>V</math> असंबद्ध हैं। हमारे उदाहरण, <math>[0, 1)</math> और <math>(1, 2],</math> संवृत निकटतम से विलग्न {{em|नहीं}} होते हैं। आप इसमें बिंदु 1 को सम्मिलित करके या तो <math>U</math> या <math>V</math> को संवृत कर सकते हैं, परन्तु आप दोनों को असंयुक्त रखते हुए संवृत नहीं कर सकते। ध्यान दें कि यदि कोई दो समुच्चय संवृत निकटतम से विलग्न हो जाते हैं, तो निश्चित रूप से वे निकटतम से विलग्न हो जाते हैं। | ||
समुच्चय <math>A</math> और <math>B</math> को {{visible anchor|संतत फलन से विलग्न किया जाता}} है यदि समष्टि <math>X</math> से वास्तविक रेखा <math>\Reals</math> तक [[निरंतर कार्य|संतत फलन]] <math>f : X \to \Reals</math> स्थित है जैसे कि<math>A \subseteq f^{-1}(0)</math> और <math>B \subseteq f^{-1}(1)</math>, अर्थात <math>A</math> प्रतिचित्र के वर्ग 0 और <math>B</math> प्रतिचित्र के वर्ग 1 तक। (कभी-कभी इस परिभाषा में <math>\Reals</math> के स्थान पर [[इकाई अंतराल]] <math>[0, 1]</math> का उपयोग किया जाता है, परन्तु इससे कोई अंतर नहीं पड़ता।) हमारे उदाहरण में, <math>[0, 1)</math> और <math>(1, 2]</math> को एक फलन द्वारा विलग्न नहीं किया गया है, क्योंकि बिंदु 1 पर निरंतर <math>f</math> को परिभाषित करने की कोई विधि नहीं है।<ref>{{cite book|title = टोपोलॉजी| last = Munkres |first = James R. | author-link = James Munkres | page = 211 | edition = 2 | year = 2000 | publisher = Prentice Hall | isbn = 0-13-181629-2}}</ref> यदि दो समुच्चय सतत फलन से विलग्न होते हैं, तो वे भी संवृत | समुच्चय <math>A</math> और <math>B</math> को {{visible anchor|संतत फलन से विलग्न किया जाता}} है यदि समष्टि <math>X</math> से वास्तविक रेखा <math>\Reals</math> तक [[निरंतर कार्य|संतत फलन]] <math>f : X \to \Reals</math> स्थित है जैसे कि<math>A \subseteq f^{-1}(0)</math> और <math>B \subseteq f^{-1}(1)</math>, अर्थात <math>A</math> प्रतिचित्र के वर्ग 0 और <math>B</math> प्रतिचित्र के वर्ग 1 तक। (कभी-कभी इस परिभाषा में <math>\Reals</math> के स्थान पर [[इकाई अंतराल]] <math>[0, 1]</math> का उपयोग किया जाता है, परन्तु इससे कोई अंतर नहीं पड़ता।) हमारे उदाहरण में, <math>[0, 1)</math> और <math>(1, 2]</math> को एक फलन द्वारा विलग्न नहीं किया गया है, क्योंकि बिंदु 1 पर निरंतर <math>f</math> को परिभाषित करने की कोई विधि नहीं है।<ref>{{cite book|title = टोपोलॉजी| last = Munkres |first = James R. | author-link = James Munkres | page = 211 | edition = 2 | year = 2000 | publisher = Prentice Hall | isbn = 0-13-181629-2}}</ref> यदि दो समुच्चय सतत फलन से विलग्न होते हैं, तो वे भी संवृत निकटतम द्वारा विलग्न हो जाते हैं; निकटतम को <math>U = f^{-1}[-c, c]</math> और <math>V = f^{-1}[1 - c, 1 + c]</math> के रूप में <math>f</math> प्राथमिकता के संदर्भ में दिया जा सकता है, जहां <math>c</math> <math>1/2</math> से कम कोई धनात्मक वास्तविक संख्या है। | ||
समुच्चय <math>A</math> और <math>B</math> {{visible anchor|एक संतत फलन द्वारा ठीक से विलग्न}} हैं यदि कोई संतत फलन <math>f : X \to \Reals</math> स्थित हो जैसे कि <math>A = f^{-1}(0)</math> और <math>B = f^{-1}(1)</math>। (फिर से, आप <math>\Reals</math> स्थान पर इकाई अंतराल भी देख सकते हैं और फिर से इससे कोई अंतर नहीं पड़ता।) ध्यान दें कि यदि किन्हीं भी दो समुच्चय को किसी फलन द्वारा यथार्थ रूप से विलग्न किया जाता है, तो वे सतत फलन द्वारा विलग्न किए जाते हैं। चूंकि <math>\{0\}</math> और <math>\{1\}</math> <math>\Reals</math> में संवृत हैं, मात्र संवृत समुच्चय एक फलन द्वारा यथार्थ रूप से विलग्न होने में सक्षम हैं, परन्तु मात्र इसलिए कि दो समुच्चय संवृत हैं और एक फलन द्वारा विलग्न किए गए हैं इसका अर्थ यह नहीं है कि वे स्वचालित रूप से एक फलन (यहां तक कि एक विलग्न फलन) द्वारा ठीक से विलग्न हो जाते हैं। | समुच्चय <math>A</math> और <math>B</math> {{visible anchor|एक संतत फलन द्वारा ठीक से विलग्न}} हैं यदि कोई संतत फलन <math>f : X \to \Reals</math> स्थित हो जैसे कि <math>A = f^{-1}(0)</math> और <math>B = f^{-1}(1)</math>। (फिर से, आप <math>\Reals</math> स्थान पर इकाई अंतराल भी देख सकते हैं और फिर से इससे कोई अंतर नहीं पड़ता।) ध्यान दें कि यदि किन्हीं भी दो समुच्चय को किसी फलन द्वारा यथार्थ रूप से विलग्न किया जाता है, तो वे सतत फलन द्वारा विलग्न किए जाते हैं। चूंकि <math>\{0\}</math> और <math>\{1\}</math> <math>\Reals</math> में संवृत हैं, मात्र संवृत समुच्चय एक फलन द्वारा यथार्थ रूप से विलग्न होने में सक्षम हैं, परन्तु मात्र इसलिए कि दो समुच्चय संवृत हैं और एक फलन द्वारा विलग्न किए गए हैं इसका अर्थ यह नहीं है कि वे स्वचालित रूप से एक फलन (यहां तक कि एक विलग्न फलन) द्वारा ठीक से विलग्न हो जाते हैं। | ||
| Line 24: | Line 24: | ||
{{main|विलग्न स्वयंसिद्ध}} | {{main|विलग्न स्वयंसिद्ध}} | ||
विलग्न स्वयंसिद्ध विभिन्न स्थितियां हैं जो कभी-कभी सांस्थितिक समष्टि पर लगाई जाती हैं, जिनमें से कई को विभिन्न प्रकार के विलग्न समुच्चय के संदर्भ में वर्णित किया जा सकता है। एक उदाहरण के रूप में हम T<sub>2</sub> स्वयंसिद्ध को परिभाषित करेंगे, जो विलग्न समष्टि पर लगाई गई स्थिति है। विशेष रूप से, एक सांस्थितिक समष्टि को विलग्न किया जाता है, यदि दो विलग्न (गणित) बिंदु x और y दिए गए हों, तो एकल समुच्चय {x} और {y} को | विलग्न स्वयंसिद्ध विभिन्न स्थितियां हैं जो कभी-कभी सांस्थितिक समष्टि पर लगाई जाती हैं, जिनमें से कई को विभिन्न प्रकार के विलग्न समुच्चय के संदर्भ में वर्णित किया जा सकता है। एक उदाहरण के रूप में हम T<sub>2</sub> स्वयंसिद्ध को परिभाषित करेंगे, जो विलग्न समष्टि पर लगाई गई स्थिति है। विशेष रूप से, एक सांस्थितिक समष्टि को विलग्न किया जाता है, यदि दो विलग्न (गणित) बिंदु x और y दिए गए हों, तो एकल समुच्चय {x} और {y} को निकटतम से विलग्न किया जाता है। | ||
विलग्न समष्टि को सामान्यतः [[हॉसडॉर्फ स्पेस|हॉसडॉर्फ समष्टि]] या T<sub>2</sub> रिक्त समष्टि कहा जाता है। | विलग्न समष्टि को सामान्यतः [[हॉसडॉर्फ स्पेस|हॉसडॉर्फ समष्टि]] या T<sub>2</sub> रिक्त समष्टि कहा जाता है। | ||
Revision as of 22:51, 29 May 2023
| Separation axioms in topological spaces | |
|---|---|
| Kolmogorov classification | |
| T0 | (Kolmogorov) |
| T1 | (Fréchet) |
| T2 | (Hausdorff) |
| T2½ | (Urysohn) |
| completely T2 | (completely Hausdorff) |
| T3 | (regular Hausdorff) |
| T3½ | (Tychonoff) |
| T4 | (normal Hausdorff) |
| T5 | (completely normal Hausdorff) |
| T6 | (perfectly normal Hausdorff) |
सांस्थिति और गणित की संबंधित शाखाओं में, विलग्न समुच्चय किसी दिए गए सांस्थितिक समष्टि के उपसमुच्चय के युग्म होते हैं जो एक दूसरे से निश्चित विधि से संबंधित होते हैं: साधारणतया बोलना, न तो अतिव्यापी और न ही स्पर्श करना है। जब दो समुच्चय विलग्न होते हैं या नहीं, की धारणा संबद्ध समष्टि (और उनके संबद्ध अवयव) के साथ-साथ सांस्थितिक समष्टि के लिए विलग्न स्वयंसिद्धों की धारणा के लिए महत्वपूर्ण है।
विलग्न समुच्चय को विलग्न समष्टि (नीचे परिभाषित) के साथ भ्रमित नहीं होना चाहिए, जो किंचित संबंधित हैं परन्तु विलग्न हैं। वियोज्य समष्टि फिर से पूर्ण रूप से विलग्न सामयिक अवधारणा है।
परिभाषाएँ
ऐसी कई विधि हैं जिनमें सांस्थितिक समष्टि के दो उपसमुच्चय और को विलग्न करने पर विचार किया जा सकता है। सबसे मूलभूत विधि जिसमें दो समुच्चय को विलग्न किया जा सकता है, वह है यदि वे असंयुक्त समुच्चय हैं, अर्थात, यदि उनका प्रतिच्छेदन (समुच्चय सिद्धांत) रिक्त समुच्चय है। इस गुण का सांस्थिति से कोई लेना-देना नहीं है, बल्कि मात्र सहज समुच्चय सिद्धांत है। नीचे दी गई प्रत्येक गुण असम्बद्धता की तुलना में जटिल है, जिसमें कुछ सामयिक सूचना सम्मिलित है। गुणों को विशिष्टता के बढ़ते क्रम में प्रस्तुत किया जाता है, प्रत्येक पूर्ववर्ती की तुलना में दृढ धारणा है।
अधिक प्रतिबंधात्मक गुण यह है कि और में विलग्न हैं यदि प्रत्येक दूसरे के संवृत होने (सांस्थिति) से विभिन्न है:
समुच्चय और निकटवर्ती द्वारा विलग्न किए जाते हैं यदि वहाँ के निकटतम (सांस्थिति) और के ऐसे हैं कि और असंबद्ध हैं। (कभी-कभी आपको यह आवश्यकता दिखाई देगी कि और विवृत (सांस्थिति) निकटतम हो, परन्तु इससे अंत में कोई अंतर नहीं पड़ता।) और के उदाहरण के लिए, आप और ले सकते हैं। ध्यान दें कि यदि किन्हीं दो समुच्चय को निकटतम द्वारा विलग्न किया जाता है, तो निश्चित रूप से वे विलग्न हो जाते हैं। यदि और विवृत और विलग्न हैं, तो उन्हें निकटतम से विलग्न किया जाना चाहिए; मात्र और लें। इस कारण से, विलग्नता का उपयोग प्रायः संवृत समुच्चय के साथ किया जाता है (जैसा कि सामान्य विलग्न स्वयंसिद्ध में होता है)।
समुच्चय और को संवृत (सांस्थिति) निकटतम संवृत निकटवर्ती से विलग्न किया जाता है यदि का संवृत निकटतम और का संवृत निकटतम ऐसा है कि और असंबद्ध हैं। हमारे उदाहरण, और संवृत निकटतम से विलग्न नहीं होते हैं। आप इसमें बिंदु 1 को सम्मिलित करके या तो या को संवृत कर सकते हैं, परन्तु आप दोनों को असंयुक्त रखते हुए संवृत नहीं कर सकते। ध्यान दें कि यदि कोई दो समुच्चय संवृत निकटतम से विलग्न हो जाते हैं, तो निश्चित रूप से वे निकटतम से विलग्न हो जाते हैं।
समुच्चय और को संतत फलन से विलग्न किया जाता है यदि समष्टि से वास्तविक रेखा तक संतत फलन स्थित है जैसे कि और , अर्थात प्रतिचित्र के वर्ग 0 और प्रतिचित्र के वर्ग 1 तक। (कभी-कभी इस परिभाषा में के स्थान पर इकाई अंतराल का उपयोग किया जाता है, परन्तु इससे कोई अंतर नहीं पड़ता।) हमारे उदाहरण में, और को एक फलन द्वारा विलग्न नहीं किया गया है, क्योंकि बिंदु 1 पर निरंतर को परिभाषित करने की कोई विधि नहीं है।[2] यदि दो समुच्चय सतत फलन से विलग्न होते हैं, तो वे भी संवृत निकटतम द्वारा विलग्न हो जाते हैं; निकटतम को और के रूप में प्राथमिकता के संदर्भ में दिया जा सकता है, जहां से कम कोई धनात्मक वास्तविक संख्या है।
समुच्चय और एक संतत फलन द्वारा ठीक से विलग्न हैं यदि कोई संतत फलन स्थित हो जैसे कि और । (फिर से, आप स्थान पर इकाई अंतराल भी देख सकते हैं और फिर से इससे कोई अंतर नहीं पड़ता।) ध्यान दें कि यदि किन्हीं भी दो समुच्चय को किसी फलन द्वारा यथार्थ रूप से विलग्न किया जाता है, तो वे सतत फलन द्वारा विलग्न किए जाते हैं। चूंकि और में संवृत हैं, मात्र संवृत समुच्चय एक फलन द्वारा यथार्थ रूप से विलग्न होने में सक्षम हैं, परन्तु मात्र इसलिए कि दो समुच्चय संवृत हैं और एक फलन द्वारा विलग्न किए गए हैं इसका अर्थ यह नहीं है कि वे स्वचालित रूप से एक फलन (यहां तक कि एक विलग्न फलन) द्वारा ठीक से विलग्न हो जाते हैं।
विलग्न सिद्धांतों और विलग्न समष्टि से संबंध
विलग्न स्वयंसिद्ध विभिन्न स्थितियां हैं जो कभी-कभी सांस्थितिक समष्टि पर लगाई जाती हैं, जिनमें से कई को विभिन्न प्रकार के विलग्न समुच्चय के संदर्भ में वर्णित किया जा सकता है। एक उदाहरण के रूप में हम T2 स्वयंसिद्ध को परिभाषित करेंगे, जो विलग्न समष्टि पर लगाई गई स्थिति है। विशेष रूप से, एक सांस्थितिक समष्टि को विलग्न किया जाता है, यदि दो विलग्न (गणित) बिंदु x और y दिए गए हों, तो एकल समुच्चय {x} और {y} को निकटतम से विलग्न किया जाता है।
विलग्न समष्टि को सामान्यतः हॉसडॉर्फ समष्टि या T2 रिक्त समष्टि कहा जाता है।
संबद्ध समष्टि से संबंध
एक सांस्थितिक समष्टि X को देखते हुए, कभी-कभी यह विचार करना उपयोगी होता है कि क्या उपसमुच्चय A को इसके पूरक (समुच्चय सिद्धांत) से विलग्न करना संभव है। यह निश्चित रूप से सच है यदि A या तो रिक्त समुच्चय है या संपूर्ण समष्टि X है, परन्तु अन्य संभावनाएं भी हो सकती हैं। यदि ये मात्र दो संभावनाएं हैं तो एक सांस्थितिक समष्टि X संबद्ध है। इसके विपरीत, यदि गैर-रिक्त उपसमुच्चय A को उसके स्वयं के पूरक से विलग्न किया जाता है, और यदि इस गुण को साझा करने के लिए A का एकमात्र उपसमुच्चय रिक्त समुच्चय है, तो A, X का विवृत-संबद्ध घटक है। (पतित स्थिति में जहां X स्वयं है रिक्त समुच्चय है, प्राधिकारी इस बात पर भिन्न हैं कि क्या संबद्ध है और क्या स्वयं का विवृत-संबद्ध घटक है।)
स्थैतिक रूप से विलग्न बिंदुओं से संबंध
सांस्थितिक समष्टि X को देखते हुए, दो बिंदु x और y सांस्थितिक रूप से विलग्न होते हैं यदि कोई विवृत समुच्चय स्थित होता है जो एक बिंदु से संबंधित होता है परन्तु दूसरा बिंदु नहीं होता है। यदि x और y स्थैतिक रूप से विलग्न हैं, तो एकल समुच्चय {x} और {y} को विलग्न होना चाहिए। दूसरी ओर, यदि एकल {x} और {y} को विलग्न किया जाता है, तो बिंदु x और y को स्थैतिक रूप से भिन्न होना चाहिए। इस प्रकार एकल के लिए, सांस्थितिक विभेद्यता असम्बद्धता और विलग्नता के बीच की स्थिति है।
यह भी देखें
- हॉसडॉर्फ समष्टि – Type of topological space
- स्थानीय रूप से हौसडॉर्फ समष्टि
- विलग्न स्वयंसिद्ध
उद्धरण
- ↑ Pervin 1964, p. 51
- ↑ Munkres, James R. (2000). टोपोलॉजी (2 ed.). Prentice Hall. p. 211. ISBN 0-13-181629-2.
स्रोत
- Munkres, James R. (2000). टोपोलॉजी. Prentice-Hall. ISBN 0-13-181629-2.
- Willard, Stephen (2004). सामान्य टोपोलॉजी. Addison-Wesley. ISBN 0-486-43479-6.
- Pervin, William J. (1964), Foundations of General Topology, Academic Press
श्रेणी:विलग्न अभिगृहीत श्रेणी: सांस्थिति