टेंसर व्युत्पन्न (सातत्य यांत्रिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 5: Line 5:
विभिन्न स्थितियों के लिए दिशात्मक व्युत्पन्न की परिभाषाएँ नीचे दी गई हैं। अतः यह माना जाता है कि कार्य पर्याप्त रूप से सुचारू होते हैं कि व्युत्पन्न लिया जा सकता है।
विभिन्न स्थितियों के लिए दिशात्मक व्युत्पन्न की परिभाषाएँ नीचे दी गई हैं। अतः यह माना जाता है कि कार्य पर्याप्त रूप से सुचारू होते हैं कि व्युत्पन्न लिया जा सकता है।


=== सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न्स ===
=== सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न ===
मान लीजिए कि f('v') सदिश 'v' का वास्तविक मान फलन है। फिर 'v' (या 'v' पर) के संबंध में f('v') का व्युत्पन्न 'सदिश' अपने [[डॉट उत्पाद|बिंदु उत्पाद]] के माध्यम से किसी भी वेक्टर यू के साथ परिभाषित किया गया है।
मान लीजिए कि ''f''(''''v'''<nowiki/>') सदिश '<nowiki/>'''v'''<nowiki/>' का वास्तविक मान फलन है। फिर ''''v'''' (या ''''v'''<nowiki/>' पर) के संबंध में ''f''(''''v'''<nowiki/>') का व्युत्पन्न 'सदिश' अपने [[डॉट उत्पाद|बिंदु उत्पाद]] के माध्यम से किसी भी सदिश '''u''' के साथ परिभाषित किया गया है।


<math display="block">\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = Df(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~f(\mathbf{v} + \alpha~\mathbf{u})\right]_{\alpha=0}</math>
<math display="block">\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = Df(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~f(\mathbf{v} + \alpha~\mathbf{u})\right]_{\alpha=0}</math>
सभी सदिश यू के लिए उपरोक्त बिंदु उत्पाद अदिश उत्पन्न करता है और यदि यू इकाई सदिश होती है तब यू दिशा में वी पर 'एफ' का दिशात्मक व्युत्पन्न देता है।
सभी सदिश 'u' के लिए उपरोक्त बिंदु उत्पाद अदिश उत्पन्न करता है और यदि u इकाई सदिश होती है तब u दिशा में v पर''''' '<nowiki/>'''f''<nowiki/>' का दिशात्मक व्युत्पन्न देता है।


गुण:
गुण:
Line 16: Line 16:
# यदि <math>f(\mathbf{v}) = f_1(f_2(\mathbf{v}))</math> तब <math>\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial f_1}{\partial f_2}~\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u}</math>
# यदि <math>f(\mathbf{v}) = f_1(f_2(\mathbf{v}))</math> तब <math>\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial f_1}{\partial f_2}~\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u}</math>
=== सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न ===
=== सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न ===
चूँकि f(v) सदिश v का सदिश मान फलन होता है। फिर v (या v पर) के संबंध में f(v) का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश यू के साथ परिभाषित किया गया है।
चूँकि '''f'''('''v''') सदिश '''v''' का सदिश मान फलन होता है। फिर '''v''' (या '''v''' पर) के संबंध में '''f'''('''v''') का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश '''u''' के साथ परिभाषित किया गया है।


<math display="block"> \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = D\mathbf{f}(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~\mathbf{f}(\mathbf{v} + \alpha~\mathbf{u} ) \right]_{\alpha = 0}</math>
<math display="block"> \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = D\mathbf{f}(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~\mathbf{f}(\mathbf{v} + \alpha~\mathbf{u} ) \right]_{\alpha = 0}</math>
सभी सदिश यू के लिए उपरोक्त बिंदु उत्पाद सदिश उत्पन्न करता है और यदि यू इकाई सदिश होता है, तब दिशात्मक यू में, v पर f का व्युत्पन्न देता है।
सभी सदिश '''u''' के लिए उपरोक्त बिंदु उत्पाद सदिश उत्पन्न करता है और यदि '''u''' इकाई सदिश होता है, तब दिशात्मक '''u''' में, '''v''' पर '''f''' का व्युत्पन्न देता है।


गुण:
गुण:
Line 47: Line 47:
# यदि <math>f(\boldsymbol{S}) = f_1(\boldsymbol{F}_2(\boldsymbol{S}))</math> तब <math> \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \frac{\partial f_1}{\partial \boldsymbol{F}_2}:\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right) </math>
# यदि <math>f(\boldsymbol{S}) = f_1(\boldsymbol{F}_2(\boldsymbol{S}))</math> तब <math> \frac{\partial f}{\partial \boldsymbol{S}}:\boldsymbol{T} = \frac{\partial f_1}{\partial \boldsymbol{F}_2}:\left(\frac{\partial \boldsymbol{F}_2}{\partial \boldsymbol{S}}:\boldsymbol{T} \right) </math>
== टेंसर क्षेत्र की [[ ग्रेडियेंट |प्रवणता]] ==
== टेंसर क्षेत्र की [[ ग्रेडियेंट |प्रवणता]] ==
प्रवणता, <math>\boldsymbol{\nabla}\boldsymbol{T}</math>, टेंसर क्षेत्र का <math>\boldsymbol{T}(\mathbf{x})</math> अनैतिक स्थिर सदिश c की दिशा में इस प्रकार परिभाषित किया गया है।
प्रवणता, <math>\boldsymbol{\nabla}\boldsymbol{T}</math>, टेंसर क्षेत्र का <math>\boldsymbol{T}(\mathbf{x})</math> अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है।
<math display="block">  \boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} = \lim_{\alpha \rightarrow 0} \quad \cfrac{d}{d\alpha}~\boldsymbol{T}(\mathbf{x}+\alpha\mathbf{c})</math>
<math display="block">  \boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} = \lim_{\alpha \rightarrow 0} \quad \cfrac{d}{d\alpha}~\boldsymbol{T}(\mathbf{x}+\alpha\mathbf{c})</math><br />अतः ''n'' क्रम के टेंसर क्षेत्र की प्रवणता क्रम ''n''+1 का टेंसर क्षेत्र होता है।
 
 
अतः n क्रम के टेंसर क्षेत्र की प्रवणता क्रम n+1 का टेंसर क्षेत्र होता है।
 
=== कार्तीय निर्देशांक ===
=== कार्तीय निर्देशांक ===
{{Einstein_summation_convention}}
यदि <math>\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3</math> कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (<math>x_1, x_2, x_3</math>), फिर टेंसर क्षेत्र की प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है।
 
यदि <math>\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3</math> कार्तीय समन्वय प्रणाली में आधार स'''दिश होता हैं, बिंदुओं के निर्देशांक के साथ निरूपि'''त किया गया है (<math>x_1, x_2, x_3</math>), फिर टेंसर क्षेत्र का ग्रेडिएंट <math>\boldsymbol{T}</math> द्वारा दिया गया है
<math display="block"> \boldsymbol{\nabla}\boldsymbol{T} = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i </math>
<math display="block"> \boldsymbol{\nabla}\boldsymbol{T} = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i </math>


Line 70: Line 64:
         =  \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square
         =  \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square
  \end{align} </math>}}
  \end{align} </math>}}
चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे पास अदिश क्षेत्र के ग्रेडियेंट के लिए निम्नलिखित संबंध हैं <math>\phi</math>, सदिश क्षेत्र v, और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math>.
चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, <math>\phi</math>, सदिश क्षेत्र '''v''' और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math> होता है।
<math display="block"> \begin{align}
<math display="block"> \begin{align}
   \boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\
   \boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\
Line 78: Line 72:
  </math>
  </math>
=== वक्रीय निर्देशांक ===
=== वक्रीय निर्देशांक ===
{{main|Tensors in curvilinear coordinates}}
{{main|वक्रीय निर्देशांक में टेन्सर}}यदि <math>\mathbf{g}^1,\mathbf{g}^2,\mathbf{g}^3</math> [[वक्रीय निर्देशांक]] प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (<math>\xi^1, \xi^2, \xi^3</math>), फिर टेंसर क्षेत्र का प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है। (देखें <ref>R. W. Ogden, 2000, ''Nonlinear Elastic Deformations'', Dover.</ref> प्रमाण के लिए)
{{Einstein_summation_convention}}
 
यदि <math>\mathbf{g}^1,\mathbf{g}^2,\mathbf{g}^3</math> [[वक्रीय निर्देशांक]] प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (<math>\xi^1, \xi^2, \xi^3</math>), फिर टेंसर क्षेत्र का ग्रेडिएंट <math>\boldsymbol{T}</math> द्वारा दिया गया है (देखें <ref>R. W. Ogden, 2000, ''Nonlinear Elastic Deformations'', Dover.</ref> सबूत के लिए।)
<math display="block">
<math display="block">
   \boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i
   \boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i
</math>
</math>
इस परिभाषा से हमारे पास अदिश क्षेत्र के ग्रेडियेंट के लिए निम्नलिखित संबंध हैं <math>\phi</math>, सदिश क्षेत्र v, और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math>.
इस परिभाषा से हमारे समीप अदिश क्षेत्र के प्रवणता के लिए निम्नलिखित संबंध होते हैं <math>\phi</math>, सदिश क्षेत्र '''v''' और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math> होता है।
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\
   \boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\
Line 94: Line 85:
         = \left(\frac{\partial S_{jk}}{\partial\xi_i} - S_{lk}~\Gamma_{ij}^l - S_{jl}~\Gamma_{ik}^l\right)~\mathbf{g}^j\otimes\mathbf{g}^k\otimes\mathbf{g}^i
         = \left(\frac{\partial S_{jk}}{\partial\xi_i} - S_{lk}~\Gamma_{ij}^l - S_{jl}~\Gamma_{ik}^l\right)~\mathbf{g}^j\otimes\mathbf{g}^k\otimes\mathbf{g}^i
\end{align}</math>
\end{align}</math>
जहां क्रिस्टोफेल प्रतीक है <math>\Gamma_{ij}^k</math> का प्रयोग करके परिभाषित किया गया है
जहां क्रिस्टोफेल प्रतीक <math>\Gamma_{ij}^k</math> है, इसका प्रयोग करके इसे परिभाषित किया गया है।
<math display="block">
<math display="block">
   \Gamma_{ij}^k~\mathbf{g}_k = \frac{\partial\mathbf{g}_i}{\partial\xi^j} \quad \implies \quad
   \Gamma_{ij}^k~\mathbf{g}_k = \frac{\partial\mathbf{g}_i}{\partial\xi^j} \quad \implies \quad
Line 100: Line 91:
</math>
</math>
==== बेलनाकार ध्रुवीय निर्देशांक ====
==== बेलनाकार ध्रुवीय निर्देशांक ====
बेलनाकार निर्देशांक में, ढाल द्वारा दिया जाता है
बेलनाकार निर्देशांक में, प्रवणता द्वारा दिया जाता है।
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\phi ={}\quad
   \boldsymbol{\nabla}\phi ={}\quad
Line 148: Line 139:
\end{align}</math>
\end{align}</math>
== टेंसर क्षेत्र का [[विचलन]] ==
== टेंसर क्षेत्र का [[विचलन]] ==
टेंसर क्षेत्र का विचलन <math>\boldsymbol{T}(\mathbf{x})</math> पुनरावर्ती संबंध का उपयोग करके परिभाषित किया गया है
टेंसर क्षेत्र का विचलन <math>\boldsymbol{T}(\mathbf{x})</math> को पुनरावर्ती संबंध का उपयोग करके परिभाषित किया गया है।
<math display="block">
<math display="block">
   (\boldsymbol{\nabla}\cdot\boldsymbol{T})\cdot\mathbf{c} =
   (\boldsymbol{\nabla}\cdot\boldsymbol{T})\cdot\mathbf{c} =
Line 154: Line 145:
   \boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v})
   \boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v})
</math>
</math>
जहाँ c स्वेच्छ अचर सदिश है और v सदिश क्षेत्र है। यदि <math>\boldsymbol{T}</math> क्रम n > 1 का टेन्सर क्षेत्र है तो क्षेत्र का विचलन क्रम n− 1 का टेन्सर है।
जहाँ '''c''' स्वेच्छ अचर सदिश है और '''v''' सदिश क्षेत्र है। यदि <math>\boldsymbol{T}</math> क्रम ''n'' > 1 का टेन्सर क्षेत्र होता है तब क्षेत्र का विचलन क्रम ''n''− 1 का टेन्सर होता है।


=== कार्तीय निर्देशांक ===
=== कार्तीय निर्देशांक ===
{{Einstein_summation_convention}}
कार्तीय निर्देशांक प्रणाली में सदिश क्षेत्र '''v''' और दूसरे क्रम के टेंसर क्षेत्र <math>\boldsymbol{S}</math> के लिए हमारे समीप निम्नलिखित संबंध होते हैं।
कार्तीय निर्देशांक प्रणाली में सदिश क्षेत्र v और दूसरे क्रम के टेंसर क्षेत्र के लिए हमारे पास निम्नलिखित संबंध हैं <math>\boldsymbol{S}</math>.
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\
   \boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\
   \boldsymbol{\nabla}\cdot\boldsymbol{S} &= \frac{\partial S_{ik}}{\partial x_i}~\mathbf{e}_k = S_{ik, i}~\mathbf{e}_k
   \boldsymbol{\nabla}\cdot\boldsymbol{S} &= \frac{\partial S_{ik}}{\partial x_i}~\mathbf{e}_k = S_{ik, i}~\mathbf{e}_k
\end{align}</math>
\end{align}</math>
जहां रिक्की कैलकुस # आंशिक व्युत्पन्न के लिए भेदभाव का उपयोग सबसे सही अभिव्यक्तियों में किया जाता है। ध्यान दें कि
जहां आंशिक व्युत्पन्न के लिए टेन्सर उचित अंकन का उपयोग सबसे उचित अभिव्यक्तियों में किया जाता है। ध्यान दीजिए कि
<math display="block">\boldsymbol{\nabla}\cdot\boldsymbol{S} \neq  \boldsymbol{\nabla}\cdot\boldsymbol{S}^\textsf{T}.</math>
<math display="block">\boldsymbol{\nabla}\cdot\boldsymbol{S} \neq  \boldsymbol{\nabla}\cdot\boldsymbol{S}^\textsf{T}.</math>
सममित दूसरे क्रम के टेंसर के लिए, विचलन को अधिकांशतः इस रूप में भी लिखा जाता है<ref name=Hjelmstad2004>{{cite book|last1=Hjelmstad|first1=Keith|title=संरचनात्मक यांत्रिकी के मूल तत्व|date=2004|publisher=Springer Science & Business Media|isbn=9780387233307|page=45}}</ref>
सामान्यतः सममित दूसरे क्रम के टेंसर के लिए, विचलन को अधिकांशतः इस रूप में भी लिखा जाता है।<ref name=Hjelmstad2004>{{cite book|last1=Hjelmstad|first1=Keith|title=संरचनात्मक यांत्रिकी के मूल तत्व|date=2004|publisher=Springer Science & Business Media|isbn=9780387233307|page=45}}</ref>


<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\cdot\boldsymbol{S} &= \cfrac{\partial S_{ki}}{\partial x_i}~\mathbf{e}_k = S_{ki,i}~\mathbf{e}_k
   \boldsymbol{\nabla}\cdot\boldsymbol{S} &= \cfrac{\partial S_{ki}}{\partial x_i}~\mathbf{e}_k = S_{ki,i}~\mathbf{e}_k
\end{align}</math>
\end{align}</math>
उपरोक्त अभिव्यक्ति को कभी-कभी परिभाषा के रूप में प्रयोग किया जाता है
उपरोक्त अभिव्यक्ति को कभी-कभी परिभाषा के रूप में प्रयोग किया जाता है <math>\boldsymbol{\nabla}\cdot\boldsymbol{S}</math> कार्तीय घटक के रूप में (अधिकांशतः इसे भी लिखा जाता है <math>\operatorname{div}\boldsymbol{S}</math>). ध्यान दीजिए कि इस प्रकार की परिभाषा इस लेख के उपरोक्त भागों के अनुरूप नहीं होता है। (वक्रीय निर्देशांक पर अनुभाग देखें)
<math>\boldsymbol{\nabla}\cdot\boldsymbol{S}</math> कार्तीय घटक रूप में (अधिकांशतः इसे भी लिखा जाता है
<math>\operatorname{div}\boldsymbol{S}</math>). ध्यान दें कि इस तरह की परिभाषा इस लेख के बाकी हिस्सों के अनुरूप नहीं है (वक्रीय निर्देशांक पर अनुभाग देखें)


अंतर इस बात से उपजा है कि क्या भेदभाव पंक्तियों या स्तंभों के संबंध में किया जाता है <math>\boldsymbol{S}</math>, और पारंपरिक है। यह उदाहरण द्वारा प्रदर्शित किया जाता है। कार्तीय निर्देशांक प्रणाली में द्वितीय कोटि का टेंसर (मैट्रिक्स) <math>\mathbf{S}</math> सदिश फ़ंक्शन का ढाल है <math>\mathbf{v}</math>.
इसका अंतर इस बात से उपजा है कि क्या भेदभाव पंक्तियों या स्तंभों के संबंध में किया जाता है अतः <math>\boldsymbol{S}</math> और <math>\mathbf{v}</math> पारंपरिक है। यह उदाहरण द्वारा प्रदर्शित किया जाता है। इस प्रकार कार्तीय निर्देशांक प्रणाली में द्वितीय कोटि का टेंसर (मैट्रिक्स) <math>\mathbf{S}</math> सदिश फ़ंक्शन की प्रवणता होती है।


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 189: Line 177:
   \boldsymbol{\nabla}^{2} \mathbf{v}
   \boldsymbol{\nabla}^{2} \mathbf{v}
\end{align}</math>
\end{align}</math>
अंतिम समीकरण वैकल्पिक परिभाषा/व्याख्या के समतुल्य है<ref name=Hjelmstad2004 />
अंतिम समीकरण वैकल्पिक परिभाषा/व्याख्या के समतुल्य होता है।<ref name=Hjelmstad2004 />


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 199: Line 187:
\end{align}</math>
\end{align}</math>
=== वक्रीय निर्देशांक ===
=== वक्रीय निर्देशांक ===
{{main|Tensors in curvilinear coordinates}}
{{main|वक्रीय निर्देशांक में टेन्सर}}
{{Einstein_summation_convention}}
सामान्यतः घुमावदार निर्देशांक में, सदिश क्षेत्र '''v''' और दूसरे क्रम के टेंसर क्षेत्र का विचलन <math>\boldsymbol{S}</math> होता हैं।
घुमावदार निर्देशांक में, सदिश क्षेत्र v और दूसरे क्रम के टेंसर क्षेत्र का विचलन <math>\boldsymbol{S}</math> हैं
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\cdot\mathbf{v}
   \boldsymbol{\nabla}\cdot\mathbf{v}
Line 215: Line 202:
   & = \left[\cfrac{\partial S_i^{~j}}{\partial q^k} - \Gamma^l_{ik}~S_l^{~j} + \Gamma^j_{kl}~S_i^{~l}\right]~g^{ik}~\mathbf{b}_j
   & = \left[\cfrac{\partial S_i^{~j}}{\partial q^k} - \Gamma^l_{ik}~S_l^{~j} + \Gamma^j_{kl}~S_i^{~l}\right]~g^{ik}~\mathbf{b}_j
  \end{align} </math>
  \end{align} </math>
==== बेलनाकार ध्रुवीय निर्देशांक ====
==== बेलनाकार ध्रुवीय निर्देशांक ====
[[बेलनाकार निर्देशांक]] में
[[बेलनाकार निर्देशांक|बेलनाकार ध्रुवीय निर्देशांक]] में,
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\nabla}\cdot\mathbf{v} =\quad
   \boldsymbol{\nabla}\cdot\mathbf{v} =\quad
Line 241: Line 226:
\end{align}</math>
\end{align}</math>
== टेंसर क्षेत्र का कर्ल ==
== टेंसर क्षेत्र का कर्ल ==
ऑर्डर-एन > 1 टेन्सर क्षेत्र का [[कर्ल (गणित)]]<math>\boldsymbol{T}(\mathbf{x})</math> पुनरावर्ती संबंध का उपयोग करके भी परिभाषित किया गया है
ऑर्डर-''n'' > 1 टेन्सर क्षेत्र का [[कर्ल (गणित)]] <math>\boldsymbol{T}(\mathbf{x})</math> पुनरावर्ती संबंध का उपयोग करके भी परिभाषित किया गया है।
<math display="block">(\boldsymbol{\nabla}\times\boldsymbol{T})\cdot\mathbf{c} = \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{T}) ~;\qquad (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c} = \boldsymbol{\nabla}\cdot(\mathbf{v}\times\mathbf{c})</math>
<math display="block">(\boldsymbol{\nabla}\times\boldsymbol{T})\cdot\mathbf{c} = \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{T}) ~;\qquad (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c} = \boldsymbol{\nabla}\cdot(\mathbf{v}\times\mathbf{c})</math>
जहाँ c स्वेच्छ अचर सदिश है और v सदिश क्षेत्र है।
जहाँ '''c''' स्वेच्छ अचर सदिश है और '''v''' सदिश क्षेत्र होता है।


=== प्रथम-क्रम टेंसर (सदिश) क्षेत्र का कर्ल ===
=== प्रथम-क्रम टेंसर (सदिश) क्षेत्र का कर्ल ===
सदिश क्षेत्र v और स्वेच्छ अचर सदिश c पर विचार करें। सूचकांक संकेतन में, क्रॉस उत्पाद किसके द्वारा दिया जाता है
सदिश क्षेत्र '''v''' और स्वेच्छ अचर सदिश '''c''' पर विचार कर सकते है। इस प्रकार सूचकांक संकेतन में क्रॉस उत्पाद इसके द्वारा दिया जाता है।
<math display="block"> \mathbf{v} \times \mathbf{c} = \varepsilon_{ijk}~v_j~c_k~\mathbf{e}_i </math>
<math display="block"> \mathbf{v} \times \mathbf{c} = \varepsilon_{ijk}~v_j~c_k~\mathbf{e}_i </math>
कहाँ <math>\varepsilon_{ijk}</math> क्रमचय प्रतीक है, अन्यथा लेवी-सिविता प्रतीक के रूप में जाना जाता है। तब,
जहाँ <math>\varepsilon_{ijk}</math> क्रमचय प्रतीक है, अर्थात् लेवी-सिविता प्रतीक के रूप में जाना जाता है। तब,
<math display="block">
<math display="block">
   \boldsymbol{\nabla}\cdot(\mathbf{v} \times \mathbf{c}) = \varepsilon_{ijk}~v_{j,i}~c_k = (\varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c}
   \boldsymbol{\nabla}\cdot(\mathbf{v} \times \mathbf{c}) = \varepsilon_{ijk}~v_{j,i}~c_k = (\varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c}
Line 254: Line 239:
इसलिए,
इसलिए,
<math display="block">\boldsymbol{\nabla}\times\mathbf{v} = \varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k</math>
<math display="block">\boldsymbol{\nabla}\times\mathbf{v} = \varepsilon_{ijk}~v_{j,i}~\mathbf{e}_k</math>
=== दूसरे क्रम के टेंसर क्षेत्र का कर्ल ===
=== दूसरे क्रम के टेंसर क्षेत्र का कर्ल ===
दूसरे क्रम के टेंसर के लिए <math>\boldsymbol{S}</math>
दूसरे क्रम के टेंसर के लिए <math>\boldsymbol{S}</math>,
<math display="block"> \mathbf{c}\cdot\boldsymbol{S} = c_m~S_{mj}~\mathbf{e}_j </math>
<math display="block"> \mathbf{c}\cdot\boldsymbol{S} = c_m~S_{mj}~\mathbf{e}_j </math>
इसलिए, प्रथम-क्रम टेन्सर क्षेत्र के कर्ल की परिभाषा का उपयोग करते हुए,
अतः, प्रथम-क्रम टेन्सर क्षेत्र के कर्ल की परिभाषा का उपयोग करते हुए,
<math display="block"> \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{S}) = \varepsilon_{ijk}~c_m~S_{mj,i}~\mathbf{e}_k = (\varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\boldsymbol{S}) \cdot \mathbf{c} </math>
<math display="block"> \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{S}) = \varepsilon_{ijk}~c_m~S_{mj,i}~\mathbf{e}_k = (\varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m)\cdot\mathbf{c} = (\boldsymbol{\nabla}\times\boldsymbol{S}) \cdot \mathbf{c} </math>
इसलिए, हमारे पास है
अतः, यह हमारे समीप होता है।
<math display="block">  \boldsymbol{\nabla}\times\boldsymbol{S} = \varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m
<math display="block">  \boldsymbol{\nabla}\times\boldsymbol{S} = \varepsilon_{ijk}~S_{mj,i}~\mathbf{e}_k\otimes\mathbf{e}_m
  </math>
  </math>
=== टेंसर क्षेत्र के कर्ल से संबंधित पहचान ===
=== टेंसर क्षेत्र के कर्ल से संबंधित पहचान ===
टेंसर क्षेत्र के कर्ल से जुड़ी सबसे अधिक उपयोग की जाने वाली पहचान, <math>\boldsymbol{T}</math>, है
टेंसर क्षेत्र के कर्ल से संबंधित सबसे अधिक उपयोग की जाने वाली पहचान <math>\boldsymbol{T}</math> होती है।
<math display="block">
<math display="block">
   \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{T}) = \boldsymbol{0}
   \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{T}) = \boldsymbol{0}
  </math>
  </math>
यह पहचान सभी आदेशों के टेन्सर क्षेत्रों के लिए है। दूसरे क्रम के टेंसर के महत्वपूर्ण स्थितियों के लिए, <math>\boldsymbol{S}</math>, इस पहचान का तात्पर्य है
यह पहचान सभी आदेशों के टेन्सर क्षेत्रों के लिए होती है। इस प्रकार दूसरे क्रम के टेंसर महत्वपूर्ण स्थितियों के लिए, <math>\boldsymbol{S}</math>, इस पहचान का तात्पर्य है।
<math display="block">
<math display="block">
   \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{S}) = \boldsymbol{0} \quad \implies \quad S_{mi,j} - S_{mj,i} = 0
   \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\boldsymbol{S}) = \boldsymbol{0} \quad \implies \quad S_{mi,j} - S_{mj,i} = 0
  </math>
  </math>


 
=== दूसरे क्रम के टेंसर के निर्धारक का व्युत्पन्न ===
 
दूसरे क्रम के टेंसर के निर्धारक का व्युत्पन्न <math>\boldsymbol{A}</math> द्वारा दिया गया है।
== दूसरे क्रम के टेंसर == के निर्धारक का व्युत्पन्न
 
दूसरे क्रम के टेंसर के निर्धारक का व्युत्पन्न <math>\boldsymbol{A}</math> द्वारा दिया गया है
<math display="block">
<math display="block">
   \frac{\partial}{\partial\boldsymbol{A}}\det(\boldsymbol{A}) = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.
   \frac{\partial}{\partial\boldsymbol{A}}\det(\boldsymbol{A}) = \det(\boldsymbol{A})~\left[\boldsymbol{A}^{-1}\right]^\textsf{T} ~.
</math>
</math>
असामान्य आधार में, के घटक <math>\boldsymbol{A}</math> मैट्रिक्स ए के रूप में लिखा जा सकता है। उस स्थिति में, दाहिने हाथ की ओर मैट्रिक्स के कॉफ़ैक्टर्स से मेल खाती है।
असामान्य आधार में, <math>\boldsymbol{A}</math> के घटक को मैट्रिक्स <math>\boldsymbol{A}</math> के रूप में लिखा जा सकता है। उस स्थिति में, दाहिने हाथ की ओर मैट्रिक्स के कॉफ़ैक्टर्स से मेल खाती है।


{{math proof| proof = Let <math>\boldsymbol{A}</math> be a second order tensor and let <math>f(\boldsymbol{A}) = \det(\boldsymbol{A})</math>. Then, from the definition of the derivative of a scalar valued function of a tensor, we have
{{math proof| proof = Let <math>\boldsymbol{A}</math> be a second order tensor and let <math>f(\boldsymbol{A}) = \det(\boldsymbol{A})</math>. Then, from the definition of the derivative of a scalar valued function of a tensor, we have
Line 331: Line 311:
}}
}}


== दूसरे क्रम के टेंसर == के आक्रमणकारियों के व्युत्पन्न
=== दूसरे क्रम के टेंसर के आक्रमणकारियों के व्युत्पन्न ===
 
दूसरे क्रम के टेंसर के प्रमुख आविष्कार हैं।
दूसरे क्रम के टेंसर के प्रमुख आविष्कार हैं
<math display="block">
<math display="block">
   \begin{align}
   \begin{align}
Line 341: Line 320:
   \end{align}
   \end{align}
</math>
</math>
के संबंध में इन तीन अपरिवर्तनीयों के व्युत्पन्न <math>\boldsymbol{A}</math> हैं
इसके संबंध में तीन अपरिवर्तनीयों के व्युत्पन्न <math>\boldsymbol{A}</math> हैं।
<math display="block">
<math display="block">
   \begin{align}
   \begin{align}
Line 464: Line 443:
}}
}}


== दूसरे क्रम की पहचान टेंसर == का व्युत्पन्न
=== दूसरे क्रम की पहचान टेंसर का व्युत्पन्न ===
 
सामान्यतः <math>\boldsymbol{\mathit{1}}</math> दूसरे क्रम की पहचान होने देने का टेंसर बनता है। अतः फिर दूसरे क्रम के टेंसर के संबंध में इस टेंसर की व्युत्पत्ति <math>\boldsymbol{A}</math> द्वारा दिया गया है
होने देना <math>\boldsymbol{\mathit{1}}</math> दूसरे क्रम की पहचान टेंसर बनें। फिर दूसरे क्रम के टेंसर के संबंध में इस टेंसर की व्युत्पत्ति <math>\boldsymbol{A}</math> द्वारा दिया गया है
<math display="block"> \frac{\partial \boldsymbol{\mathit{1}}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{0}}:\boldsymbol{T} = \boldsymbol{\mathit{0}}</math>
<math display="block"> \frac{\partial \boldsymbol{\mathit{1}}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{0}}:\boldsymbol{T} = \boldsymbol{\mathit{0}}</math>
यह है क्योंकि <math>\boldsymbol{\mathit{1}}</math> से स्वतंत्र है <math>\boldsymbol{A}</math>.
अतः जिससे कि यह <math>\boldsymbol{\mathit{1}}</math> से स्वतंत्र <math>\boldsymbol{A}</math> होता है।


== स्वयं के संबंध में दूसरे क्रम के टेंसर का व्युत्पन्न ==
== स्वयं के संबंध में दूसरे क्रम के टेंसर का व्युत्पन्न ==
होने देना <math>\boldsymbol{A}</math> दूसरे क्रम का टेंसर हो। तब
इस प्रकार यह <math>\boldsymbol{A}</math> दूसरे क्रम का टेंसर होता है। तब,
<math display="block">
<math display="block">
   \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T} =
   \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}}:\boldsymbol{T} =
Line 480: Line 458:
इसलिए,
इसलिए,
<math display="block"> \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}</math>
<math display="block"> \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}</math>
यहाँ <math>\boldsymbol{\mathsf{I}}</math> चौथा क्रम पहचान टेन्सर है। ऑर्थोनॉर्मल बेसिस के संबंध में इंडेक्स नोटेशन में
यहाँ <math>\boldsymbol{\mathsf{I}}</math> चौथा क्रम पहचान टेन्सर होता है। इस प्रकार ऑर्थोनॉर्मल आधार के संबंध में सूचकांक अंकन में,
<math display="block">
<math display="block">
   \boldsymbol{\mathsf{I}} = \delta_{ik}~\delta_{jl}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
   \boldsymbol{\mathsf{I}} = \delta_{ik}~\delta_{jl}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
</math>
</math>
इस परिणाम का तात्पर्य है
यह इस परिणाम का तात्पर्य होता है।
<math display="block">
<math display="block">
   \frac{\partial \boldsymbol{A}^\textsf{T}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{I}}^\textsf{T}:\boldsymbol{T} = \boldsymbol{T}^\textsf{T}
   \frac{\partial \boldsymbol{A}^\textsf{T}}{\partial \boldsymbol{A}}:\boldsymbol{T} = \boldsymbol{\mathsf{I}}^\textsf{T}:\boldsymbol{T} = \boldsymbol{T}^\textsf{T}
</math>
</math>
कहाँ
जहाँ
<math display="block"> \boldsymbol{\mathsf{I}}^\textsf{T} = \delta_{jk}~\delta_{il}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l </math>
<math display="block"> \boldsymbol{\mathsf{I}}^\textsf{T} = \delta_{jk}~\delta_{il}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l </math>
इसलिए, यदि टेंसर <math>\boldsymbol{A}</math> सममित है, तो व्युत्पन्न भी सममित है और हम प्राप्त करते हैं
इसलिए, यदि टेंसर <math>\boldsymbol{A}</math> सममित होता है, तब व्युत्पन्न भी सममित होता है और हम इसे प्राप्त करते हैं।
<math display="block">
<math display="block">
   \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}^{(s)}
   \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} = \boldsymbol{\mathsf{I}}^{(s)}
     = \frac{1}{2}~\left(\boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{I}}^\textsf{T}\right)
     = \frac{1}{2}~\left(\boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{I}}^\textsf{T}\right)
</math>
</math>
जहां सममित चौथे क्रम की पहचान टेन्सर है
जहां सममित चौथे क्रम की पहचान टेन्सर है।
<math display="block">
<math display="block">
   \boldsymbol{\mathsf{I}}^{(s)} = \frac{1}{2}~(\delta_{ik}~\delta_{jl} + \delta_{il}~\delta_{jk})
   \boldsymbol{\mathsf{I}}^{(s)} = \frac{1}{2}~(\delta_{ik}~\delta_{jl} + \delta_{il}~\delta_{jk})
Line 501: Line 479:
</math>
</math>


 
== दूसरे क्रम के टेंसर के व्युत्क्रम का व्युत्पन्न ==
 
इस प्रकार <math>\boldsymbol{A}</math> और <math>\boldsymbol{T}</math> दोनो दूसरे क्रम के टेंसर बनें होते है, फिर
== दूसरे क्रम के टेंसर == के व्युत्क्रम का व्युत्पन्न
 
होने देना <math>\boldsymbol{A}</math> और <math>\boldsymbol{T}</math> दो दूसरे क्रम के टेंसर बनें, फिर
<math display="block">
<math display="block">
   \frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-1}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\cdot\boldsymbol{A}^{-1}
   \frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-1}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-1}\cdot\boldsymbol{T}\cdot\boldsymbol{A}^{-1}
</math>
</math>
ऑर्थोनॉर्मल बेसिस के संबंध में इंडेक्स नोटेशन में
ऑर्थोनॉर्मल आधार के संबंध में सूचकांक अंकन में,
<math display="block">
<math display="block">
   \frac{\partial A^{-1}_{ij}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{ik}~T_{kl}~A^{-1}_{lj} \implies \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = - A^{-1}_{ik}~A^{-1}_{lj}
   \frac{\partial A^{-1}_{ij}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{ik}~T_{kl}~A^{-1}_{lj} \implies \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = - A^{-1}_{ik}~A^{-1}_{lj}
  </math>
  </math>
हमारे पास भी है
हमारे समीप यह भी है।
<math display="block">
<math display="block">
  \frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-\textsf{T}}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-\textsf{T}}\cdot\boldsymbol{T}^\textsf{T}\cdot\boldsymbol{A}^{-\textsf{T}}
  \frac{\partial }{\partial \boldsymbol{A}} \left(\boldsymbol{A}^{-\textsf{T}}\right) : \boldsymbol{T} = - \boldsymbol{A}^{-\textsf{T}}\cdot\boldsymbol{T}^\textsf{T}\cdot\boldsymbol{A}^{-\textsf{T}}
</math>
</math>
इंडेक्स नोटेशन में
सूचकांक अंकन में,
<math display="block">
<math display="block">
   \frac{\partial A^{-1}_{ji}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{jk}~T_{lk}~A^{-1}_{li} \implies \frac{\partial A^{-1}_{ji}}{\partial A_{kl}} = - A^{-1}_{li}~A^{-1}_{jk}
   \frac{\partial A^{-1}_{ji}}{\partial A_{kl}}~T_{kl} = - A^{-1}_{jk}~T_{lk}~A^{-1}_{li} \implies \frac{\partial A^{-1}_{ji}}{\partial A_{kl}} = - A^{-1}_{li}~A^{-1}_{jk}
  </math>
  </math>
यदि टेंसर <math>\boldsymbol{A}</math> तब सममित है
यदि टेंसर <math>\boldsymbol{A}</math> तब सममित होता है।
<math display="block">
<math display="block">
  \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = -\cfrac{1}{2}\left(A^{-1}_{ik}~A^{-1}_{jl} + A^{-1}_{il}~A^{-1}_{jk}\right)
  \frac{\partial A^{-1}_{ij}}{\partial A_{kl}} = -\cfrac{1}{2}\left(A^{-1}_{ik}~A^{-1}_{jl} + A^{-1}_{il}~A^{-1}_{jk}\right)
Line 554: Line 529:


== भागों द्वारा एकीकरण ==
== भागों द्वारा एकीकरण ==
[[File:StressMeasures.png|thumb|400px|कार्यक्षेत्र <math>\Omega</math>, इसकी सीमा <math>\Gamma</math> और जावक इकाई सामान्य <math>\mathbf{n}</math>]]सातत्य यांत्रिकी में टेंसर व्युत्पन्न से संबंधित अन्य महत्वपूर्ण ऑपरेशन भागों द्वारा एकीकरण है। भागों द्वारा एकीकरण के सूत्र को इस प्रकार लिखा जा सकता है
[[File:StressMeasures.png|thumb|400px|कार्यक्षेत्र <math>\Omega</math>, इसकी सीमा <math>\Gamma</math> और जावक इकाई सामान्य <math>\mathbf{n}</math>]]सातत्य यांत्रिकी में टेंसर व्युत्पन्न से संबंधित अन्य महत्वपूर्ण ऑपरेशन भागों द्वारा एकीकरण होता है। अतः भागों द्वारा एकीकरण के सूत्र को इस प्रकार लिखा जा सकता है।
<math display="block">
<math display="block">
   \int_{\Omega} \boldsymbol{F}\otimes\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n} \otimes (\boldsymbol{F}\otimes\boldsymbol{G})\,d\Gamma - \int_{\Omega} \boldsymbol{G}\otimes\boldsymbol{\nabla}\boldsymbol{F}\,d\Omega
   \int_{\Omega} \boldsymbol{F}\otimes\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n} \otimes (\boldsymbol{F}\otimes\boldsymbol{G})\,d\Gamma - \int_{\Omega} \boldsymbol{G}\otimes\boldsymbol{\nabla}\boldsymbol{F}\,d\Omega
  </math>
  </math>
कहाँ <math>\boldsymbol{F}</math> और <math>\boldsymbol{G}</math> मनमाना क्रम के अवकलनीय टेन्सर क्षेत्र हैं, <math>\mathbf{n}</math> उस डोमेन के लिए बाहरी सामान्य इकाई है जिस पर टेंसर क्षेत्र परिभाषित हैं, <math>\otimes</math> सामान्यीकृत टेंसर उत्पाद ऑपरेटर का प्रतिनिधित्व करता है, और <math>\boldsymbol{\nabla}</math> सामान्यीकृत ढाल ऑपरेटर है। कब <math>\boldsymbol{F}</math> पहचान टेन्सर के बराबर है, हमें डायवर्जेंस प्रमेय मिलता है
जहाँ <math>\boldsymbol{F}</math> और <math>\boldsymbol{G}</math> अनैतिक क्रम के अवकलनीय टेन्सर क्षेत्र हैं, <math>\mathbf{n}</math> उस डोमेन के लिए बाहरी सामान्य इकाई है जिस पर टेंसर क्षेत्र परिभाषित होता हैं, <math>\otimes</math> सामान्यीकृत टेंसर उत्पाद ऑपरेटर का प्रतिनिधित्व करता है और <math>\boldsymbol{\nabla}</math> सामान्यीकृत ढाल ऑपरेटर होता है। तब <math>\boldsymbol{F}</math> पहचान टेन्सर के समान्तर होता है,अतः हमें विचलन प्रमेय मिलता है।
<math display="block"> \int_{\Omega}\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n}\otimes\boldsymbol{G}\,d\Gamma \,. </math>
<math display="block"> \int_{\Omega}\boldsymbol{\nabla}\boldsymbol{G}\,d\Omega = \int_{\Gamma} \mathbf{n}\otimes\boldsymbol{G}\,d\Gamma \,. </math>
हम कार्तीय इंडेक्स नोटेशन में भागों द्वारा एकीकरण के सूत्र को व्यक्त कर सकते हैं
हम कार्तीय सूचकांक अंकन में भागों द्वारा एकीकरण के सूत्र को व्यक्त कर सकते हैं।
<math display="block">
<math display="block">
   \int_{\Omega} F_{ijk....}\,G_{lmn...,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ijk...}\,G_{lmn...}\,d\Gamma - \int_{\Omega} G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.
   \int_{\Omega} F_{ijk....}\,G_{lmn...,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ijk...}\,G_{lmn...}\,d\Gamma - \int_{\Omega} G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.
  </math>
  </math>
विशेष स्थितियों के लिए जहां टेन्सर उत्पाद संचालन सूचकांक का संकुचन है और ढाल संचालन विचलन है, और दोनों <math>\boldsymbol{F}</math> और <math>\boldsymbol{G}</math> दूसरे क्रम के टेंसर हैं, हमारे पास हैं
विशेष स्थितियों के लिए जहां टेन्सर उत्पाद संचालन सूचकांक का संकुचन होता है और ढाल संचालन विचलन होता है और दोनों <math>\boldsymbol{F}</math> और <math>\boldsymbol{G}</math> दूसरे क्रम के टेंसर हैं, अतः हमारे समीप हैं।
<math display="block"> \int_{\Omega} \boldsymbol{F}\cdot(\boldsymbol{\nabla}\cdot\boldsymbol{G})\,d\Omega = \int_{\Gamma} \mathbf{n}\cdot\left(\boldsymbol{G}\cdot\boldsymbol{F}^\textsf{T}\right)\,d\Gamma - \int_{\Omega} (\boldsymbol{\nabla}\boldsymbol{F}):\boldsymbol{G}^\textsf{T}\,d\Omega \,. </math>
<math display="block"> \int_{\Omega} \boldsymbol{F}\cdot(\boldsymbol{\nabla}\cdot\boldsymbol{G})\,d\Omega = \int_{\Gamma} \mathbf{n}\cdot\left(\boldsymbol{G}\cdot\boldsymbol{F}^\textsf{T}\right)\,d\Gamma - \int_{\Omega} (\boldsymbol{\nabla}\boldsymbol{F}):\boldsymbol{G}^\textsf{T}\,d\Omega \,. </math>
इंडेक्स नोटेशन में,
सूचकांक अंकन में,
<math display="block"> \int_{\Omega} F_{ij}\,G_{pj,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ij}\,G_{pj}\,d\Gamma - \int_{\Omega} G_{pj}\,F_{ij,p}\,d\Omega \,. </math>
<math display="block"> \int_{\Omega} F_{ij}\,G_{pj,p}\,d\Omega = \int_{\Gamma} n_p\,F_{ij}\,G_{pj}\,d\Gamma - \int_{\Omega} G_{pj}\,F_{ij,p}\,d\Omega \,. </math>
== यह भी देखें ==
== यह भी देखें ==
Line 574: Line 549:
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: ठोस यांत्रिकी]] [[Category: यांत्रिकी]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 16/05/2023]]
[[Category:Created On 16/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:ठोस यांत्रिकी]]
[[Category:यांत्रिकी]]

Latest revision as of 16:09, 29 May 2023

दूसरे क्रम के टेंसरों के संबंध में अदिश (गणित), यूक्लिडियन सदिश और दूसरे क्रम के टेंसर के दिशात्मक व्युत्पन्न का सातत्य यांत्रिकी में अधिक उपयोग होता हैं। इन व्युत्पन्न का उपयोग अरेखीय लोच और प्लास्टिसिटी (भौतिकी) के सिद्धांतों में किया जाता है, विशेष रूप से संख्यात्मक अनुकरण के लिए एल्गोरिदम के डिजाइन में उपयोग किया जाता है।[1]

इस प्रकार दिशात्मक व्युत्पन्न इन व्युत्पन्नों को खोजने की व्यवस्थित विधि प्रदान करते है।[2]

सदिश और दूसरे क्रम के टेंसर के संबंध में व्युत्पन्न

विभिन्न स्थितियों के लिए दिशात्मक व्युत्पन्न की परिभाषाएँ नीचे दी गई हैं। अतः यह माना जाता है कि कार्य पर्याप्त रूप से सुचारू होते हैं कि व्युत्पन्न लिया जा सकता है।

सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न

मान लीजिए कि f('v') सदिश 'v' का वास्तविक मान फलन है। फिर 'v' (या 'v' पर) के संबंध में f('v') का व्युत्पन्न 'सदिश' अपने बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।

सभी सदिश 'u' के लिए उपरोक्त बिंदु उत्पाद अदिश उत्पन्न करता है और यदि u इकाई सदिश होती है तब u दिशा में v पर 'f' का दिशात्मक व्युत्पन्न देता है।

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न

चूँकि f(v) सदिश v का सदिश मान फलन होता है। फिर v (या v पर) के संबंध में f(v) का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।

सभी सदिश u के लिए उपरोक्त बिंदु उत्पाद सदिश उत्पन्न करता है और यदि u इकाई सदिश होता है, तब दिशात्मक u में, v पर f का व्युत्पन्न देता है।

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

दूसरे क्रम के टेंसरों के अदिश मान वाले कार्यों के व्युत्पन्न

इस प्रकार दूसरे क्रम के टेंसर का वास्तविक मूल्यवान कार्य होने देना है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में दूसरे क्रम के टेंसर के रूप में परिभाषित किया गया है।

सभी दूसरे क्रम के टेंसरों के लिए ,

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

दूसरे क्रम के टेंसर के टेन्सर मूल्यवान कार्यों के व्युत्पन्न

इस प्रकार दूसरे क्रम के टेंसर का दूसरे क्रम के टेन्सर मान फंक्शन होने देता है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में चौथे क्रम के टेन्सर के रूप में परिभाषित किया गया है।

सभी दूसरे क्रम के टेंसरों के लिए ,

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब
  4. यदि तब

टेंसर क्षेत्र की प्रवणता

प्रवणता, , टेंसर क्षेत्र का अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है।


अतः n क्रम के टेंसर क्षेत्र की प्रवणता क्रम n+1 का टेंसर क्षेत्र होता है।

कार्तीय निर्देशांक

यदि कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (), फिर टेंसर क्षेत्र की प्रवणता द्वारा दिया गया है।

Proof

The vectors x and c can be written as and . Let y := x + αc. In that case the gradient is given by

चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, , सदिश क्षेत्र v और दूसरे क्रम का टेंसर क्षेत्र होता है।

वक्रीय निर्देशांक

यदि वक्रीय निर्देशांक प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (), फिर टेंसर क्षेत्र का प्रवणता द्वारा दिया गया है। (देखें [3] प्रमाण के लिए)

इस परिभाषा से हमारे समीप अदिश क्षेत्र के प्रवणता के लिए निम्नलिखित संबंध होते हैं , सदिश क्षेत्र v और दूसरे क्रम का टेंसर क्षेत्र होता है।
जहां क्रिस्टोफेल प्रतीक है, इसका प्रयोग करके इसे परिभाषित किया गया है।

बेलनाकार ध्रुवीय निर्देशांक

बेलनाकार निर्देशांक में, प्रवणता द्वारा दिया जाता है।