पश्चगामी तरंग दोलक (बैकवर्ड वेव ऑसिलेटर): Difference between revisions

From Vigyanwiki
(Created page with "{{More footnotes|date=July 2011}} Image:Backward wave oscillator.jpg|thumb|1956 में वेरियन द्वारा निर्मित लघु ओ-टाइ...")
 
No edit summary
 
(27 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{More footnotes|date=July 2011}}
{{More footnotes|date=July 2011}}
[[Image:Backward wave oscillator.jpg|thumb|1956 में वेरियन द्वारा निर्मित लघु ओ-टाइप बैकवर्ड-वेव ऑसिलेटर ट्यूब। यह 8.2-12.4 गीगाहर्ट्ज रेंज से अधिक वोल्टेज-ट्यून हो सकता है और 600 वी की आपूर्ति वोल्टेज की आवश्यकता होती है।]]
[[Image:Backward wave oscillator.jpg|thumb|1956 में वेरियन द्वारा निर्मित लघु ओ-टाइप पश्चगामी तरंग नलिका। यह 8.2-12.4 गीगाहर्ट्ज रेंज से अधिक वोल्टेज-ट्यून हो सकता है और 600 वी की आपूर्ति वोल्टेज की आवश्यकता होती है।]]


[[File:Backward-wave Oszillator-Stockholm.jpg|thumb|स्टॉकहोम विश्वविद्यालय में बैकवर्ड वेव ऑसिलेटर Terahertz रेंज में काम कर रहा है | Alt =]]
[[File:Backward-wave Oszillator-Stockholm.jpg|thumb| स्टॉकहोम विश्वविद्यालय में '''पश्चगामी तरंग दोलक'''  टेराहर्ट्ज़ रेंज में काम कर रहा है]]
एक बैकवर्ड वेव ऑसिलेटर (बीडब्ल्यूओ), जिसे कार्सिनोट्रॉन (थॉमसन-सीएसएफ द्वारा निर्मित ट्यूबों के लिए एक व्यापार नाम। सीएसएफ, अब थेल्स) या बैकवर्ड वेव ट्यूब भी कहा जाता है, एक वैक्यूम ट्यूब है जिसका उपयोग टेरेहर्ट्ज़ रेंज तक माइक्रोवेव उत्पन्न करने के लिए किया जाता है। यात्रा-वेव ट्यूब परिवार से संबंधित, यह एक विस्तृत इलेक्ट्रॉनिक ट्यूनिंग रेंज के साथ एक थरथरानवाला है।
एक '''पश्चगामी तरंग दोलक''' ('''BWO'''), जिसे पश्चगामी तरंग नलिका भी कहा जाता है, एक निर्वात नलिका है जिसका उपयोग टेरेहर्ट्ज़ रेंज तक सूक्ष्म तरंग उत्पन्न करने के लिए किया जाता है। प्रगामी तरंग नलिका परिवार से संबंधित, यह विस्तृत इलेक्ट्रॉनिक समस्वरण परिसर वाला एक दोलक है।


एक इलेक्ट्रॉन बंदूक एक इलेक्ट्रॉन बीम उत्पन्न करती है जो धीमी-तरंग संरचना के साथ बातचीत करती है। यह बीम के खिलाफ एक यात्रा लहर को पीछे की ओर प्रचारित करके दोलनों को बनाए रखता है। उत्पन्न इलेक्ट्रोमैग्नेटिक वेव पावर में इसका समूह वेग होता है जो इलेक्ट्रॉनों की गति की दिशा के विपरीत निर्देशित होता है। आउटपुट पावर को इलेक्ट्रॉन गन के पास युग्मित किया जाता है।
इलेक्ट्रॉन बंदूक एक इलेक्ट्रॉन किरणपुंज उत्पन्न करती है जो मंद-तरंग संरचना के साथ संपर्क करती है। यह किरणपुंज के खिलाफ एक प्रगामी तरंग को पीछे की ओर प्रचारित करके दोलनों को बनाए रखता है। उत्पन्न विद्युत चुम्बकीय तरंग शक्ति का समूह वेग इलेक्ट्रॉनों की गति की दिशा के विपरीत होता है। निर्गत शक्ति को इलेक्ट्रॉन गन के पास युग्मित किया जाता है।


इसमें दो मुख्य उपप्रकार हैं, एम-टाइप (एम-बीडब्ल्यूओ), सबसे शक्तिशाली और -टाइप (-बीडब्ल्यूओ)। O- प्रकार की आउटपुट पावर आमतौर पर 1000 & nbsp पर 1 mW की सीमा में होती है; GHz से 50 & nbsp; MW 200 GHz पर। कार्सिनोट्रॉन का उपयोग शक्तिशाली और स्थिर माइक्रोवेव स्रोतों के रूप में किया जाता है। अच्छी गुणवत्ता वाले वेवफ्रंट के कारण वे (नीचे देखें) के कारण, वे Terahertz इमेजिंग में इल्युमिनेटर के रूप में उपयोग पाते हैं।
इसके दो मुख्य उपप्रकार हैं, '''M-type''' ('''M-BWO'''), सबसे शक्तिशाली और '''O-type''' ('''O-BWO''')। ओ-टाइप(O-type) की निर्गत शक्ति आमतौर पर 1 मेगावाट की सीमा में 1000 गीगाहर्ट्ज से 50 मेगावाट 200 गीगाहर्ट्ज पर होती है। कार्सिनोट्रॉन का उपयोग शक्तिशाली और स्थिर माइक्रोवेव स्रोतों के रूप में किया जाता है। वे अच्छी गुणवत्ता वाले तरंगाग्र का उत्पादन करते हैं। वे टेराहर्ट्ज प्रतिबिंबन में प्रदीपक के रूप में उपयोग करते हैं।


बैकवर्ड वेव ऑसिलेटर्स को 1951 में, बर्नार्ड एप्सज़्टिन द्वारा एम-टाइप में प्रदर्शित किया गया था
पश्चगामी तरंग दोलक को 1951 में, बर्नार्ड एप्सज़्टिन द्वारा एम-टाइप(M-type) और रुडोल्फ कोम्पफनर द्वारा ओ-टाइप(O-type) में प्रदर्शित किया गया था<ref>{{citeref patent|country=FR|number= 1035379 |inventor=Bernard Epsztein|pubdate=1959-03-31|title=Backward flow travelling wave devices|status=patent}}</ref> एम-टाइप बीडब्ल्यूओ मैग्नेट्रोन कि परस्पर क्रिया का वोल्टेज-नियंत्रित गैर-गुंजयमान बहिर्वेशन है। दोनों प्रकार के त्वरित वोल्टेज को अलग करके आवृत्तियों की एक विस्तृत श्रृंखला पर ट्यून करने योग्य हैं। उन्हें बैंड के माध्यम से इतनी तेजी से घुमाया जा सकता है कि वे एक ही बार में सभी बैंड पर विकिरण करते दिखाई दें, जो उन्हें प्रभावी रडार जैमिंग के लिए उपयुक्त बनाता है, जल्दी से रडार आवृत्ति में ट्यूनिंग करता है। कार्सिनोट्रोन्स ने वायुवाहित रडार जैमर को अत्यधिक प्रभावी होने की अनुमति दी। हालांकि, आवृत्ति चपलता रडार आवृत्तियों को तेजी से उछाल सकते हैं ताकि जैमर को बैराज जैमिंग का उपयोग करने के लिए मजबूर किया जा सके, एक विस्तृत बैंड पर इसकी निर्गम शक्ति को कम किया जा सके और इसकी दक्षता को काफी कम किया जा सके।
<ref>{{citeref patent|country=FR|number= 1035379 |inventor=Bernard Epsztein|pubdate=1959-03-31|title=Backward flow travelling wave devices|status=patent}}</ref>
और रुडोल्फ कोम्पफनर द्वारा ओ-टाइप।एम-टाइप बीडब्ल्यूओ एक वोल्टेज-नियंत्रित गैर-रेज़ोनेंट एक्सट्रपलेशन ऑफ मैग्नेट्रॉन इंटरैक्शन है।दोनों प्रकार त्वरित वोल्टेज को अलग करके आवृत्तियों की एक विस्तृत श्रृंखला पर ट्यून करने योग्य हैं।वे बैंड के माध्यम से तेजी से बह सकते हैं, जो एक बार में सभी बैंड पर विकीर्ण करने के लिए दिखाई देते हैं, जो उन्हें प्रभावी रडार जैमिंग के लिए उपयुक्त बनाता है, जल्दी से रडार आवृत्ति में ट्यूनिंग करता है।कार्सिनोट्रोन्स ने एयरबोर्न रडार जैमर को अत्यधिक प्रभावी होने की अनुमति दी।हालांकि, फ़्रीक्वेंसी-एजाइल रडार्स आवृत्तियों को तेजी से हॉप कर सकते हैं ताकि जैमर को बैराज जैमिंग का उपयोग करने के लिए मजबूर किया जा सके, एक विस्तृत बैंड पर अपनी आउटपुट पावर को पतला किया जा सके और इसकी दक्षता को काफी नुकसान हो।


कार्सिनोट्रॉन का उपयोग अनुसंधान, नागरिक और सैन्य अनुप्रयोगों में किया जाता है।उदाहरण के लिए, चेकोस्लोवाक कोपैक पैसिव सेंसर और रमोना पैसिव सेंसर एयर डिफेंस डिटेक्शन सिस्टम ने अपने रिसीवर सिस्टम में कार्सिनोट्रोन को नियोजित किया।
कार्सिनोट्रॉन का उपयोग अनुसंधान, नागरिक और सैन्य अनुप्रयोगों में किया जाता है। उदाहरण के लिए, चेकोस्लोवाक कोपैक पैसिव सेंसर और रमोना पैसिव सेंसर वायु रक्षा पहचान प्रणाली ने अपने रिसीवर सिस्टम में कार्सिनोट्रोन को नियोजित किया।


== मूल अवधारणा ==
== मूल अवधारणा ==
[[File:Diagram of basic principle of backward-wave oscillator.svg|thumb|अवधारणा आरेख।सिग्नल इनपुट से आउटपुट तक यात्रा करते हैं जैसा कि छवि के भीतर पाठ में वर्णित है।<ref name= NEET  />]]
[[File:Diagram of basic principle of backward-wave oscillator.svg|thumb|अवधारणा आरेख।सिग्नल इनपुट से आउटपुट तक यात्रा करते हैं जैसा कि छवि के भीतर पाठ में वर्णित है।<ref name= NEET  />]]
सभी ट्रैवेलिंग-वेव ट्यूब एक ही सामान्य फैशन में काम करते हैं, और मुख्य रूप से उनके निर्माण के विवरण में भिन्न होते हैं।
सभी प्रगामी तरंग नलिका एक सामान्य आचरण में काम करते हैं, और मुख्य रूप से उनके निर्माण के विवरण में भिन्न होते हैं।यह अवधारणा एक इलेक्ट्रॉन बंदूक से इलेक्ट्रॉनों की एक स्थिर धारा पर निर्भर है जो ट्यूब के केंद्र से नीचे यात्रा करती है (आसन्न अवधारणा आरेख देखें)। इलेक्ट्रॉन किरणपुंज के चारों ओर कुछ प्रकार के रेडियो फ्रीक्वेंसी स्रोत है, पारंपरिक क्लिस्ट्रॉन के मामले में यह एक अनुनादक गुहा है जो एक बाहरी संकेत के साथ सिंचित किया जाता है, जबकि अधिक आधुनिक उपकरणों में इन गुहाओं की एक श्रृंखला है या एक ही संकेत के साथ एक पेचदार धातु तार सिंचित किया जाता है।<ref name=NEET/>
यह अवधारणा एक इलेक्ट्रॉन बंदूक से इलेक्ट्रॉनों की एक स्थिर धारा पर निर्भर है जो ट्यूब के केंद्र से नीचे यात्रा करती है (आसन्न अवधारणा आरेख देखें)।इलेक्ट्रॉन बीम के चारों ओर कुछ प्रकार के रेडियो फ्रीक्वेंसी सोर्स सिग्नल है;पारंपरिक क्लेस्ट्रॉन के मामले में यह एक बाहरी संकेत के साथ खिलाया गया एक गुंजयमान गुहा है, जबकि अधिक आधुनिक उपकरणों में इन गुहाओं की एक श्रृंखला है या एक ही संकेत के साथ एक पेचदार धातु तार खिलाया जाता है।<ref name=NEET/>


जैसे ही इलेक्ट्रॉन ट्यूब से नीचे जाते हैं, वे आरएफ सिग्नल के साथ बातचीत करते हैं।इलेक्ट्रॉनों को अधिकतम सकारात्मक पूर्वाग्रह वाले क्षेत्रों में आकर्षित किया जाता है और नकारात्मक क्षेत्रों से हटा दिया जाता है।यह इलेक्ट्रॉनों को झुकाने का कारण बनता है क्योंकि वे ट्यूब की लंबाई के साथ निरस्त या आकर्षित होते हैं, एक प्रक्रिया जिसे वेग मॉड्यूलेशन के रूप में जाना जाता है।यह प्रक्रिया इलेक्ट्रॉन बीम को मूल संकेत के समान सामान्य संरचना पर ले जाती है;बीम में इलेक्ट्रॉनों का घनत्व इंडक्शन सिस्टम में आरएफ सिग्नल के सापेक्ष आयाम से मेल खाता है।इलेक्ट्रॉन करंट बंदूक के विवरण का एक कार्य है, और आम तौर पर इनपुट आरएफ सिग्नल की तुलना में अधिक शक्तिशाली परिमाण के आदेश हैं।परिणाम इलेक्ट्रॉन बीम में एक संकेत है जो मूल आरएफ सिग्नल का एक प्रवर्धित संस्करण है।<ref name=NEET/>
जैसे ही इलेक्ट्रॉन ट्यूब से नीचे जाते हैं, वे आरएफ सिग्नल के साथ एक दूसरे को प्रभावित करते हैं। इलेक्ट्रॉन अधिकतम सकारात्मक पूर्वाग्रह वाले क्षेत्रों की ओर आकर्षित होते हैं और नकारात्मक क्षेत्रों से विकर्षित होते हैं। यह इलेक्ट्रॉनों को गुच्छा बनाने का कारण बनता है क्योंकि वे ट्यूब की लंबाई के साथ निरस्त या आकर्षित होते हैं, एक प्रक्रिया जिसे वेग मॉड्यूलेशन के रूप में जाना जाता है। यह प्रक्रिया इलेक्ट्रॉन किरणपुंज को मूल संकेत के समान सामान्य संरचना पर ले जाती है,  किरणपुंज में इलेक्ट्रॉनों का घनत्व प्रेरण प्रणाली में आरएफ सिग्नल के सापेक्ष आयाम से मेल खाता है। इलेक्ट्रॉन धारा बंदूक के विवरण का एक कार्य है, और आम तौर पर इनपुट आरएफ सिग्नल की तुलना में अधिक शक्तिशाली परिमाण के आदेश हैं। परिणाम इलेक्ट्रॉन किरणपुंज में एक संकेत है जो मूल आरएफ सिग्नल का एक प्रवर्धित संस्करण है।<ref name=NEET/>


जैसे -जैसे इलेक्ट्रॉन चल रहे होते हैं, वे किसी भी आस -पास के कंडक्टर में एक चुंबकीय क्षेत्र को प्रेरित करते हैं।यह अब-प्रवर्धित सिग्नल को निकालने की अनुमति देता है।मैग्नेट्रॉन या क्लेस्ट्रॉन जैसी प्रणालियों में, यह एक और गुंजयमान गुहा के साथ पूरा किया जाता है।पेचदार डिजाइनों में, यह प्रक्रिया ट्यूब की पूरी लंबाई के साथ होती है, पेचदार कंडक्टर में मूल संकेत को मजबूत करती है।पारंपरिक डिजाइनों के साथ समस्या यह है कि उनके पास अपेक्षाकृत संकीर्ण बैंडविड्थ हैं;गुंजयमानकों पर आधारित डिजाइन उनके डिजाइन के 10% या 20% के भीतर संकेतों के साथ काम करेंगे, क्योंकि यह शारीरिक रूप से गुंजयमान डिजाइन में बनाया गया है, जबकि हेलिक्स डिजाइन में बहुत व्यापक बैंडविड्थ है, शायद डिजाइन शिखर के दोनों ओर 100%<ref name="Gilmour">{{cite book
जैसे -जैसे इलेक्ट्रॉन गतिमान होते हैं, वे पास के किसी भी चालक में चुंबकीय क्षेत्र उत्पन्न करते हैं। यह अब-प्रवर्धित सिग्नल को निकालने की अनुमति देता है। मैग्नेट्रॉन या क्लेस्ट्रॉन जैसी प्रणालियों में, यह एक और गुंजयमान गुहा के साथ पूरा किया जाता है। पेचदार डिजाइनों में, यह प्रक्रिया ट्यूब की पूरी लंबाई के साथ होती है, पेचदार चालक में मूल संकेत को मजबूत करती है। पारंपरिक डिजाइनों के साथ समस्या यह है कि उनके पास अपेक्षाकृत संकीर्ण बैंडविड्थ हैं, अनुनादक पर आधारित डिज़ाइन उनके डिज़ाइन के 10% या 20% के भीतर सिग्नल के साथ काम करेंगे, क्योंकि यह भौतिक रूप से अनुनादक डिज़ाइन में बनाया गया है, जबकि हेलिक्स डिजाइन में बहुत व्यापक बैंडविड्थ है, शायद डिजाइन शिखर के दोनों ओर 100% है।<ref name="Gilmour">{{cite book
  | last1  = Gilmour
  | last1  = Gilmour
  | first1 = A. S.
  | first1 = A. S.
Line 38: Line 35:




== bwo ==
== बीडब्ल्यूओ(BWO) ==
BWO पेचदार TWT के समान एक फैशन में बनाया गया है।हालांकि, आरएफ सिग्नल के बजाय इलेक्ट्रॉन बीम के समान (या समान) दिशा में फैलते हुए, मूल संकेत बीम को समकोण पर यात्रा करता है।यह आम तौर पर एक आयताकार वेवगाइड के माध्यम से एक छेद को ड्रिल करके और छेद के माध्यम से बीम को शूट करके पूरा किया जाता है।वेवगाइड फिर दो समकोण से गुजरता है, एक सी-आकार का निर्माण करता है और फिर से बीम को पार करता है।यह मूल पैटर्न ट्यूब की लंबाई के साथ दोहराया जाता है, इसलिए वेवगाइड कई बार बीम के पार से गुजरता है, जिससे एस-आकार की एक श्रृंखला बनती है।<ref name=NEET>{{cite book |url=http://electriciantraining.tpub.com/14183/css/The-Magnetron-103.htm |title=Microwave Principles |page=103 |publisher=US Navy |date=September 1998}}</ref>
पश्चगामी तरंग दोलक को पेचदार TWT के समान आचरण में बनाया गया है। हालांकि, इलेक्ट्रॉन किरणपुंज के समान (या समान) दिशा में फैलने वाले RF सिग्नल के बजाय, मूल सिग्नल किरणपुंज के समकोण पर यात्रा करता है। यह आमतौर पर एक आयताकार तरंगपथनिर्धारित्र के माध्यम से एक छिद्र को ड्रिल करके और छिद्र के माध्यम से किरणपुंज को शूट करके पूरा किया जाता है। तरंगपथनिर्धारित्र फिर दो समकोण से गुजरता है, एक सी-आकार का निर्माण करता है और किरणपुंज को फिर से पार करता है। यह मूल तरीका ट्यूब की लंबाई के साथ दोहराया जाता है, इसलिए तरंगपथनिर्धारित्र कई बार किरणपुंज के पार से गुजरता है, जिससे एस-आकार की एक श्रृंखला बनती है।<ref name=NEET>{{cite book |url=http://electriciantraining.tpub.com/14183/css/The-Magnetron-103.htm |title=Microwave Principles |page=103 |publisher=US Navy |date=September 1998}}</ref>
मूल आरएफ सिग्नल टीडब्ल्यूटी के दूर के छोर से प्रवेश करता है, जहां ऊर्जा निकाली जाएगी।पासिंग बीम पर सिग्नल का प्रभाव समान वेग मॉड्यूलेशन प्रभाव का कारण बनता है, लेकिन आरएफ सिग्नल की दिशा और वेवगाइड की बारीकियों के कारण, यह मॉड्यूलेशन बीम के साथ पीछे की ओर यात्रा करता है, इसके बजाय आगे के बजाय।यह प्रसार, धीमी-लहर, फोल्ड वेवगाइड में अगले छेद तक पहुंचता है जैसे कि आरएफ सिग्नल के एक ही चरण में।यह पारंपरिक TWT की तरह ही प्रवर्धन का कारण बनता है।<ref name=NEET/>


एक पारंपरिक TWT में, इंडक्शन सिस्टम में सिग्नल के प्रसार की गति को बीम में इलेक्ट्रॉनों के समान होना चाहिए।यह आवश्यक है ताकि सिग्नल का चरण गुच्छे वाले इलेक्ट्रॉनों के साथ लाइनों के रूप में होता है क्योंकि वे इंडक्टरों को पास करते हैं।यह स्थान तरंग दैर्ध्य के चयन पर सीमित है, डिवाइस तारों या गुंजयमान कक्षों के भौतिक निर्माण के आधार पर, प्रवर्धित कर सकता है।<ref name=NEET/>
मूल आरएफ सिग्नल टीडब्ल्यूटी(TWT) के दूर के छोर से प्रवेश करता है, जहां ऊर्जा निकाली जाएगी। अस्थायी किरणपुंज पर सिग्नल का प्रभाव समान वेग मॉड्यूलेशन प्रभाव का कारण बनता है, लेकिन आरएफ सिग्नल की दिशा और तरंगपथनिर्धारित्र की बारीकियों के कारण, यह मॉड्यूलेशन आगे की बजाय किरणपुंज के साथ पीछे की ओर जाता है। यह प्रसार, मंद तरंग, मुड़े हुए तरंगपथनिर्धारित्र में अगले छिद्र तक पहुंचता है, जैसे कि आरएफ सिग्नल के एक ही चरण में यह पारंपरिक TWT की तरह ही प्रवर्धन का कारण बनता है।<ref name="NEET" />
 
एक पारंपरिक TWT में, इंडक्शन सिस्टम में सिग्नल के प्रसार की गति किरणपुंज में इलेक्ट्रॉनों के समान होनी चाहिए। यह आवश्यक है ताकि संकेत का चरण गुच्छिद्रार इलेक्ट्रॉनों के साथ जुड़ जाए क्योंकि वे प्रेरकों को पास करते हैं। तारों या अनुनादक कक्षों के भौतिक निर्माण के आधार पर यह उपकरण तरंग दैर्ध्य के चयन पर सीमाएं प्रवर्धित कर सकता है ।<ref name="NEET" />
 
बीडब्ल्यूओ में ऐसा नहीं है, जहां इलेक्ट्रॉन समकोण पर सिग्नल पास करते हैं और उनकी प्रसार की गति इनपुट सिग्नल से स्वतंत्र होती है। जटिल सर्पेंटाइन वेवगाइड आगत सिग्नल के बैंडविड्थ पर सख्त सीमाएं रखता है, जैसे कि गाइड के भीतर एक स्थायी तरंग बनती है। लेकिन इलेक्ट्रॉनों का वेग केवल इलेक्ट्रॉन बंदूक पर लागू स्वीकार्य वोल्टेज द्वारा सीमित है, जिसे आसानी से और तेजी से बदला जा सकता है। इस प्रकार पश्चगामी तरंग दोलक (BWO) एकल आगत आवृत्ति लेता है और निर्गत आवृत्तियों की एक विस्तृत श्रृंखला का उत्पादन करता है।<ref name="NEET" />


यह BWO में मामला नहीं है, जहां इलेक्ट्रॉन सिग्नल को समकोण पर पास करते हैं और उनकी प्रसार की गति इनपुट सिग्नल से स्वतंत्र होती है।जटिल सर्पेंटाइन वेवगाइड इनपुट सिग्नल के बैंडविड्थ पर सख्त सीमाएं रखता है, जैसे कि गाइड के भीतर एक स्थायी लहर बनती है।लेकिन इलेक्ट्रॉनों का वेग केवल इलेक्ट्रॉन बंदूक पर लागू स्वीकार्य वोल्टेज द्वारा सीमित है, जिसे आसानी से और तेजी से बदला जा सकता है।इस प्रकार BWO एक एकल इनपुट आवृत्ति लेता है और आउटपुट आवृत्तियों की एक विस्तृत श्रृंखला का उत्पादन करता है।<ref name=NEET/>




== कार्सिनोट्रॉन ==
== कार्सिनोट्रॉन ==
[[File:Carcinotron jamming a pulse radar unit.png|thumb|यह छवि 1950 के दशक के पल्स रडार पर चार कार्सिनोट्रॉन-ले जाने वाले विमान के प्रभाव को दर्शाती है।विमान लगभग 4 और 5:30 स्थानों पर स्थित है।डिस्प्ले किसी भी समय शोर से भरा होता है जब एंटीना का मुख्य लोब या साइडबॉब्स जैमर को पास करते हैं, जिससे विमान अदृश्य हो जाता है।]]
[[File:Carcinotron jamming a pulse radar unit.png|thumb|यह छवि 1950 के दशक के पल्स रडार पर चार कार्सिनोट्रॉन-ले जाने वाले विमान के प्रभाव को दर्शाती है।विमान लगभग 4 और 5:30 स्थानों पर स्थित है।डिस्प्ले किसी भी समय शोर से भरा होता है जब एंटीना का मुख्य लोब या साइडबॉब्स जैमर को पास करते हैं, जिससे विमान अदृश्य हो जाता है।]]
डिवाइस को मूल रूप से कार्सिनोट्रॉन नाम दिया गया था क्योंकि यह मौजूदा रडार सिस्टम के लिए कैंसर की तरह था।बस आपूर्ति वोल्टेज को बदलने से, डिवाइस एक बैंड में किसी भी आवश्यक आवृत्ति का उत्पादन कर सकता है जो किसी भी मौजूदा माइक्रोवेव एम्पलीफायर की तुलना में बहुत बड़ा था - कैविटी मैग्नेट्रॉन ने अपने गुंजयमानों के भौतिक आयामों द्वारा परिभाषित एक एकल आवृत्ति पर काम किया, और जबकि क्लेस्ट्रॉनएक बाहरी संकेत को बढ़ाया, यह केवल आवृत्तियों की एक छोटी सी श्रृंखला के भीतर इतनी कुशलता से किया।<ref name=NEET/>
डिवाइस को मूल रूप से '''कार्सिनोट्रॉन''' नाम दिया गया था क्योंकि यह मौजूदा रडार सिस्टम के लिए कैंसर जैसा था। केवल आपूर्ति वोल्टेज को बदलने से, उपकरण एक बैंड में किसी भी आवश्यक आवृत्ति का उत्पादन कर सकता है जो किसी भी मौजूदा सूक्ष्म तरंग प्रवर्धक की तुलना में बहुत बड़ा था-गुहा मैग्नेट्रोन उनके अनुनादक के भौतिक आयामों द्वारा परिभाषित एक आवृत्ति पर काम करता है, और जबकि कार्सिनोट्रॉन एक बाहरी संकेत को प्रवर्धित किया, यह केवल आवृत्तियों की एक छोटी सी सीमा के भीतर ही इतनी कुशलता से किया।<ref name=NEET/>


पहले, एक रडार को जाम करना एक जटिल और समय लेने वाला ऑपरेशन था।ऑपरेटरों को संभावित आवृत्तियों का उपयोग करने के लिए सुनना था, उस आवृत्ति पर एम्पलीफायरों के एक बैंक को स्थापित करना था, और फिर प्रसारण शुरू करना शुरू कर दिया।जब रडार स्टेशन को एहसास हुआ कि क्या हो रहा है, तो वे अपनी आवृत्तियों को बदल देंगे और प्रक्रिया फिर से शुरू हो जाएगी।इसके विपरीत, कार्सिनोट्रॉन सभी संभावित आवृत्तियों के माध्यम से इतनी तेजी से स्वीप कर सकता है कि यह एक ही बार में सभी आवृत्तियों पर एक निरंतर संकेत प्रतीत होता है।विशिष्ट डिजाइन सैकड़ों या कम हजारों वाट उत्पन्न कर सकते हैं, इसलिए किसी भी एक आवृत्ति पर, कुछ वाट बिजली हो सकती है जो रडार स्टेशन द्वारा प्राप्त होती है।हालांकि, लंबी दूरी पर मूल रडार प्रसारण से ऊर्जा की मात्रा जो विमान तक पहुंचती है, केवल कुछ ही वाट है, इसलिए कार्सिनोट्रॉन उन पर हावी हो सकता है।<ref name=NEET/>
पहले, रडार को जाम करना एक जटिल और समय लेने वाला क्रिया कलाप था। संचालको को उपयोग की जा रही संभावित आवृत्तियों को सुनना था, उस आवृत्ति पर प्रवर्धकों के एक बैंक की स्थापना की, और फिर प्रसारण करना शुरू कर दिया। जब रडार स्टेशन को एहसास हुआ कि क्या हो रहा है, तो वे अपनी आवृत्तियों को बदल देंगे और प्रक्रिया फिर से शुरू हो जाएगी। इसके विपरीत, कार्सिनोट्रॉन सभी संभावित आवृत्तियों के माध्यम से इतनी तेजी से पार कर सकता है कि यह एक ही बार में सभी आवृत्तियों पर एक निरंतर संकेत प्रतीत होता है। विशिष्ट डिजाइन सैकड़ों या कम हजारों वाट उत्पन्न कर सकते हैं इसलिए किसी भी एक आवृत्ति पर कुछ वाट बिजली हो सकती है जो रडार स्टेशन द्वारा प्राप्त की जाती है।हालांकि लंबी दूरी पर विमान तक पहुंचने वाले मूल रडार प्रसारण से ऊर्जा की मात्रा केवल कुछ वाट होती है, इसलिए कार्सिनोट्रॉन का उन पर नियन्त्रण हो सकता है।<ref name=NEET/>


यह प्रणाली इतनी शक्तिशाली थी कि यह पाया गया कि एक विमान पर काम करने वाला एक कार्सिनोट्रॉन रडार क्षितिज से ऊपर उठने से पहले ही प्रभावी होना शुरू हो जाएगा।जैसा कि यह आवृत्तियों के माध्यम से बह गया, यह रडार की ऑपरेटिंग आवृत्ति पर प्रसारित होगा जो प्रभावी रूप से यादृच्छिक समय पर था, किसी भी समय डिस्प्ले को यादृच्छिक डॉट्स के साथ भरने के लिए एंटीना को इसके पास इंगित किया गया था, शायद लक्ष्य के दोनों ओर 3 डिग्री।बहुत सारे डॉट्स थे कि प्रदर्शन केवल उस क्षेत्र में सफेद शोर से भरा हुआ था।जैसे -जैसे यह स्टेशन के पास पहुंचा, सिग्नल एंटीना के साइडबॉब्स में भी दिखाई देने लगेगा, जिससे आगे के क्षेत्र पैदा हो गए जो शोर से खाली हो गए थे।के आदेश पर, करीब सीमा पर {{convert|100|miles}}, संपूर्ण रडार डिस्प्ले पूरी तरह से शोर से भरा होगा, इसे बेकार कर देगा।<ref name=NEET/>
यह प्रणाली इतनी शक्तिशाली थी कि यह पाया गया कि एक विमान पर काम करने वाला एक कार्सिनोट्रॉन रडार क्षितिज से ऊपर उठने से पहले ही प्रभावी होना शुरू हो जाएगा। जैसा कि यह आवृत्तियों के माध्यम से बहता है, यह रडार की ऑपरेटिंग आवृत्ति पर प्रभावी ढंग से यादृच्छिक समय पर प्रसारित होता है, किसी भी समय एंटीना को इसके पास इंगित किया जाता है, शायद लक्ष्य के दोनों तरफ 3 डिग्री यादृच्छिक बिंदुओं के साथ प्रदर्शन को भरता है। इतने सारे बिंदु थे कि उस क्षेत्र में प्रदर्शन केवल तीव्र उत्तेजना वाले शोर से भर गया। जैसे ही यह स्टेशन के पास पहुंचा, सिग्नल एंटीना के साइडलोब में भी दिखना शुरू हो जाएगा,जिससे आगे के क्षेत्रों का निर्माण होगा जो शोर से खाली हो गए थे। करीब सीमा पर, 100 मील (160 किमी) के क्रम में, संपूर्ण रडार डिस्प्ले पूरी तरह से शोर से भर जाएगा, जिससे यह बेकार हो जाएगा।<ref name=NEET/>


यह अवधारणा एक जैमर के रूप में इतनी शक्तिशाली थी कि गंभीर चिंताएं थीं कि ग्राउंड-आधारित रडार अप्रचलित थे।एयरबोर्न रडार को यह फायदा था कि वे जैमर को ले जाने वाले विमान से संपर्क कर सकते थे, और, आखिरकार, उनके ट्रांसमीटर से विशाल उत्पादन ठेले के माध्यम से जल जाएगा।हालांकि, युग के इंटरसेप्टर्स ने जमीन-आधारित रडार का उपयोग करके रेंज में जाने के लिए जमीन की दिशा में भरोसा किया।यह हवाई रक्षा अभियानों के लिए एक भारी खतरे का प्रतिनिधित्व करता है।<ref name=CandR/>
यह अवधारणा एक जैमर के रूप में इतनी शक्तिशाली थी कि गंभीर चिंताएं थीं कि जमीन आधारित रडार अप्रचलित थे। वायुवाहित रडार को यह फायदा था कि वे जैमर को ले जाने वाले विमान से संपर्क कर सकते थे, और अंततः उनके ट्रांसमीटर से भारी निर्गत जैमिंग के माध्यम से जल जाएगा। हालांकि, उस समय के इंटरसेप्टर ग्राउंड-आधारित राडार का उपयोग करते हुए, रेंज में आने के लिए जमीनी दिशा पर निर्भर थे। यह वायु रक्षा अभियानों के लिए एक बड़े खतरे का प्रतिनिधित्व करता था। <ref name=CandR/>


ग्राउंड रडार के लिए, खतरा अंततः दो तरीकों से हल हो गया।पहला यह था कि रडार को कई अलग -अलग आवृत्तियों पर काम करने और पल्स से पल्स तक बेतरतीब ढंग से स्विच करने के लिए अपग्रेड किया गया था, एक अवधारणा जिसे अब आवृत्ति चपलता के रूप में जाना जाता है।इन आवृत्तियों में से कुछ का उपयोग कभी भी मोर में, और अत्यधिक गुप्त में नहीं किया गया था, इस उम्मीद के साथ कि वे युद्ध के समय में जैमर के लिए नहीं जा सकते।कार्सिनोट्रॉन अभी भी पूरे बैंड के माध्यम से स्वीप कर सकता है, लेकिन फिर यह केवल यादृच्छिक समय पर रडार के रूप में उसी आवृत्ति पर प्रसारित किया जाएगा, इसकी प्रभावशीलता को कम करेगा।अन्य समाधान निष्क्रिय रिसीवर को जोड़ना था जो कार्सिनोट्रॉन प्रसारण पर त्रिकोणित किया गया था, जिससे ग्राउंड स्टेशनों को जैमर के स्थान पर सटीक ट्रैकिंग जानकारी का उत्पादन करने और उन पर हमला करने की अनुमति देने की अनुमति मिलती है।<ref name=CandR>{{cite encyclopedia
जमीनी राडार के लिए, खतरे को अंततः दो तरह से हल किया गया था। पहला यह था कि रडार को कई अलग -अलग आवृत्तियों पर काम करने और पल्स से पल्स तक बेहतरीन ढंग से स्विच करने के लिए अपग्रेड किया गया था, एक अवधारणा जिसे अब आवृत्ति चपलता के रूप में जाना जाता है। इन आवृत्तियों में से कुछ का उपयोग कभी भी शान्तिकाल में, और अत्यधिक गुप्त काल में नहीं किया गया था, इस आशा के साथ कि वे जैमर को युद्ध के समय में नहीं जानेंगे। कार्सिनोट्रॉन अभी भी पूरे बैंड के माध्यम से स्वीप कर सकता है, लेकिन फिर यह उसी आवृत्ति पर रडार के रूप में केवल यादृच्छिक समय पर प्रसारित होगा, जिससे इसकी प्रभावशीलता कम हो जाएगी।अन्य समाधान निष्क्रिय रिसीवर को जोड़ना था जो कार्सिनोट्रॉन प्रसारण पर त्रिकोणित किया गया था,जिससे ग्राउंड स्टेशनों को जैमर के स्थान पर सटीक ट्रैकिंग जानकारी का उत्पादन करने और उन पर हमला करने की अनुमति मिलती थी।<ref name=CandR>{{cite encyclopedia
|editor-first=Sandy |editor-last=Hunter
|editor-first=Sandy |editor-last=Hunter
|first=Alec |last=Morris
|first=Alec |last=Morris
Line 67: Line 66:




== धीमी-लहर संरचना ==
== मंद तरंग संरचना ==
[[Image:Space-harmonics.svg|thumb|250px|(ए) फॉरवर्ड फंडामेंटल स्पेस हार्मोनिक (एन = 0),
[[Image:Space-harmonics.svg|thumb|250px|(ए) फॉरवर्ड फंडामेंटल स्पेस हार्मोनिक (एन = 0),
(b) पिछड़े मौलिक]]
(b) पिछड़े मौलिक]]
आवश्यक धीमी-लहर संरचनाओं को एक अनुदैर्ध्य घटक के साथ एक रेडियो आवृत्ति (आरएफ) विद्युत क्षेत्र का समर्थन करना चाहिए;संरचनाएं बीम की दिशा में आवधिक हैं और पासबैंड और स्टॉपबैंड के साथ माइक्रोवेव फिल्टर की तरह व्यवहार करती हैं।ज्यामिति की आवधिकता के कारण, क्षेत्र एक निरंतर चरण शिफ्ट को छोड़कर सेल से सेल से समान हैं।
आवश्यक मंद-तरंग संरचनाओं को एक अनुदैर्ध्य घटक के साथ एक रेडियो आवृत्ति (आरएफ) विद्युत क्षेत्र का समर्थन करना चाहिए, संरचनाएं बीम की दिशा में आवधिक होती हैं और पासबैंड और स्टॉपबैंड के साथ सूक्ष्म तरंग फिल्टर की तरह व्यवहार करती हैं। ज्यामिति की आवधिकता के कारण, निरंतर चरण शिफ्ट Φ को छोड़कर, क्षेत्र सेल से सेल में समान होते हैं। यह चरण बदलाव, एक दोषरहित संरचना के पासबैंड में विशुद्ध रूप से वास्तविक संख्या, आवृत्ति के साथ बदलता रहता है।
यह चरण शिफ्ट, एक दोषरहित संरचना के एक पासबैंड में विशुद्ध रूप से वास्तविक संख्या, आवृत्ति के साथ भिन्न होता है।
 
फ़्लक्वेट के प्रमेय के अनुसार (फ्लिकेट थ्योरी देखें), आरएफ इलेक्ट्रिक फील्ड (जेड, टी) को एक कोणीय आवृत्ति पर वर्णित किया जा सकता है, जो स्थानिक या अंतरिक्ष हार्मोनिक्स के अनंतता के योग द्वारा किया जा सकता है<sub>n</sub>
फ़्लक्वेट के प्रमेय के अनुसार (फ्लिकेट थ्योरी देखें), आरएफ इलेक्ट्रिक फील्ड E(z,t) को एक कोणीय आवृत्ति ω पर वर्णित किया जा सकता है, जो स्थानिक या अंतरिक्ष हार्मोनिक्स En के अनंतता के योग द्वारा किया जा सकता है।
:<math>E(z,t) =\sum_{n=-\infty}^{+\infty} {E_n}e^{j({\omega}t-{k_n}z)}</math>
:<math>E(z,t) =\sum_{n=-\infty}^{+\infty} {E_n}e^{j({\omega}t-{k_n}z)}</math>
जहां लहर संख्या या प्रसार स्थिरांक k<sub>n</sub> प्रत्येक हार्मोनिक के रूप में व्यक्त किया जाता है
जहां तरंग संख्या या प्रसार स्थिरांक k<sub>n</sub> प्रत्येक हार्मोनिक के रूप में व्यक्त किया जाता है


:<sub>n</sub> = (Φ + 2nπ) / p (--<φ < + π)
:k<sub>n</sub> = (Φ + 2nπ) / p (--<φ < + π)


z प्रसार की दिशा होने के नाते, पी सर्किट की पिच और एन एक पूर्णांक।
z प्रसार की दिशा है, p सर्किट की पिच और n एक पूर्णांक है।


धीमी-लहर सर्किट विशेषताओं के दो उदाहरण दिखाए गए हैं, or-K या Léon Brillouin में | Brillouin आरेख:
मंद तरंग सर्किट विशेषताओं के दो उदाहरण दिखाए गए हैं, ω-k या ब्रिलॉइन आरेख में दिखाए गए हैं::
* आंकड़ा (ए) पर, मौलिक n = 0 एक आगे की जगह हार्मोनिक है (चरण वेग v<sub>n</sub>= ω/k<sub>n</sub> समूह वेग v के समान ही संकेत है<sub>g</sub>= d and/dk<sub>n</sub>), पिछड़ी बातचीत के लिए सिंक्रोनिज्म की स्थिति बिंदु बी पर है, ढलान वी की रेखा का चौराहा<sub>e</sub> - बीम वेग - पहले पिछड़े (n = -1) अंतरिक्ष हार्मोनिक के साथ,
* आकृति (ए) पर, मौलिक n = 0 एक आगे की जगह हार्मोनिक है (चरण वेग v<sub>n</sub>= ω/k<sub>n</sub> समूह वेग v के समान ही संकेत है vg=/dkn), बैकवर्ड इंटरैक्शन के लिए सिंक्रोनिज़्म की स्थिति बिंदु B पर है, ढलान की रेखा का प्रतिच्छिद्रन ve - किरणपुंज वेग - पहले पिछड़े (n = -1) अंतरिक्ष हार्मोनिक के साथ,
* चित्र (बी) पर मौलिक (n = 0) पिछड़ा है
* आकृति (बी) पर मौलिक (n = 0) पिछड़ा है


एक आवधिक संरचना आगे और पिछड़े अंतरिक्ष हार्मोनिक्स दोनों का समर्थन कर सकती है, जो क्षेत्र के तरीके नहीं हैं, और स्वतंत्र रूप से मौजूद नहीं हो सकते हैं, भले ही एक बीम को उनमें से केवल एक के लिए युग्मित किया जा सकता है।
एक आवधिक संरचना आगे और पिछड़े अंतरिक्ष हार्मोनिक्स दोनों का समर्थन कर सकती है, जो क्षेत्र के तरीके नहीं हैं, और स्वतंत्र रूप से मौजूद नहीं हो सकते हैं, भले ही किरण को उनमें से केवल एक के साथ जोड़ा जा सके।


चूंकि अंतरिक्ष हार्मोनिक्स का परिमाण तेजी से घटता है जब एन का मूल्य बड़ा होता है, तो बातचीत केवल मौलिक या पहले अंतरिक्ष हार्मोनिक के साथ महत्वपूर्ण हो सकती है।
चूंकि अंतरिक्ष हार्मोनिक्स का परिमाण तेजी से घटता है जब n का मान बड़ा होता है, तो पारस्परिक व्यवहार केवल मौलिक या पहले अंतरिक्ष हार्मोनिक के साथ महत्वपूर्ण हो सकती है।


== एम-प्रकार BWO ==
== एम-प्रकार(M-type) BWO ==
[[Image:M-bwo.svg|thumb|250px|एक एम-बीडब्ल्यूओ का योजनाबद्ध]]
[[Image:M-bwo.svg|thumb|250px|एक एम-बीडब्ल्यूओ का योजनाबद्ध]]
एम-टाइप कार्सिनोट्रॉन, या एम-टाइप बैकवर्ड वेव ऑसिलेटर, मैग्नेट्रॉन के समान स्थैतिक विद्युत क्षेत्र ई और मैग्नेटिक फील्ड बी का उपयोग करता है, एक इलेक्ट्रॉन शीट बीम को एक धीमी-लहर सर्किट के साथ ई और बी के लिए लंबवत रूप से स्थानांतरित करने के लिए, एक धीमी-लहर सर्किट के साथ, एक इलेक्ट्रॉन शीट बीम को ध्यान केंद्रित करने के लिए,एक वेग ई/बी के साथ।मजबूत बातचीत तब होती है जब तरंग के एक अंतरिक्ष हार्मोनिक का चरण वेग इलेक्ट्रॉन वेग के बराबर होता है।दोनों ई<sub>z</sub> और ई<sub>y</sub> आरएफ फ़ील्ड के घटक बातचीत में शामिल हैं (ई)<sub>y</sub> स्थैतिक ई क्षेत्र के समानांतर)।इलेक्ट्रॉन जो एक डिकेलरेटिंग ई में हैं<sub>z</sub> धीमी-लहर का विद्युत क्षेत्र, स्थिर विद्युत क्षेत्र में संभावित ऊर्जा खो देता है और सर्किट तक पहुंचता है।स्लो-वेव स्पेस हार्मोनिक के साथ बातचीत करते हुए उन इलेक्ट्रॉनों को इकट्ठा करने से बचने के लिए, एकमात्र इलेक्ट्रोड कैथोड की तुलना में अधिक नकारात्मक है।
एम-टाइप कार्सिनोट्रॉन, या एम-टाइप पश्चगामी तरंग दोलक, एक मंद-तरंग सर्किट के साथ, ई और बी के लिए लंबवत बहती इलेक्ट्रॉन शीट किरणपुंज पर ध्यान केंद्रित करने के लिए मैग्नेट्रोन के समान पार किए गए स्थिर विद्युत क्षेत्र E और चुंबकीय क्षेत्र B का उपयोग करता है, वेग ई/बी के साथ। मजबूत अंतःक्रिया तब होती है जब तरंग के एक अंतरिक्ष हार्मोनिक का चरण वेग इलेक्ट्रॉन वेग के बराबर होता है। RF क्षेत्र के Ez और Ey दोनों घटक परस्पर क्रिया में शामिल होते हैं (Ey स्थिर E क्षेत्र के समानांतर)। इलेक्ट्रॉन जो धीमी-तरंग के Ez विद्युत क्षेत्र में होते हैं, मंद-तरंग का विद्युत क्षेत्र, स्थिर विद्युत क्षेत्र E में संभावित ऊर्जा खो देता है और सर्किट तक पहुंचता है। स्लो-वेव स्पेस हार्मोनिक के साथ पारस्परिक व्यवहार करते हुए उन इलेक्ट्रॉनों को इकट्ठा करने से बचने के लिए, एकमात्र इलेक्ट्रोड कैथोड की तुलना में अधिक नकारात्मक है।


== O- प्रकार BWO ==
== O- प्रकार(O-type) BWO ==
ओ-टाइप कार्सिनोट्रॉन, या ओ-टाइप बैकवर्ड वेव ऑसिलेटर, एक चुंबकीय क्षेत्र द्वारा केंद्रित एक इलेक्ट्रॉन बीम अनुदैर्ध्य रूप से उपयोग करता है, और बीम के साथ एक धीमी-लहर सर्किट पर बातचीत करता है।एक कलेक्टर ट्यूब के अंत में बीम को इकट्ठा करता है।
ओ-टाइप कार्सिनोट्रॉन, या ओ-टाइप पश्चगामी तरंग दोलक, एक चुंबकीय क्षेत्र द्वारा केंद्रित कर एक इलेक्ट्रॉन किरणपुंज अनुदैर्ध्य रूप से उपयोग करता है, और किरणपुंज के साथ एक मंद-तरंग सर्किट पर पारस्परिक व्यवहार करता है। एक संग्राहक नालिका के अंत में बीम एकत्र करता है।


=== O-BWO वर्णक्रमीय शुद्धता और शोर ===
=== O-पश्चगामी तरंग दोलक वर्णक्रमीय शुद्धता और शोर ===
BWO एक वोल्टेज ट्यून करने योग्य थरथरानवाला है, जिसकी वोल्टेज ट्यूनिंग दर सीधे सर्किट के प्रसार विशेषताओं से संबंधित है।दोलन एक आवृत्ति पर शुरू होता है जहां सर्किट पर फैलने वाली लहर बीम के धीमे स्थान चार्ज लहर के साथ तुल्यकालिक होती है।स्वाभाविक रूप से BWO अन्य ऑसिलेटर्स की तुलना में बाहरी उतार -चढ़ाव के लिए अधिक संवेदनशील है।फिर भी, चरण- या आवृत्ति-लॉक होने की इसकी क्षमता का प्रदर्शन किया गया है, जिससे हेटेरोडाइन स्थानीय थरथरानवाला के रूप में सफल संचालन होता है।
BWO एक वोल्टेज ट्यून करने योग्य दोलक है, जिसकी वोल्टेज ट्यूनिंग दर सीधे सर्किट के प्रसार विशेषताओं से संबंधित है। दोलन एक आवृत्ति पर शुरू होता है जहां सर्किट पर फैलने वाली तरंग किरणपुंज की मंद अंतरिक्ष आवेश तरंग के साथ समकालिक होती है। स्वाभाविक रूप से पश्चगामी तरंग दोलक(BWO) बाहरी उतार-चढ़ाव के प्रति अन्य दोलक की तुलना में अधिक संवेदनशील है। फिर भी चरण- या आवृत्ति-लॉक होने की इसकी क्षमता का प्रदर्शन किया गया है, जिससे हेटेरोडाइन स्थानीय दोलक के रूप में सफल संचालन होता है।


==== आवृत्ति स्थिरता ====
==== आवृत्ति स्थिरता ====
आवृत्ति -वोल्टेज संवेदनशीलता, संबंध द्वारा दी गई है
आवृत्ति -वोल्टेज संवेदनशीलता संबंध द्वारा दी गई है,


:<math>\Delta</math>f/f = 1/2 [1/(1 + | v<sub>Φ</sub>/वी<sub>g</sub>|)] (<math>\Delta</math>V<sub>0</sub>/वी<sub>0</sub>)
:<math>\Delta</math>f/f = 1/2 [1/(1 + | v<sub>Φ</sub>/v<sub>g</sub>|)] (<math>\Delta</math>V<sub>0</sub>/V<sub>0</sub>)
दोलन आवृत्ति बीम करंट (आवृत्ति पुशिंग कहा जाता है) के प्रति भी संवेदनशील है।कम आवृत्तियों पर वर्तमान उतार -चढ़ाव मुख्य रूप से एनोड वोल्टेज की आपूर्ति के कारण होते हैं, और एनोड वोल्टेज के प्रति संवेदनशीलता दी जाती है
दोलन आवृत्ति किरणपुंज करंट (आवृत्ति पुशिंग कहा जाता है) के प्रति भी संवेदनशील है।कम आवृत्तियों पर वर्तमान उतार -चढ़ाव मुख्य रूप से एनोड वोल्टेज की आपूर्ति के कारण होते हैं, और एनोड वोल्टेज के प्रति संवेदनशीलता दी जाती है


:<math>\Delta</math>f/f = 3/4 [ओह<sub>q</sub>/ω/(1 + | v<sub>Φ</sub>/वी<sub>g</sub>|)] (<math>\Delta</math>V<sub>a</sub>/वी<sub>a</sub>)
:<math>\Delta</math>f/f = 3/4 [ω<sub>q</sub>/ω/(1 + | v<sub>Φ</sub>/v<sub>g</sub>|)] (<math>\Delta</math>V<sub>a</sub>/V<sub>a</sub>)


कैथोड वोल्टेज संवेदनशीलता की तुलना में यह संवेदनशीलता, अनुपात से कम हो जाती है<sub>q</sub>/ओह, जहां ओह<sub>q</sub> कोणीय प्लाज्मा आवृत्ति है;यह अनुपात कुछ बार 10 के क्रम का है<sup>−2 </sup>
कैथोड वोल्टेज संवेदनशीलता की तुलना में यह संवेदनशीलता q/ω के अनुपात से कम हो जाती है, जहां q कोणीय प्लाज्मा आवृत्ति है; यह अनुपात कुछ गुना 10<sup>−2</sup> के क्रम का है।


==== शोर ====
==== शोर ====
सबमिलिमीटर-वेव बीडब्ल्यूओ (डी ग्रेव एट अल।, 1978) पर माप से पता चला है कि इस तरंग दैर्ध्य रेंज में 120 & nbsp; db प्रति मेगाहर्ट्ज का सिग्नल-टू-शोर अनुपात;एक स्थानीय थरथरानवाला के रूप में एक BWO का उपयोग करके हेटेरोडाइन का पता लगाने में, यह आंकड़ा केवल 1000-3000 & nbsp; k के थरथरानवाला द्वारा जोड़े गए शोर तापमान से मेल खाता है।
अवमिलिमीटर(सबमिलिमीटर)-तरंग बीडब्ल्यूओ(BWO) माप से पता चला है कि इस तरंग दैर्ध्य रेंज में 120 प्रति मेगाहर्ट्ज का सिग्नल-टू-शोर अनुपात एक स्थानीय दोलक के रूप में एक पश्चगामी तरंग दोलक का उपयोग करके हेटेरोडाइन का पता लगाने में, यह आंकड़ा केवल 1000-3000 k के दोलक द्वारा जोड़े गए शोर तापमान से मेल खाता है।


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 130: Line 129:
{{DEFAULTSORT:Backward Wave Oscillator}}
{{DEFAULTSORT:Backward Wave Oscillator}}
]
]
[[Category:Machine Translated Page]]
[[Category:All articles lacking in-text citations|Backward Wave Oscillator]]
[[Category:Articles lacking in-text citations from July 2011|Backward Wave Oscillator]]

Latest revision as of 16:12, 11 October 2022

1956 में वेरियन द्वारा निर्मित लघु ओ-टाइप पश्चगामी तरंग नलिका। यह 8.2-12.4 गीगाहर्ट्ज रेंज से अधिक वोल्टेज-ट्यून हो सकता है और 600 वी की आपूर्ति वोल्टेज की आवश्यकता होती है।
स्टॉकहोम विश्वविद्यालय में पश्चगामी तरंग दोलक टेराहर्ट्ज़ रेंज में काम कर रहा है

एक पश्चगामी तरंग दोलक (BWO), जिसे पश्चगामी तरंग नलिका भी कहा जाता है, एक निर्वात नलिका है जिसका उपयोग टेरेहर्ट्ज़ रेंज तक सूक्ष्म तरंग उत्पन्न करने के लिए किया जाता है। प्रगामी तरंग नलिका परिवार से संबंधित, यह विस्तृत इलेक्ट्रॉनिक समस्वरण परिसर वाला एक दोलक है।

इलेक्ट्रॉन बंदूक एक इलेक्ट्रॉन किरणपुंज उत्पन्न करती है जो मंद-तरंग संरचना के साथ संपर्क करती है। यह किरणपुंज के खिलाफ एक प्रगामी तरंग को पीछे की ओर प्रचारित करके दोलनों को बनाए रखता है। उत्पन्न विद्युत चुम्बकीय तरंग शक्ति का समूह वेग इलेक्ट्रॉनों की गति की दिशा के विपरीत होता है। निर्गत शक्ति को इलेक्ट्रॉन गन के पास युग्मित किया जाता है।

इसके दो मुख्य उपप्रकार हैं, M-type (M-BWO), सबसे शक्तिशाली और O-type (O-BWO)। ओ-टाइप(O-type) की निर्गत शक्ति आमतौर पर 1 मेगावाट की सीमा में 1000 गीगाहर्ट्ज से 50 मेगावाट 200 गीगाहर्ट्ज पर होती है। कार्सिनोट्रॉन का उपयोग शक्तिशाली और स्थिर माइक्रोवेव स्रोतों के रूप में किया जाता है। वे अच्छी गुणवत्ता वाले तरंगाग्र का उत्पादन करते हैं। वे टेराहर्ट्ज प्रतिबिंबन में प्रदीपक के रूप में उपयोग करते हैं।

पश्चगामी तरंग दोलक को 1951 में, बर्नार्ड एप्सज़्टिन द्वारा एम-टाइप(M-type) और रुडोल्फ कोम्पफनर द्वारा ओ-टाइप(O-type) में प्रदर्शित किया गया था[1] एम-टाइप बीडब्ल्यूओ मैग्नेट्रोन कि परस्पर क्रिया का वोल्टेज-नियंत्रित गैर-गुंजयमान बहिर्वेशन है। दोनों प्रकार के त्वरित वोल्टेज को अलग करके आवृत्तियों की एक विस्तृत श्रृंखला पर ट्यून करने योग्य हैं। उन्हें बैंड के माध्यम से इतनी तेजी से घुमाया जा सकता है कि वे एक ही बार में सभी बैंड पर विकिरण करते दिखाई दें, जो उन्हें प्रभावी रडार जैमिंग के लिए उपयुक्त बनाता है, जल्दी से रडार आवृत्ति में ट्यूनिंग करता है। कार्सिनोट्रोन्स ने वायुवाहित रडार जैमर को अत्यधिक प्रभावी होने की अनुमति दी। हालांकि, आवृत्ति चपलता रडार आवृत्तियों को तेजी से उछाल सकते हैं ताकि जैमर को बैराज जैमिंग का उपयोग करने के लिए मजबूर किया जा सके, एक विस्तृत बैंड पर इसकी निर्गम शक्ति को कम किया जा सके और इसकी दक्षता को काफी कम किया जा सके।

कार्सिनोट्रॉन का उपयोग अनुसंधान, नागरिक और सैन्य अनुप्रयोगों में किया जाता है। उदाहरण के लिए, चेकोस्लोवाक कोपैक पैसिव सेंसर और रमोना पैसिव सेंसर वायु रक्षा पहचान प्रणाली ने अपने रिसीवर सिस्टम में कार्सिनोट्रोन को नियोजित किया।

मूल अवधारणा

अवधारणा आरेख।सिग्नल इनपुट से आउटपुट तक यात्रा करते हैं जैसा कि छवि के भीतर पाठ में वर्णित है।[2]

सभी प्रगामी तरंग नलिका एक सामान्य आचरण में काम करते हैं, और मुख्य रूप से उनके निर्माण के विवरण में भिन्न होते हैं।यह अवधारणा एक इलेक्ट्रॉन बंदूक से इलेक्ट्रॉनों की एक स्थिर धारा पर निर्भर है जो ट्यूब के केंद्र से नीचे यात्रा करती है (आसन्न अवधारणा आरेख देखें)। इलेक्ट्रॉन किरणपुंज के चारों ओर कुछ प्रकार के रेडियो फ्रीक्वेंसी स्रोत है, पारंपरिक क्लिस्ट्रॉन के मामले में यह एक अनुनादक गुहा है जो एक बाहरी संकेत के साथ सिंचित किया जाता है, जबकि अधिक आधुनिक उपकरणों में इन गुहाओं की एक श्रृंखला है या एक ही संकेत के साथ एक पेचदार धातु तार सिंचित किया जाता है।[2]

जैसे ही इलेक्ट्रॉन ट्यूब से नीचे जाते हैं, वे आरएफ सिग्नल के साथ एक दूसरे को प्रभावित करते हैं। इलेक्ट्रॉन अधिकतम सकारात्मक पूर्वाग्रह वाले क्षेत्रों की ओर आकर्षित होते हैं और नकारात्मक क्षेत्रों से विकर्षित होते हैं। यह इलेक्ट्रॉनों को गुच्छा बनाने का कारण बनता है क्योंकि वे ट्यूब की लंबाई के साथ निरस्त या आकर्षित होते हैं, एक प्रक्रिया जिसे वेग मॉड्यूलेशन के रूप में जाना जाता है। यह प्रक्रिया इलेक्ट्रॉन किरणपुंज को मूल संकेत के समान सामान्य संरचना पर ले जाती है, किरणपुंज में इलेक्ट्रॉनों का घनत्व प्रेरण प्रणाली में आरएफ सिग्नल के सापेक्ष आयाम से मेल खाता है। इलेक्ट्रॉन धारा बंदूक के विवरण का एक कार्य है, और आम तौर पर इनपुट आरएफ सिग्नल की तुलना में अधिक शक्तिशाली परिमाण के आदेश हैं। परिणाम इलेक्ट्रॉन किरणपुंज में एक संकेत है जो मूल आरएफ सिग्नल का एक प्रवर्धित संस्करण है।[2]

जैसे -जैसे इलेक्ट्रॉन गतिमान होते हैं, वे पास के किसी भी चालक में चुंबकीय क्षेत्र उत्पन्न करते हैं। यह अब-प्रवर्धित सिग्नल को निकालने की अनुमति देता है। मैग्नेट्रॉन या क्लेस्ट्रॉन जैसी प्रणालियों में, यह एक और गुंजयमान गुहा के साथ पूरा किया जाता है। पेचदार डिजाइनों में, यह प्रक्रिया ट्यूब की पूरी लंबाई के साथ होती है, पेचदार चालक में मूल संकेत को मजबूत करती है। पारंपरिक डिजाइनों के साथ समस्या यह है कि उनके पास अपेक्षाकृत संकीर्ण बैंडविड्थ हैं, अनुनादक पर आधारित डिज़ाइन उनके डिज़ाइन के 10% या 20% के भीतर सिग्नल के साथ काम करेंगे, क्योंकि यह भौतिक रूप से अनुनादक डिज़ाइन में बनाया गया है, जबकि हेलिक्स डिजाइन में बहुत व्यापक बैंडविड्थ है, शायद डिजाइन शिखर के दोनों ओर 100% है।[3]


बीडब्ल्यूओ(BWO)

पश्चगामी तरंग दोलक को पेचदार TWT के समान आचरण में बनाया गया है। हालांकि, इलेक्ट्रॉन किरणपुंज के समान (या समान) दिशा में फैलने वाले RF सिग्नल के बजाय, मूल सिग्नल किरणपुंज के समकोण पर यात्रा करता है। यह आमतौर पर एक आयताकार तरंगपथनिर्धारित्र के माध्यम से एक छिद्र को ड्रिल करके और छिद्र के माध्यम से किरणपुंज को शूट करके पूरा किया जाता है। तरंगपथनिर्धारित्र फिर दो समकोण से गुजरता है, एक सी-आकार का निर्माण करता है और किरणपुंज को फिर से पार करता है। यह मूल तरीका ट्यूब की लंबाई के साथ दोहराया जाता है, इसलिए तरंगपथनिर्धारित्र कई बार किरणपुंज के पार से गुजरता है, जिससे एस-आकार की एक श्रृंखला बनती है।[2]

मूल आरएफ सिग्नल टीडब्ल्यूटी(TWT) के दूर के छोर से प्रवेश करता है, जहां ऊर्जा निकाली जाएगी। अस्थायी किरणपुंज पर सिग्नल का प्रभाव समान वेग मॉड्यूलेशन प्रभाव का कारण बनता है, लेकिन आरएफ सिग्नल की दिशा और तरंगपथनिर्धारित्र की बारीकियों के कारण, यह मॉड्यूलेशन आगे की बजाय किरणपुंज के साथ पीछे की ओर जाता है। यह प्रसार, मंद तरंग, मुड़े हुए तरंगपथनिर्धारित्र में अगले छिद्र तक पहुंचता है, जैसे कि आरएफ सिग्नल के एक ही चरण में यह पारंपरिक TWT की तरह ही प्रवर्धन का कारण बनता है।[2]

एक पारंपरिक TWT में, इंडक्शन सिस्टम में सिग्नल के प्रसार की गति किरणपुंज में इलेक्ट्रॉनों के समान होनी चाहिए। यह आवश्यक है ताकि संकेत का चरण गुच्छिद्रार इलेक्ट्रॉनों के साथ जुड़ जाए क्योंकि वे प्रेरकों को पास करते हैं। तारों या अनुनादक कक्षों के भौतिक निर्माण के आधार पर यह उपकरण तरंग दैर्ध्य के चयन पर सीमाएं प्रवर्धित कर सकता है ।[2]

बीडब्ल्यूओ में ऐसा नहीं है, जहां इलेक्ट्रॉन समकोण पर सिग्नल पास करते हैं और उनकी प्रसार की गति इनपुट सिग्नल से स्वतंत्र होती है। जटिल सर्पेंटाइन वेवगाइड आगत सिग्नल के बैंडविड्थ पर सख्त सीमाएं रखता है, जैसे कि गाइड के भीतर एक स्थायी तरंग बनती है। लेकिन इलेक्ट्रॉनों का वेग केवल इलेक्ट्रॉन बंदूक पर लागू स्वीकार्य वोल्टेज द्वारा सीमित है, जिसे आसानी से और तेजी से बदला जा सकता है। इस प्रकार पश्चगामी तरंग दोलक (BWO) एकल आगत आवृत्ति लेता है और निर्गत आवृत्तियों की एक विस्तृत श्रृंखला का उत्पादन करता है।[2]


कार्सिनोट्रॉन

यह छवि 1950 के दशक के पल्स रडार पर चार कार्सिनोट्रॉन-ले जाने वाले विमान के प्रभाव को दर्शाती है।विमान लगभग 4 और 5:30 स्थानों पर स्थित है।डिस्प्ले किसी भी समय शोर से भरा होता है जब एंटीना का मुख्य लोब या साइडबॉब्स जैमर को पास करते हैं, जिससे विमान अदृश्य हो जाता है।

डिवाइस को मूल रूप से कार्सिनोट्रॉन नाम दिया गया था क्योंकि यह मौजूदा रडार सिस्टम के लिए कैंसर जैसा था। केवल आपूर्ति वोल्टेज को बदलने से, उपकरण एक बैंड में किसी भी आवश्यक आवृत्ति का उत्पादन कर सकता है जो किसी भी मौजूदा सूक्ष्म तरंग प्रवर्धक की तुलना में बहुत बड़ा था-गुहा मैग्नेट्रोन उनके अनुनादक के भौतिक आयामों द्वारा परिभाषित एक आवृत्ति पर काम करता है, और जबकि कार्सिनोट्रॉन एक बाहरी संकेत को प्रवर्धित किया, यह केवल आवृत्तियों की एक छोटी सी सीमा के भीतर ही इतनी कुशलता से किया।[2]

पहले, रडार को जाम करना एक जटिल और समय लेने वाला क्रिया कलाप था। संचालको को उपयोग की जा रही संभावित आवृत्तियों को सुनना था, उस आवृत्ति पर प्रवर्धकों के एक बैंक की स्थापना की, और फिर प्रसारण करना शुरू कर दिया। जब रडार स्टेशन को एहसास हुआ कि क्या हो रहा है, तो वे अपनी आवृत्तियों को बदल देंगे और प्रक्रिया फिर से शुरू हो जाएगी। इसके विपरीत, कार्सिनोट्रॉन सभी संभावित आवृत्तियों के माध्यम से इतनी तेजी से पार कर सकता है कि यह एक ही बार में सभी आवृत्तियों पर एक निरंतर संकेत प्रतीत होता है। विशिष्ट डिजाइन सैकड़ों या कम हजारों वाट उत्पन्न कर सकते हैं इसलिए किसी भी एक आवृत्ति पर कुछ वाट बिजली हो सकती है जो रडार स्टेशन द्वारा प्राप्त की जाती है।हालांकि लंबी दूरी पर विमान तक पहुंचने वाले मूल रडार प्रसारण से ऊर्जा की मात्रा केवल कुछ वाट होती है, इसलिए कार्सिनोट्रॉन का उन पर नियन्त्रण हो सकता है।[2]

यह प्रणाली इतनी शक्तिशाली थी कि यह पाया गया कि एक विमान पर काम करने वाला एक कार्सिनोट्रॉन रडार क्षितिज से ऊपर उठने से पहले ही प्रभावी होना शुरू हो जाएगा। जैसा कि यह आवृत्तियों के माध्यम से बहता है, यह रडार की ऑपरेटिंग आवृत्ति पर प्रभावी ढंग से यादृच्छिक समय पर प्रसारित होता है, किसी भी समय एंटीना को इसके पास इंगित किया जाता है, शायद लक्ष्य के दोनों तरफ 3 डिग्री यादृच्छिक बिंदुओं के साथ प्रदर्शन को भरता है। इतने सारे बिंदु थे कि उस क्षेत्र में प्रदर्शन केवल तीव्र उत्तेजना वाले शोर से भर गया। जैसे ही यह स्टेशन के पास पहुंचा, सिग्नल एंटीना के साइडलोब में भी दिखना शुरू हो जाएगा,जिससे आगे के क्षेत्रों का निर्माण होगा जो शोर से खाली हो गए थे। करीब सीमा पर, 100 मील (160 किमी) के क्रम में, संपूर्ण रडार डिस्प्ले पूरी तरह से शोर से भर जाएगा, जिससे यह बेकार हो जाएगा।[2]

यह अवधारणा एक जैमर के रूप में इतनी शक्तिशाली थी कि गंभीर चिंताएं थीं कि जमीन आधारित रडार अप्रचलित थे। वायुवाहित रडार को यह फायदा था कि वे जैमर को ले जाने वाले विमान से संपर्क कर सकते थे, और अंततः उनके ट्रांसमीटर से भारी निर्गत जैमिंग के माध्यम से जल जाएगा। हालांकि, उस समय के इंटरसेप्टर ग्राउंड-आधारित राडार का उपयोग करते हुए, रेंज में आने के लिए जमीनी दिशा पर निर्भर थे। यह वायु रक्षा अभियानों के लिए एक बड़े खतरे का प्रतिनिधित्व करता था। [4]

जमीनी राडार के लिए, खतरे को अंततः दो तरह से हल किया गया था। पहला यह था कि रडार को कई अलग -अलग आवृत्तियों पर काम करने और पल्स से पल्स तक बेहतरीन ढंग से स्विच करने के लिए अपग्रेड किया गया था, एक अवधारणा जिसे अब आवृत्ति चपलता के रूप में जाना जाता है। इन आवृत्तियों में से कुछ का उपयोग कभी भी शान्तिकाल में, और अत्यधिक गुप्त काल में नहीं किया गया था, इस आशा के साथ कि वे जैमर को युद्ध के समय में नहीं जानेंगे। कार्सिनोट्रॉन अभी भी पूरे बैंड के माध्यम से स्वीप कर सकता है, लेकिन फिर यह उसी आवृत्ति पर रडार के रूप में केवल यादृच्छिक समय पर प्रसारित होगा, जिससे इसकी प्रभावशीलता कम हो जाएगी।अन्य समाधान निष्क्रिय रिसीवर को जोड़ना था जो कार्सिनोट्रॉन प्रसारण पर त्रिकोणित किया गया था,जिससे ग्राउंड स्टेशनों को जैमर के स्थान पर सटीक ट्रैकिंग जानकारी का उत्पादन करने और उन पर हमला करने की अनुमति मिलती थी।[4]


मंद तरंग संरचना

(ए) फॉरवर्ड फंडामेंटल स्पेस हार्मोनिक (एन = 0), (b) पिछड़े मौलिक

आवश्यक मंद-तरंग संरचनाओं को एक अनुदैर्ध्य घटक के साथ एक रेडियो आवृत्ति (आरएफ) विद्युत क्षेत्र का समर्थन करना चाहिए, संरचनाएं बीम की दिशा में आवधिक होती हैं और पासबैंड और स्टॉपबैंड के साथ सूक्ष्म तरंग फिल्टर की तरह व्यवहार करती हैं। ज्यामिति की आवधिकता के कारण, निरंतर चरण शिफ्ट Φ को छोड़कर, क्षेत्र सेल से सेल में समान होते हैं। यह चरण बदलाव, एक दोषरहित संरचना के पासबैंड में विशुद्ध रूप से वास्तविक संख्या, आवृत्ति के साथ बदलता रहता है।

फ़्लक्वेट के प्रमेय के अनुसार (फ्लिकेट थ्योरी देखें), आरएफ इलेक्ट्रिक फील्ड E(z,t) को एक कोणीय आवृत्ति ω पर वर्णित किया जा सकता है, जो स्थानिक या अंतरिक्ष हार्मोनिक्स En के अनंतता के योग द्वारा किया जा सकता है।

जहां तरंग संख्या या प्रसार स्थिरांक kn प्रत्येक हार्मोनिक के रूप में व्यक्त किया जाता है

kn = (Φ + 2nπ) / p (--<φ < + π)

z प्रसार की दिशा है, p सर्किट की पिच और n एक पूर्णांक है।

मंद तरंग सर्किट विशेषताओं के दो उदाहरण दिखाए गए हैं, ω-k या ब्रिलॉइन आरेख में दिखाए गए हैं::

  • आकृति (ए) पर, मौलिक n = 0 एक आगे की जगह हार्मोनिक है (चरण वेग vn= ω/kn समूह वेग v के समान ही संकेत है vg=dω/dkn), बैकवर्ड इंटरैक्शन के लिए सिंक्रोनिज़्म की स्थिति बिंदु B पर है, ढलान की रेखा का प्रतिच्छिद्रन ve - किरणपुंज वेग - पहले पिछड़े (n = -1) अंतरिक्ष हार्मोनिक के साथ,
  • आकृति (बी) पर मौलिक (n = 0) पिछड़ा है

एक आवधिक संरचना आगे और पिछड़े अंतरिक्ष हार्मोनिक्स दोनों का समर्थन कर सकती है, जो क्षेत्र के तरीके नहीं हैं, और स्वतंत्र रूप से मौजूद नहीं हो सकते हैं, भले ही किरण को उनमें से केवल एक के साथ जोड़ा जा सके।

चूंकि अंतरिक्ष हार्मोनिक्स का परिमाण तेजी से घटता है जब n का मान बड़ा होता है, तो पारस्परिक व्यवहार केवल मौलिक या पहले अंतरिक्ष हार्मोनिक के साथ महत्वपूर्ण हो सकती है।

एम-प्रकार(M-type) BWO

एक एम-बीडब्ल्यूओ का योजनाबद्ध

एम-टाइप कार्सिनोट्रॉन, या एम-टाइप पश्चगामी तरंग दोलक, एक मंद-तरंग सर्किट के साथ, ई और बी के लिए लंबवत बहती इलेक्ट्रॉन शीट किरणपुंज पर ध्यान केंद्रित करने के लिए मैग्नेट्रोन के समान पार किए गए स्थिर विद्युत क्षेत्र E और चुंबकीय क्षेत्र B का उपयोग करता है, वेग ई/बी के साथ। मजबूत अंतःक्रिया तब होती है जब तरंग के एक अंतरिक्ष हार्मोनिक का चरण वेग इलेक्ट्रॉन वेग के बराबर होता है। RF क्षेत्र के Ez और Ey दोनों घटक परस्पर क्रिया में शामिल होते हैं (Ey स्थिर E क्षेत्र के समानांतर)। इलेक्ट्रॉन जो धीमी-तरंग के Ez विद्युत क्षेत्र में होते हैं, मंद-तरंग का विद्युत क्षेत्र, स्थिर विद्युत क्षेत्र E में संभावित ऊर्जा खो देता है और सर्किट तक पहुंचता है। स्लो-वेव स्पेस हार्मोनिक के साथ पारस्परिक व्यवहार करते हुए उन इलेक्ट्रॉनों को इकट्ठा करने से बचने के लिए, एकमात्र इलेक्ट्रोड कैथोड की तुलना में अधिक नकारात्मक है।

O- प्रकार(O-type) BWO

ओ-टाइप कार्सिनोट्रॉन, या ओ-टाइप पश्चगामी तरंग दोलक, एक चुंबकीय क्षेत्र द्वारा केंद्रित कर एक इलेक्ट्रॉन किरणपुंज अनुदैर्ध्य रूप से उपयोग करता है, और किरणपुंज के साथ एक मंद-तरंग सर्किट पर पारस्परिक व्यवहार करता है। एक संग्राहक नालिका के अंत में बीम एकत्र करता है।

O-पश्चगामी तरंग दोलक वर्णक्रमीय शुद्धता और शोर

BWO एक वोल्टेज ट्यून करने योग्य दोलक है, जिसकी वोल्टेज ट्यूनिंग दर सीधे सर्किट के प्रसार विशेषताओं से संबंधित है। दोलन एक आवृत्ति पर शुरू होता है जहां सर्किट पर फैलने वाली तरंग किरणपुंज की मंद अंतरिक्ष आवेश तरंग के साथ समकालिक होती है। स्वाभाविक रूप से पश्चगामी तरंग दोलक(BWO) बाहरी उतार-चढ़ाव के प्रति अन्य दोलक की तुलना में अधिक संवेदनशील है। फिर भी चरण- या आवृत्ति-लॉक होने की इसकी क्षमता का प्रदर्शन किया गया है, जिससे हेटेरोडाइन स्थानीय दोलक के रूप में सफल संचालन होता है।

आवृत्ति स्थिरता

आवृत्ति -वोल्टेज संवेदनशीलता संबंध द्वारा दी गई है,

f/f = 1/2 [1/(1 + | vΦ/vg|)] (V0/V0)

दोलन आवृत्ति किरणपुंज करंट (आवृत्ति पुशिंग कहा जाता है) के प्रति भी संवेदनशील है।कम आवृत्तियों पर वर्तमान उतार -चढ़ाव मुख्य रूप से एनोड वोल्टेज की आपूर्ति के कारण होते हैं, और एनोड वोल्टेज के प्रति संवेदनशीलता दी जाती है

f/f = 3/4 [ωq/ω/(1 + | vΦ/vg|)] (Va/Va)

कैथोड वोल्टेज संवेदनशीलता की तुलना में यह संवेदनशीलता q/ω के अनुपात से कम हो जाती है, जहां q कोणीय प्लाज्मा आवृत्ति है; यह अनुपात कुछ गुना 10−2 के क्रम का है।

शोर

अवमिलिमीटर(सबमिलिमीटर)-तरंग बीडब्ल्यूओ(BWO) माप से पता चला है कि इस तरंग दैर्ध्य रेंज में 120 प्रति मेगाहर्ट्ज का सिग्नल-टू-शोर अनुपात एक स्थानीय दोलक के रूप में एक पश्चगामी तरंग दोलक का उपयोग करके हेटेरोडाइन का पता लगाने में, यह आंकड़ा केवल 1000-3000 k के दोलक द्वारा जोड़े गए शोर तापमान से मेल खाता है।

टिप्पणियाँ

  1. FR patent 1035379, Bernard Epsztein, "Backward flow travelling wave devices", published 1959-03-31 
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Microwave Principles. US Navy. September 1998. p. 103.
  3. Gilmour, A. S. (2011). Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons. Artech House. pp. 317–18. ISBN 978-1608071852.
  4. 4.0 4.1 Morris, Alec (1996). "UK Control & Reporting System from the End of WWII to ROTOR and Beyond". In Hunter, Sandy (ed.). Defending Northern Skies. Royal Air Force Historical Society. pp. 105–106.


संदर्भ

  • Johnson, H. R. (1955). Backward-wave oscillators. Proceedings of the IRE, 43(6), 684–697.
  • Ramo S., Whinnery J. R., Van Duzer T. - Fields and Waves in Communication Electronics (3rd ed.1994) John Wiley & Sons
  • Kantorowicz G., Palluel P. - Backward Wave Oscillators, in Infrared and Millimeter Waves, Vol 1, Chap. 4, K. Button ed., Academic Press 1979
  • de Graauw Th., Anderegg M., Fitton B., Bonnefoy R., Gustincic J. J. - 3rd Int. Conf. Submm. Waves, Guilford University of Surrey (1978)
  • Convert G., Yeou T., in Millimeter and Submillimeter Waves, Chap. 4, (1964) Illife Books, London


बाहरी संबंध


]