स्ट्रिंग कंपन: Difference between revisions

From Vigyanwiki
Line 79: Line 79:
  | 6||0.0416||14.8||"
  | 6||0.0416||14.8||"
  |}
  |}
उपरोक्त विनिर्देशों को देखते हुए, गणना की गई कंपन आवृत्तियों (<math>f</math>) उपरोक्त स्ट्रिंग्स के मूलभूत हार्मोनिक्स क्या होंगे यदि निर्माता द्वारा अनुशंसित तनावों पर स्ट्रिंग्स को फँसाया गया हो?
उपरोक्त विशिष्टताओं को देखते हुए, उपरोक्त तारों के मौलिक हार्मोनिक्स की गणना की गई कंपन आवृत्तियों (<math>f</math>) क्या होगी यदि तार निर्माता द्वारा अनुशंसित तनाव पर फंसे हुए हों?


इसका उत्तर देने के लिए, हम पिछले अनुभाग में सूत्र के साथ शुरू कर सकते हैं <math>n = 1</math>:
इसका उत्तर देने के लिए, हम पिछले अनुभाग में <math>n = 1</math> के साथ सूत्र के साथ प्रारंभ कर सकते हैं:
:<math>f = \frac{1}{2L}\sqrt{\frac{T}{\mu}}</math>
:<math>f = \frac{1}{2L}\sqrt{\frac{T}{\mu}}</math>
रैखिक घनत्व <math>\mu</math> स्थानिक (द्रव्यमान / आयतन) घनत्व के संदर्भ में व्यक्त किया जा सकता है <math>\rho</math> संबंध के माध्यम से <math>\mu = \pi r^2\rho = \pi d^2\rho/4</math>, कहाँ <math>r</math> स्ट्रिंग की त्रिज्या है और <math>d</math> उपरोक्त तालिका में व्यास (उर्फ मोटाई) है:
रैखिक घनत्व <math>\mu</math> को संबंध <math>\mu = \pi r^2\rho = \pi d^2\rho/4</math> के माध्यम से स्थानिक (द्रव्यमान / मात्रा) घनत्व <math>\rho</math> के संदर्भ में व्यक्त किया जा सकता है, जहां <math>r</math> स्ट्रिंग की त्रिज्या है और <math>d</math> व्यास है (मोटाई) उपरोक्त तालिका में:
:<math>f = \frac{1}{2L}\sqrt{\frac{T}{\pi d^2\rho/4}}
:<math>f = \frac{1}{2L}\sqrt{\frac{T}{\pi d^2\rho/4}}
         = \frac{1}{2Ld}\sqrt{\frac{4T}{\pi\rho}}
         = \frac{1}{2Ld}\sqrt{\frac{4T}{\pi\rho}}
         = \frac{1}{Ld}\sqrt{\frac{T}{\pi\rho}}</math>
         = \frac{1}{Ld}\sqrt{\frac{T}{\pi\rho}}</math>
संगणना के प्रयोजनों के लिए, हम तनाव का स्थानापन्न कर सकते हैं <math>T</math> ऊपर, न्यूटन के गति के नियमों के माध्यम से#न्यूटन का दूसरा नियम|न्यूटन का दूसरा नियम (बल = द्रव्यमान × त्वरण), अभिव्यक्ति <math>T = ma</math>, कहाँ <math>m</math> वह द्रव्यमान है जो, पृथ्वी की सतह पर, तनाव मानों के अनुरूप समतुल्य भार होगा <math>T</math> उपरोक्त तालिका में, जैसा कि पृथ्वी की सतह पर मानक गुरुत्व के माध्यम से संबंधित है, <math>g_0 = 980.665</math> सेमी/से<sup>2</उप>। (यह प्रतिस्थापन यहाँ सुविधाजनक है क्योंकि ऊपर निर्माता द्वारा प्रदान किए गए स्ट्रिंग तनाव पाउंड (बल) में हैं, जो परिचित रूपांतरण कारक 1 lb. = 453.59237 ग्राम के माध्यम से किलोग्राम में समकक्ष द्रव्यमान में सबसे आसानी से परिवर्तित हो सकते हैं।) उपरोक्त सूत्र तब स्पष्ट रूप से बन जाता है:
संगणना के प्रयोजनों के लिए, हम न्यूटन के दूसरे नियम (बल = द्रव्यमान × त्वरण), अभिव्यक्ति <math>T = ma</math> के माध्यम से ऊपर दिए गए तनाव <math>T</math> के लिए स्थानापन्न कर सकते हैं, जहाँ <math>m</math> वह द्रव्यमान है, जो पृथ्वी की सतह पर, पृथ्वी की सतह पर गुरुत्वाकर्षण के कारण मानक त्वरण के माध्यम से संबंधित के रूप में उपरोक्त तालिका में तनाव मान <math>T</math> के अनुरूप वजन होगा, <math>g_0 = 980.665</math> cm/s<sup>2</sup>। (यह प्रतिस्थापन यहाँ सुविधाजनक है क्योंकि ऊपर निर्माता द्वारा प्रदान किए गए स्ट्रिंग तनाव बल के पाउंड में हैं, जिन्हें परिचित रूपांतरण कारक 1 lb. = 53.59237 ग्राम के माध्यम से किलोग्राम में समतुल्य द्रव्यमान में परिवर्तित किया जा सकता है।) उपर्युक्त सूत्र स्पष्ट रूप से बन जाता है:
:<math>f_\mathrm{Hz} = \frac{1}{L_\mathrm{in} \times 2.54\ \mathrm{cm/in} \times d_\mathrm{in} \times 2.54\ \mathrm{cm/in}} \sqrt{\frac{T_\mathrm{lb} \times 453.59237\ \mathrm{g/lb} \times 980.665\ \mathrm{cm/s^2}}{\pi \times \rho_\mathrm{g/cm^3}}}</math>
:<math>f_\mathrm{Hz} = \frac{1}{L_\mathrm{in} \times 2.54\ \mathrm{cm/in} \times d_\mathrm{in} \times 2.54\ \mathrm{cm/in}} \sqrt{\frac{T_\mathrm{lb} \times 453.59237\ \mathrm{g/lb} \times 980.665\ \mathrm{cm/s^2}}{\pi \times \rho_\mathrm{g/cm^3}}}</math>
गणना करने के लिए इस सूत्र का उपयोग करना <math>f</math> स्ट्रिंग संख्या के लिए 1 ऊपर पैदावार:
स्ट्रिंग नंबर के लिए <math>f</math> की गणना करने के लिए इस सूत्र का उपयोग करना। 1 से ऊपर यील्ड:
:<math>f_1 = \frac{1}{25.625\ \mathrm{in} \times 2.54\ \mathrm{cm/in} \times 0.00899\ \mathrm{in} \times 2.54\ \mathrm{cm/in}} \sqrt{\frac{13.1\ \mathrm{lb} \times 453.59237\ \mathrm{g/lb} \times 980.665\ \mathrm{cm/s^2}}{\pi \times 7.726\ \mathrm{g/cm^3}}} \approx 330\ \mathrm{Hz}</math>
:<math>f_1 = \frac{1}{25.625\ \mathrm{in} \times 2.54\ \mathrm{cm/in} \times 0.00899\ \mathrm{in} \times 2.54\ \mathrm{cm/in}} \sqrt{\frac{13.1\ \mathrm{lb} \times 453.59237\ \mathrm{g/lb} \times 980.665\ \mathrm{cm/s^2}}{\pi \times 7.726\ \mathrm{g/cm^3}}} \approx 330\ \mathrm{Hz}</math>
सभी छः तारों के लिए इस गणना को दोहराने से निम्नलिखित आवृत्तियों का परिणाम मिलता है। प्रत्येक आवृत्ति के बगल में [[गिटार ट्यूनिंग]] में संगीत नोट (वैज्ञानिक पिच नोटेशन में) दिखाया गया है जिसकी आवृत्ति निकटतम है, यह पुष्टि करता है कि निर्माता द्वारा अनुशंसित तनावों पर उपरोक्त तारों को स्ट्रिंग करने से वास्तव में गिटार के मानक पिचों का परिणाम होता है:
सभी छह तारों के लिए इस गणना को दोहराने से निम्नलिखित आवृत्तियाँ प्राप्त होती हैं। प्रत्येक आवृत्ति के बगल में मानक [[गिटार ट्यूनिंग]] में संगीत नोट (वैज्ञानिक पिच नोटेशन में) दिखाया गया है जिसकी आवृत्ति निकटतम है, यह पुष्टि करता है कि निर्माता द्वारा अनुशंसित तनावों पर उपरोक्त तारों को स्ट्रिंग करना वास्तव में गिटार के मानक पिचों का परिणाम है:
{|class="wikitable"
{|class="wikitable"
  |+Fundamental harmonics as computed by above string vibration formulas
  |+उपरोक्त स्ट्रिंग कंपन सूत्रों द्वारा गणना की गई मौलिक हार्मोनिक्स
  ! String no.!!Computed frequency [Hz]!!Closest note in [[A440 (pitch standard)|A440]] [[12 equal temperament|12-TET]] tuning
  ! स्ट्रिंग संख्या!!परिकलित आवृत्ति [हर्ट्ज]!![[A440 (pitch standard)|A440]] [[12 equal temperament|12-TET]] ट्यूनिंग में निकटतम टिप्पणी
  |-
  |-
  | 1||330||E<sub>4</sub> (= 440 ÷ 2<sup>5/12</sup> ≈ 329.628 Hz)
  | 1||330||E<sub>4</sub> (= 440 ÷ 2<sup>5/12</sup> ≈ 329.628 हर्ट्ज)
  |-
  |-
  | 2||247||B<sub>3</sub> (= 440 ÷ 2<sup>10/12</sup> ≈ 246.942 Hz)
  | 2||247||B<sub>3</sub> (= 440 ÷ 2<sup>10/12</sup> ≈ 246.942 हर्ट्ज)
  |-
  |-
  | 3||196||G<sub>3</sub> (= 440 ÷ 2<sup>14/12</sup> ≈ 195.998 Hz)
  | 3||196||G<sub>3</sub> (= 440 ÷ 2<sup>14/12</sup> ≈ 195.998 हर्ट्ज)
  |-
  |-
  | 4||147||D<sub>3</sub> (= 440 ÷ 2<sup>19/12</sup> ≈ 146.832 Hz)
  | 4||147||D<sub>3</sub> (= 440 ÷ 2<sup>19/12</sup> ≈ 146.832 हर्ट्ज)
  |-
  |-
  | 5||110||A<sub>2</sub> (= 440 ÷ 2<sup>24/12</sup> = 110 Hz)
  | 5||110||A<sub>2</sub> (= 440 ÷ 2<sup>24/12</sup> = 110 हर्ट्ज)
  |-
  |-
  | 6||82.4||E<sub>2</sub> (= 440 ÷ 2<sup>29/12</sup> ≈ 82.407 Hz)
  | 6||82.4||E<sub>2</sub> (= 440 ÷ 2<sup>29/12</sup> ≈ 82.407 हर्ट्ज)
  |}
  |}
== यह भी देखें ==


 
* फ़्रेटेड इंस्ट्रूमेंट
== यह भी देखें ==
* [[झल्लाहट]]
* [[संगीतमय ध्वनिकी]]
* [[संगीतमय ध्वनिकी]]
* [[एक गोलाकार ड्रम का कंपन]]
* वृत्ताकार ड्रम का कंपन
* मेल्डे का प्रयोग
* मेल्डे का प्रयोग
* [[तीसरा पुल]] (समान स्ट्रिंग डिवीजनों के आधार पर हार्मोनिक अनुनाद)
* तीसरा ब्रिज (समान स्ट्रिंग डिवीजनों पर आधारित हार्मोनिक अनुनाद)
* स्ट्रिंग प्रतिध्वनि
* स्ट्रिंग अनुनाद
* [[प्रतिबिंब चरण परिवर्तन]]
* परावर्तन अवस्था परिवर्तन


== संदर्भ ==
== संदर्भ ==
Line 125: Line 124:
;Specific
;Specific
<references />
<references />
== बाहरी संबंध ==
== बाहरी संबंध ==
* "[http://demonstrations.wolfram.com/TheVibratingString/ The Vibrating String]" by [[Alain Goriely]] and Mark Robertson-Tessi, [[The Wolfram Demonstrations Project]].
* "[http://demonstrations.wolfram.com/TheVibratingString/ The Vibrating String]" by [[Alain Goriely]] and Mark Robertson-Tessi, [[The Wolfram Demonstrations Project]].

Revision as of 08:40, 17 May 2023

तार का कंपन एक तरंग है। अनुनाद एक कंपन स्ट्रिंग का कारण बनता है जो निरंतर आवृत्ति, यानी एक स्थिर पिच के साथ ध्वनि उत्पन्न करता है। यदि तार की लंबाई या तनाव ठीक से समायोजित किया जाता है, तो उत्पन्न ध्वनि संगीतमय स्वर है। वाइब्रेटिंग स्ट्रिंग्स गिटार, सेलोस और पियानो जैसे स्ट्रिंग वाद्य-यंत्र का आधार हैं।

तरंग

स्ट्रिंग () में एक तरंग के प्रसार का वेग स्ट्रिंग () के तनाव के बल के वर्गमूल के आनुपातिक है और स्ट्रिंग के रैखिक घनत्व () के वर्गमूल के व्युत्क्रमानुपाती है:

इस संबंध की खोज 1500 के दशक के अंत में विन्सेन्ज़ो गैलीली ने की थी।

व्युत्पत्ति

एक कंपन स्ट्रिंग के लिए चित्रण

स्रोत:[1]

मान लीजिए डोरी के एक टुकड़े की लंबाई , इसका द्रव्यमान और इसका रैखिक घनत्व है। यदि कोण और छोटे हैं, तो दोनों ओर तनाव के क्षैतिज घटक दोनों को एक स्थिर द्वारा अनुमानित किया जा सकता है, जिसके लिए शुद्ध क्षैतिज बल शून्य है। तदनुसार, छोटे कोण सन्निकटन का उपयोग करते हुए, स्ट्रिंग खंड के दोनों किनारों पर अभिनय करने वाले क्षैतिज तनाव द्वारा दिया जाता है

ऊर्ध्वाधर घटक के लिए न्यूटन के दूसरे नियम के अनुसार, इस टुकड़े का द्रव्यमान (जो इसके रैखिक घनत्व और लंबाई का गुणनफल है) गुणा इसके त्वरण, , टुकड़े पर कुल बल के बराबर होगा:

इस व्यंजक को से विभाजित करने पर और पहले और दूसरे समीकरणों को प्रतिस्थापित करने पर प्राप्त होता है (हम के लिए या तो पहले या दूसरे समीकरण को चुन सकते हैं, इसलिए हम आसानी से मिलान कोण और के साथ प्रत्येक को चुनते हैं)

छोटे-कोण सन्निकटन के अनुसार, स्ट्रिंग के टुकड़े के सिरों पर कोणों की स्पर्शरेखाएँ सिरों पर ढलानों के बराबर होती हैं, जिसमें और की परिभाषा के कारण एक अतिरिक्त ऋण चिन्ह होता है। इस तथ्य का प्रयोग और पुनर्व्यवस्थित करना प्रदान करता है

इस सीमा में कि शून्य की ओर अग्रसर होता है, बाएँ हाथ की ओर के दूसरे अवकलज की परिभाषा है:

यह के लिए तरंग समीकरण है, और दूसरी बार का गुणांक व्युत्पन्न के बराबर है; इस प्रकार

जहाँ डोरी में तरंग के संचरण की गति है (इस बारे में अधिक जानकारी के लिए तरंग समीकरण पर लेख देखें)। हालांकि, यह व्युत्पत्ति केवल छोटे आयाम कंपनों के लिए मान्य है; बड़े आयाम वाले लोगों के लिए, स्ट्रिंग के टुकड़े की लंबाई के लिए एक अच्छा सन्निकटन नहीं है, और तनाव का क्षैतिज घटक आवश्यक रूप से स्थिर नहीं है। क्षैतिज तनाव द्वारा अच्छी तरह से अनुमानित नहीं हैं।

तरंग की आवृत्ति

एक बार प्रसार की गति ज्ञात हो जाने के बाद, स्ट्रिंग द्वारा निर्मित ध्वनि की आवृत्ति की गणना की जा सकती है। तरंग के प्रसार की गति तरंग दैर्ध्य के बराबर होती है जिसे अवधि से विभाजित किया जाता है, या आवृत्ति से गुणा किया जाता है:

यदि स्ट्रिंग की लंबाई है, तो मौलिक हार्मोनिक वह है जो कंपन द्वारा उत्पन्न होता है, जिसके नोड स्ट्रिंग के दो छोर होते हैं, इसलिए मौलिक हार्मोनिक के तरंग दैर्ध्य का आधा होता है। इसलिए मेर्सन के नियम प्राप्त होते हैं:

जहाँ तनाव (न्यूटन में) है, रैखिक घनत्व है (अर्थात् द्रव्यमान प्रति इकाई लंबाई), और स्ट्रिंग के कंपन भाग की लंबाई है। अत:

  • स्ट्रिंग जितनी छोटी होगी, मौलिक की आवृत्ति उतनी ही अधिक होगी।
  • जितना अधिक तनाव, मौलिक की आवृत्ति उतनी ही अधिक होगी।
  • स्ट्रिंग जितनी हल्की होगी, मौलिक की आवृत्ति उतनी ही अधिक होगी।

इसके अलावा, यदि हम nवें हार्मोनिक को द्वारा दी गई तरंग दैर्ध्य के रूप में लेते हैं, तो हमें nवें हार्मोनिक की आवृत्ति के लिए आसानी से एक व्यंजक प्राप्त होता है:

और रैखिक घनत्व के तनाव T के तहत एक स्ट्रिंग के लिए, तब

स्ट्रिंग कंपन का अवलोकन करना

यदि आवृत्ति काफी कम है और वाइब्रेटिंग स्ट्रिंग को टेलीविजन या कंप्यूटर (एनालॉग ऑसिलोस्कोप का नहीं) जैसे सीआरटी स्क्रीन के सामने रखा जाता है, तो कोई वाइब्रेटिंग स्ट्रिंग पर वेवफॉर्म देख सकता है। इस प्रभाव को स्ट्रोबोस्कोपिक प्रभाव कहा जाता है, और जिस दर पर स्ट्रिंग कंपन करने लगती है वह स्ट्रिंग की आवृत्ति और स्क्रीन की रिफ्रेश रेट के बीच का अंतर है। फ्लोरोसेंट लैंप के साथ भी ऐसा हो सकता है, उस दर पर जो स्ट्रिंग की आवृत्ति और प्रत्यावर्ती धारा की आवृत्ति के बीच का अंतर है। (यदि स्क्रीन की ताज़ा दर स्ट्रिंग की आवृत्ति या उसके एक पूर्णांक गुणक के बराबर है, तो स्ट्रिंग स्थिर लेकिन विकृत दिखाई देगी।) दिन के उजाले और अन्य गैर-दोलनशील प्रकाश स्रोतों में, यह प्रभाव उत्पन्न नहीं होता है और दृष्टि की दृढ़ता के कारण स्ट्रिंग अभी भी लेकिन मोटा, और हल्का या धुंधला दिखाई देता है।

एक स्ट्रोबोस्कोप का उपयोग करके एक समान लेकिन अधिक नियंत्रित प्रभाव प्राप्त किया जा सकता है। यह डिवाइस क्सीनन फ्लैश लैंप की आवृत्ति को स्ट्रिंग के कंपन की आवृत्ति से मेल खाने की अनुमति देता है। एक अंधेरे कमरे में, यह तरंग रूप को स्पष्ट रूप से दर्शाता है। अन्यथा, एक ही प्रभाव को प्राप्त करने के लिए एसी आवृत्ति के समान, या एक बहु, प्राप्त करने के लिए, मशीन के सिर को समायोजित करके, झुकने या शायद अधिक आसानी से उपयोग कर सकते हैं। उदाहरण के लिए, एक गिटार के मामले में, छठे (सबसे कम पिच वाले) तार को तीसरे झल्लाहट में दबाया जाता है जो 97.999 हर्ट्ज पर G देता है। एक मामूली समायोजन इसे 100 हर्ट्ज में बदल सकता है, यूरोप और अफ्रीका और एशिया के अधिकांश देशों में वैकल्पिक वर्तमान आवृत्ति से ठीक एक सप्तक ऊपर, 50 हर्ट्ज। अमेरिका के अधिकांश देशों में- जहां एसी आवृत्ति 60 हर्ट्ज है- पांचवीं स्ट्रिंग पर ए # को बदलकर, 116.54 हर्ट्ज से 120 हर्ट्ज तक पहले झल्लाहट एक समान प्रभाव उत्त्पन करती है।

वास्तविक दुनिया का उदाहरण

एक विकिपीडिया उपयोगकर्ता के जैक्सन प्रोफेशनल सोलोइस्ट एक्सएल इलेक्ट्रिक गिटार में 2558 इंच की नट-टू-ब्रिज दूरी (ऊपर के अनुरूप) है और 'आडारियो एक्सएल  निकेल-वाउंड सुपर-लाइट-गेज ईएक्सएल-120 इलेक्ट्रिक गिटार स्ट्रिंग्स निम्नलिखित निर्माता विनिर्देशों के साथ:

डी'एडारियो ईएक्सएल-120 निर्माता विशिष्टता
स्ट्रिंग संख्या मोटाई [इं.] () अनुशंसित तनाव [एलबीएस।] () [g/cm3]
1 0.00899 13.1 7.726 (इस्पात मिश्र धातु)
2 0.0110 11.0 "
3 0.0160 14.7 "
4 0.0241 15.8 6.533 (निकल स्टील मिश्र धातु)
5 0.0322 15.8 "
6 0.0416 14.8 "

उपरोक्त विशिष्टताओं को देखते हुए, उपरोक्त तारों के मौलिक हार्मोनिक्स की गणना की गई कंपन आवृत्तियों () क्या होगी यदि तार निर्माता द्वारा अनुशंसित तनाव पर फंसे हुए हों?

इसका उत्तर देने के लिए, हम पिछले अनुभाग में के साथ सूत्र के साथ प्रारंभ कर सकते हैं:

रैखिक घनत्व को संबंध के माध्यम से स्थानिक (द्रव्यमान / मात्रा) घनत्व के संदर्भ में व्यक्त किया जा सकता है, जहां स्ट्रिंग की त्रिज्या है और व्यास है (मोटाई) उपरोक्त तालिका में:

संगणना के प्रयोजनों के लिए, हम न्यूटन के दूसरे नियम (बल = द्रव्यमान × त्वरण), अभिव्यक्ति के माध्यम से ऊपर दिए गए तनाव के लिए स्थानापन्न कर सकते हैं, जहाँ वह द्रव्यमान है, जो पृथ्वी की सतह पर, पृथ्वी की सतह पर गुरुत्वाकर्षण के कारण मानक त्वरण के माध्यम से संबंधित के रूप में उपरोक्त तालिका में तनाव मान के अनुरूप वजन होगा, cm/s2। (यह प्रतिस्थापन यहाँ सुविधाजनक है क्योंकि ऊपर निर्माता द्वारा प्रदान किए गए स्ट्रिंग तनाव बल के पाउंड में हैं, जिन्हें परिचित रूपांतरण कारक 1 lb. = 53.59237 ग्राम के माध्यम से किलोग्राम में समतुल्य द्रव्यमान में परिवर्तित किया जा सकता है।) उपर्युक्त सूत्र स्पष्ट रूप से बन जाता है:

स्ट्रिंग नंबर के लिए की गणना करने के लिए इस सूत्र का उपयोग करना। 1 से ऊपर यील्ड:

सभी छह तारों के लिए इस गणना को दोहराने से निम्नलिखित आवृत्तियाँ प्राप्त होती हैं। प्रत्येक आवृत्ति के बगल में मानक गिटार ट्यूनिंग में संगीत नोट (वैज्ञानिक पिच नोटेशन में) दिखाया गया है जिसकी आवृत्ति निकटतम है, यह पुष्टि करता है कि निर्माता द्वारा अनुशंसित तनावों पर उपरोक्त तारों को स्ट्रिंग करना वास्तव में गिटार के मानक पिचों का परिणाम है:

उपरोक्त स्ट्रिंग कंपन सूत्रों द्वारा गणना की गई मौलिक हार्मोनिक्स
स्ट्रिंग संख्या परिकलित आवृत्ति [हर्ट्ज] A440 12-TET ट्यूनिंग में निकटतम टिप्पणी
1 330 E4 (= 440 ÷ 25/12 ≈ 329.628 हर्ट्ज)
2 247 B3 (= 440 ÷ 210/12 ≈ 246.942 हर्ट्ज)
3 196 G3 (= 440 ÷ 214/12 ≈ 195.998 हर्ट्ज)
4 147 D3 (= 440 ÷ 219/12 ≈ 146.832 हर्ट्ज)
5 110 A2 (= 440 ÷ 224/12 = 110 हर्ट्ज)
6 82.4 E2 (= 440 ÷ 229/12 ≈ 82.407 हर्ट्ज)

यह भी देखें

  • फ़्रेटेड इंस्ट्रूमेंट
  • संगीतमय ध्वनिकी
  • वृत्ताकार ड्रम का कंपन
  • मेल्डे का प्रयोग
  • तीसरा ब्रिज (समान स्ट्रिंग डिवीजनों पर आधारित हार्मोनिक अनुनाद)
  • स्ट्रिंग अनुनाद
  • परावर्तन अवस्था परिवर्तन

संदर्भ

  • Molteno, T. C. A.; N. B. Tufillaro (September 2004). "An experimental investigation into the dynamics of a string". American Journal of Physics. 72 (9): 1157–1169. Bibcode:2004AmJPh..72.1157M. doi:10.1119/1.1764557.
  • Tufillaro, N. B. (1989). "Nonlinear and chaotic string vibrations". American Journal of Physics. 57 (5): 408. Bibcode:1989AmJPh..57..408T. doi:10.1119/1.16011.
Specific

बाहरी संबंध