ब्रह्मांडीय तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 18: Line 18:
== गुरुत्वाकर्षण ==
== गुरुत्वाकर्षण ==
{{refimprove section|date=September 2016}}
{{refimprove section|date=September 2016}}
एक स्ट्रिंग स्पेसटाइम में [[यूक्लिडियन ज्यामिति]] से एक ज्यामितीय विचलन है जो एक कोणीय घाटे की विशेषता है: एक स्ट्रिंग के बाहर चारों ओर एक चक्र में 360 डिग्री से कम कुल कोण शामिल होगा। सापेक्षता के सामान्य सिद्धांत से ऐसा ज्यामितीय दोष तनाव में होना चाहिए, और द्रव्यमान द्वारा प्रकट होगा। भले ही ब्रह्मांडीय तारों को अत्यंत पतला माना जाता है, लेकिन उनमें अत्यधिक घनत्व होगा, और इसलिए वे महत्वपूर्ण गुरुत्वाकर्षण तरंग स्रोतों का प्रतिनिधित्व करेंगे। प्रायः एक किलोमीटर लंबा एक ब्रह्मांडीय तार पृथ्वी से अधिक विशाल हो सकता है।
एक स्ट्रिंग स्पेसटाइम में [[यूक्लिडियन ज्यामिति]] से एक ज्यामितीय विचलन है जो एक कोणीय घाटे की विशेषता है: एक स्ट्रिंग के बाहर चारों ओर एक चक्र में 360 डिग्री से कम कुल कोण सम्मिलित होगा। सापेक्षता के सामान्य सिद्धांत से ऐसा ज्यामितीय दोष तनाव में होना चाहिए, और द्रव्यमान द्वारा प्रकट होगा। यद्यपि ब्रह्मांडीय तारों को अत्यंत पतला माना जाता है, लेकिन उनमें अत्यधिक घनत्व होगा, और इसलिए वे महत्वपूर्ण गुरुत्वाकर्षण तरंग स्रोतों का प्रतिनिधित्व करेंगे। प्रायः एक किलोमीटर लंबा एक ब्रह्मांडीय तार पृथ्वी से अधिक विशाल हो सकता है।


हालाँकि [[सामान्य सापेक्षता]] भविष्यवाणी करती है कि एक सीधी स्ट्रिंग की गुरुत्वाकर्षण क्षमता गायब हो जाती है: स्थिर आसपास के पदार्थ पर कोई गुरुत्वाकर्षण बल नहीं होता है। सीधे ब्रह्मांडीय स्ट्रिंग का एकमात्र गुरुत्वाकर्षण प्रभाव पदार्थ (या प्रकाश) का एक सापेक्ष विक्षेपण है जो स्ट्रिंग को विपरीत दिशा में (विशुद्ध रूप से टोपोलॉजिकल प्रभाव) से गुजरता है। एक बंद ब्रह्मांडीय तार अधिक पारंपरिक तरीके से गुरुत्वाकर्षण करता है।{{clarify|date=September 2019}}
चूँकि [[सामान्य सापेक्षता]] भविष्यवाणी करती है कि एक सीधी स्ट्रिंग की गुरुत्वाकर्षण क्षमता गायब हो जाती है: स्थिर आसपास के पदार्थ पर कोई गुरुत्वाकर्षण बल नहीं होता है। सीधे ब्रह्मांडीय स्ट्रिंग का एकमात्र गुरुत्वाकर्षण प्रभाव पदार्थ (या प्रकाश) का एक सापेक्ष विक्षेपण है जो स्ट्रिंग को विपरीत दिशा में (विशुद्ध रूप से टोपोलॉजिकल प्रभाव) से गुजरता है। एक बंद ब्रह्मांडीय तार अधिक पारंपरिक तरीके से गुरुत्वाकर्षण करता है।{{clarify|date=September 2019}}


ब्रह्मांड के विस्तार के दौरान, ब्रह्मांडीय तार लूपों का एक नेटवर्क बनाएंगे, और अतीत में यह सोचा गया था कि उनका गुरुत्वाकर्षण [[ गांगेय सुपरक्लस्टर ]]्स में पदार्थ के मूल क्लंपिंग के लिए जिम्मेदार हो सकता है। अब यह गणना की जाती है कि ब्रह्मांड में संरचना निर्माण में उनका योगदान 10% से कम है।
ब्रह्मांड के विस्तार के दौरान, ब्रह्मांडीय तार लूप का एक नेटवर्क बनते थे, और अतीत में यह विचार गया था कि उनका गुरुत्वाकर्षण [[ गांगेय सुपरक्लस्टर ]] में पदार्थ के मूल क्लंपिंग के लिए जिम्मेदार हो सकता है। अब यह गणना की जाती है कि ब्रह्मांड में संरचना निर्माण में उनका योगदान 10% से कम है।


=== [[नकारात्मक द्रव्यमान]] लौकिक स्ट्रिंग ===
=== [[नकारात्मक द्रव्यमान]] लौकिक स्ट्रिंग ===

Revision as of 22:24, 3 April 2023

ब्रह्मांडीय स्ट्रिंग्स काल्पनिक 1-आयामी टोपोलॉजिकल दोष हैं जो प्रारंभिक ब्रह्मांड में समरूपता-विच्छेद चरण संक्रमण के समय गठित हो सकते हैं जब इस समरूपता को तोड़ने से जुड़ेनिर्वात अवस्था मैनिफोल्ड की टोपोलॉजी बस जुड़ी नहीं थी। उनके अस्तित्व पर प्रथम बार 1970 के दशक में सैद्धांतिक भौतिक विज्ञानी टॉम किबल ने विचार किया था।[1]

ब्रह्मांडीय तारों का निर्माण कुछ हद तक उन खामियों के अनुरूप है जो ठोस तरल पदार्थ में क्रिस्टल अनाज के मध्य बनते हैं, या पानी के बर्फ में जमने पर बनने वाली दरारें। ब्रह्मांडीय तारों के उत्पादन के लिए अग्रणी चरण संक्रमण ब्रह्मांड के विकास के प्रारंभिक क्षणों के समय ब्रह्मांड संबंधी मुद्रास्फीति के पश्चात होने की संभावना है, और प्रारंभिक ब्रह्मांड के क्वांटम क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत मॉडल दोनों में सामान्य से अधिक भविष्यवाणी है।

लौकिक तार युक्त सिद्धांत

स्ट्रिंग सिद्धांत में, ब्रह्मांडीय तारों की भूमिका स्वयंमूलभूत स्ट्रिंग्स (या एफ-स्ट्रिंग्स) द्वारा निभाई जा सकती है जो डी-स्ट्रिंग्स द्वारा सिद्धांत गड़बड़ी को परिभाषित करती है, जो निर्बल-सबल या तथाकथित एस द्वारा एफ-स्ट्रिंग्स से संबंधित हैं। द्वैत, या उच्च-आयामी डी-, एनएस- अथवा एम-ब्रेन्स जो अतिरिक्त स्पेसटाइम आयामों से जुड़े कॉम्पैक्ट चक्रों पर आंशिक रूप से लपेटे जाते हैं जिससे केवल एक गैर-कॉम्पैक्ट आयाम बना रहे।[2]

एबेलियन हिग्स मॉडल ब्रह्मांडीय तारों के साथ क्वांटम क्षेत्र सिद्धांत का प्रोटोटाइपिकल उदाहरण है। क्वांटम फील्ड सिद्धांत और स्ट्रिंग सिद्धांत ब्रह्मांडीय तारों में कई गुण समान होने की अपेक्षा है, लेकिन त्रुटिहीन विशिष्ट विशेषताओं को निर्धारित करने के लिए अधिक शोध की आवश्यकता है। उदाहरण के लिए एफ-स्ट्रिंग्स संपूर्ण रूप से क्वांटम-मैकेनिकल हैं और इसकी शास्त्रीय परिभाषा नहीं है, यद्यपि फील्ड सिद्धांत ब्रह्मांडीय तारों को प्राय: विशेष रूप से शास्त्रीय रूप से व्यवहार किया जाता है।

आयाम

ब्रह्मांडीय तार, यदि वे उपस्थित हैं, तो एक प्रोटॉन के समान परिमाण के समान क्रम के व्यास के साथ अत्यंत पतले होंगे, अर्थात ~ 1 fm, या छोटा। यह देखते हुए कि यह पैमाना किसी भी ब्रह्माण्ड संबंधी पैमाने से बहुत छोटा है, इन तारों का अधिकांशतः शून्य-चौड़ाई या नंबू-गोटो सन्निकटन में अध्ययन किया जाता है। इस धारणा के अंतर्गत तार एक आयामी वस्तुओं के रूप में व्यवहार करते हैं और नम्बू-गोटो क्रिया का पालन करते हैं, जो शास्त्रीय रूप से पॉलीकोव क्रिया के समतुल्य है जो सुपरस्ट्रिंग सिद्धांत के बोसोनिक क्षेत्र को परिभाषित करता है।

फील्ड सिद्धांत में, स्ट्रिंग की चौड़ाई सममिति ब्रेकिंग चरण ट्रांजिशन के पैमाने द्वारा निर्धारित की जाती है। स्ट्रिंग सिद्धांत में, स्ट्रिंग चौड़ाई (सरलतम स्थितियों में)मूलभूत स्ट्रिंग स्केल, ताना कारकों (आंतरिक छह-आयामी स्पेसटाइम मैनिफोल्ड के स्पेसटाइम वक्रता से जुड़े) और आंतरिक कॉम्पैक्ट आयामों के आकार द्वारा निर्धारित की जाती है। (स्ट्रिंग सिद्धांत में, ब्रह्मांड या तो 10- या 11-आयामी है, जो अंतःक्रियाओं की शक्ति और स्पेसटाइम की वक्रता पर निर्भर करता है।)

गुरुत्वाकर्षण

एक स्ट्रिंग स्पेसटाइम में यूक्लिडियन ज्यामिति से एक ज्यामितीय विचलन है जो एक कोणीय घाटे की विशेषता है: एक स्ट्रिंग के बाहर चारों ओर एक चक्र में 360 डिग्री से कम कुल कोण सम्मिलित होगा। सापेक्षता के सामान्य सिद्धांत से ऐसा ज्यामितीय दोष तनाव में होना चाहिए, और द्रव्यमान द्वारा प्रकट होगा। यद्यपि ब्रह्मांडीय तारों को अत्यंत पतला माना जाता है, लेकिन उनमें अत्यधिक घनत्व होगा, और इसलिए वे महत्वपूर्ण गुरुत्वाकर्षण तरंग स्रोतों का प्रतिनिधित्व करेंगे। प्रायः एक किलोमीटर लंबा एक ब्रह्मांडीय तार पृथ्वी से अधिक विशाल हो सकता है।

चूँकि सामान्य सापेक्षता भविष्यवाणी करती है कि एक सीधी स्ट्रिंग की गुरुत्वाकर्षण क्षमता गायब हो जाती है: स्थिर आसपास के पदार्थ पर कोई गुरुत्वाकर्षण बल नहीं होता है। सीधे ब्रह्मांडीय स्ट्रिंग का एकमात्र गुरुत्वाकर्षण प्रभाव पदार्थ (या प्रकाश) का एक सापेक्ष विक्षेपण है जो स्ट्रिंग को विपरीत दिशा में (विशुद्ध रूप से टोपोलॉजिकल प्रभाव) से गुजरता है। एक बंद ब्रह्मांडीय तार अधिक पारंपरिक तरीके से गुरुत्वाकर्षण करता है।[clarification needed]

ब्रह्मांड के विस्तार के दौरान, ब्रह्मांडीय तार लूप का एक नेटवर्क बनते थे, और अतीत में यह विचार गया था कि उनका गुरुत्वाकर्षण गांगेय सुपरक्लस्टर में पदार्थ के मूल क्लंपिंग के लिए जिम्मेदार हो सकता है। अब यह गणना की जाती है कि ब्रह्मांड में संरचना निर्माण में उनका योगदान 10% से कम है।

नकारात्मक द्रव्यमान लौकिक स्ट्रिंग

एक ब्रह्मांडीय स्ट्रिंग का मानक मॉडल कोण की कमी के साथ एक ज्यामितीय संरचना है, जो इस प्रकार तनाव में है और इसलिए सकारात्मक द्रव्यमान है। 1995 में, मैट विस्सर एट अल। प्रस्तावित किया कि ब्रह्मांडीय तार सैद्धांतिक रूप से कोण की अधिकता के साथ भी मौजूद हो सकते हैं, और इस प्रकार नकारात्मक तनाव और इसलिए नकारात्मक द्रव्यमान। ऐसे विदेशी पदार्थ तारों की स्थिरता समस्याग्रस्त है; हालाँकि, उन्होंने सुझाव दिया कि यदि प्रारंभिक ब्रह्मांड में एक वर्महोल के चारों ओर एक नकारात्मक द्रव्यमान स्ट्रिंग लपेटी जाए, तो इस तरह के वर्महोल को वर्तमान समय में मौजूद रहने के लिए पर्याप्त रूप से स्थिर किया जा सकता है।[3][4]


सुपर-क्रिटिकल ब्रह्मांडीय स्ट्रिंग

एक (सीधी) ब्रह्मांडीय स्ट्रिंग की बाहरी ज्यामिति को एक एम्बेडिंग आरेख में निम्नानुसार देखा जा सकता है: स्ट्रिंग के लंबवत द्वि-आयामी सतह पर ध्यान केंद्रित करना, इसकी ज्यामिति एक शंकु की है जो कोण δ के एक पच्चर को काटकर प्राप्त की जाती है। और किनारों को आपस में चिपका दें। कोणीय घाटा δ रैखिक रूप से स्ट्रिंग तनाव (= द्रव्यमान प्रति इकाई लंबाई) से संबंधित है, यानी तनाव जितना बड़ा होगा, शंकु उतना ही तेज होगा। इसलिए, तनाव के एक निश्चित महत्वपूर्ण मूल्य के लिए δ 2π तक पहुंचता है, और शंकु एक सिलेंडर में पतित हो जाता है। (इस सेटअप को देखने के लिए एक सीमित मोटाई के साथ एक स्ट्रिंग के बारे में सोचना पड़ता है।) और भी बड़े, अति-महत्वपूर्ण मूल्यों के लिए, δ 2π से अधिक है और (द्वि-आयामी) बाहरी ज्यामिति बंद हो जाती है (यह कॉम्पैक्ट हो जाती है), एक में समाप्त शंक्वाकार विलक्षणता।

हालांकि, यह स्थैतिक ज्यामिति सुपर-क्रिटिकल केस (सब-क्रिटिकल टेंशन के विपरीत) में अस्थिर है: छोटे क्षोभ एक गतिशील स्पेसटाइम की ओर ले जाते हैं जो एक स्थिर दर पर अक्षीय दिशा में फैलता है। 2डी बाहरी अभी भी कॉम्पैक्ट है, लेकिन शंक्वाकार विलक्षणता से बचा जा सकता है, और एम्बेडिंग तस्वीर एक बढ़ते सिगार की है। और भी बड़े तनावों के लिए (लगभग 1.6 के कारक द्वारा महत्वपूर्ण मूल्य से अधिक), स्ट्रिंग को अब रेडियल दिशा में स्थिर नहीं किया जा सकता है।[5] यथार्थवादी लौकिक तारों से महत्वपूर्ण मूल्य के नीचे परिमाण के 6 आदेशों के आसपास तनाव होने की उम्मीद है, और इस प्रकार हमेशा उप-महत्वपूर्ण होते हैं। हालांकि, ब्रैन कॉस्मोलॉजी के संदर्भ में इन्फ्लेटिंग ब्रह्मांडीय स्ट्रिंग सॉल्यूशंस प्रासंगिक हो सकते हैं, जहां स्ट्रिंग को छह-आयामी बल्क में 3-ब्रान (हमारे ब्रह्मांड के अनुरूप) में प्रचारित किया जाता है।

अवलोकन संबंधी साक्ष्य

एक समय यह सोचा गया था कि ब्रह्मांडीय तारों का गुरुत्वाकर्षण प्रभाव ब्रह्मांड की बड़े पैमाने की संरचना में योगदान दे सकता है| ब्रह्मांड में पदार्थ का बड़े पैमाने पर जमना, लेकिन आज यह सब आकाशगंगा सर्वेक्षण और ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि के सटीक माप के माध्यम से जाना जाता है। (CMB) यादृच्छिक, सामान्य वितरण उतार-चढ़ाव से एक विकास को फिट करता है। इसलिए ये सटीक अवलोकन ब्रह्मांडीय स्ट्रिंग्स के लिए एक महत्वपूर्ण भूमिका को खारिज करते हैं और वर्तमान में यह ज्ञात है कि सीएमबी में ब्रह्मांडीय स्ट्रिंग्स का योगदान 10% से अधिक नहीं हो सकता है।

ब्रह्मांडीय तारों के हिंसक दोलन सामान्य रूप से कस्प (विलक्षणता) और साइन-गॉर्डन समीकरण # सोलिटॉन समाधान के गठन की ओर ले जाते हैं। ये बदले में स्ट्रिंग के कुछ हिस्सों को अलग-अलग लूप में पिंच करने का कारण बनते हैं। गुरुत्वाकर्षण विकिरण के माध्यम से इन छोरों का एक सीमित जीवनकाल और क्षय (मुख्य रूप से) होता है। यह विकिरण जो ब्रह्मांडीय तारों से सबसे मजबूत संकेत की ओर जाता है, गुरुत्वाकर्षण-तरंग वेधशाला में पता लगाने योग्य हो सकता है। एक महत्वपूर्ण खुला प्रश्न यह है कि किस हद तक पिंच ऑफ लूप बैकरिएक्ट करते हैं या उत्सर्जक ब्रह्मांडीय स्ट्रिंग की प्रारंभिक स्थिति को बदलते हैं - इस तरह के बैकरिएक्शन प्रभाव को संगणना में लगभग हमेशा उपेक्षित किया जाता है और परिमाण अनुमानों के क्रम के लिए भी महत्वपूर्ण माना जाता है।

एक ब्रह्मांडीय तार के एक सीधे खंड द्वारा एक आकाशगंगा के गुरुत्वाकर्षण लेंसिंग से आकाशगंगा की दो समान, अविकृत छवियां उत्पन्न होंगी। 2003 में मिखाइल साज़हिन के नेतृत्व में एक समूह ने आकाश में एक साथ बहुत करीब से दो प्रतीत होने वाली समान आकाशगंगाओं की आकस्मिक खोज की सूचना दी, जिससे अनुमान लगाया गया कि एक ब्रह्मांडीय तार पाया गया था।[6] हालांकि, जनवरी 2005 में हबल अंतरिक्ष सूक्ष्मदर्शी द्वारा अवलोकनों ने उन्हें समान आकाशगंगाओं की एक जोड़ी के रूप में दिखाया, न कि एक ही आकाशगंगा की दो छवियां।[7][8] एक ब्रह्मांडीय तार ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि में उतार-चढ़ाव की एक समान डुप्लिकेट छवि उत्पन्न करेगा, जिसके बारे में सोचा गया था कि प्लैंक सर्वेयर मिशन द्वारा इसका पता लगाया जा सकता है।[9] हालांकि, प्लैंक मिशन के डेटा का 2013 का विश्लेषण ब्रह्मांडीय तारों का कोई सबूत खोजने में विफल रहा।[10]

ब्रह्मांडीय स्ट्रिंग सिद्धांत का समर्थन करने वाले साक्ष्य का एक टुकड़ा ट्विन कैसर नामक डबल क्वासर की टिप्पणियों में देखा गया एक घटना है|Q0957+561A,B। मूल रूप से 1979 में डेनिस वॉल्श, बॉब कार्सवेल और रे वेमैन द्वारा खोजा गया, इस क्वासर की दोहरी छवि इसके और पृथ्वी के मध्य स्थित एक आकाशगंगा के कारण होती है। इस मध्यवर्ती आकाशगंगा का गुरुत्वीय लेंस प्रभाव क्वासर के प्रकाश को मोड़ देता है जिससे यह पृथ्वी की ओर अलग-अलग लंबाई के दो रास्तों का अनुसरण करता है। इसका परिणाम यह होता है कि हमें एक ही क्वासर की दो छवियां दिखाई देती हैं, जिनमें से एक थोड़े समय के बाद दूसरी (लगभग 417.1 दिन बाद) आती है। हालांकि, रूडोल्फ शिल्ड के नेतृत्व में हार्वर्ड-स्मिथसोनियन सेंटर फॉर एस्ट्रोफिजिक्स में खगोलविदों की एक टीम ने क्वासर का अध्ययन किया और पाया कि सितंबर 1994 और जुलाई 1995 के मध्य की अवधि के दौरान दो छवियों में कोई समय देरी नहीं हुई; दो छवियों की चमक में परिवर्तन चार अलग-अलग अवसरों पर एक साथ हुआ। शिल्ड और उनकी टीम का मानना ​​है कि इस अवलोकन के लिए एकमात्र स्पष्टीकरण यह है कि उस समय अवधि के दौरान पृथ्वी और क्वासर के मध्य एक ब्रह्मांडीय तार बहुत तेज गति से यात्रा कर रहा था और लगभग 100 दिनों की अवधि के साथ दोलन कर रहा था। रेफरी>Schild, R.; Masnyak, I. S.; Hnatyk, B. I.; Zhdanov, V. I. (2004). "Q0957+561 A,B की टिप्पणियों में विषम उतार-चढ़ाव: कॉस्मिक स्ट्रिंग की स्मोकिंग गन?". Astronomy and Astrophysics. 422 (2): 477–482. arXiv:astro-ph/0406434. Bibcode:2004A&A...422..477S. doi:10.1051/0004-6361:20040274. S2CID 16939392.</ref>

वर्तमान में ब्रह्मांडीय स्ट्रिंग मापदंडों पर सबसे संवेदनशील सीमाएं पल्सर टाइमिंग ऐरे डेटा द्वारा गुरुत्वाकर्षण तरंगों का पता नहीं लगाने से आती हैं। रेफरी>{{Cite journal|arxiv=1508.03024 |title=NANOGrav नौ साल का डेटा सेट: आइसोट्रोपिक स्टोचैस्टिक ग्रेविटेशनल वेव बैकग्राउंड पर सीमाएं|journal=The Astrophysical Journal |volume=821 |issue=1 |pages=13 |year=2015|last1=Arzoumanian |first1=Zaven |last2=Brazier |first2=Adam |last3=Burke-Spolaor |first3=Sarah |last4=Chamberlin |first4=Sydney |last5=Chatterjee |first5=Shami |last6=Christy |first6=Brian |last7=Cordes |first7=Jim |last8=Cornish |first8=Neil |last9=Demorest |first9=Paul |last10=Deng |first10=Xihao |last11=Dolch |first11=Tim |last12=Ellis |first12=Justin |last13=Ferdman |first13=Rob |last14=Fonseca |first14=Emmanuel |last15=Garver-Daniels |first15=Nate |last16=Jenet |first16=Fredrick |last17=Jones |first17=Glenn |last18=Kaspi |first18=Vicky |last19=Koop |first19=Michael |last20=Lam |first20=Michael |last21=Lazio |first21=Joseph |last22=Levin |first22=Lina |last23=Lommen |first23=Andrea |last24=Lorimer |first24=Duncan |last25=Luo |first25=Jin |last26=Lynch |first26=Ryan |last27=Madison |first27=Dustin |last28=McLaughlin |first28=Maura |last29=McWilliams |first29=Sean |last30=Mingarelli |first30=Chiara |display-authors=29 |doi=10.3847/0004-637X/821/1/13 |bibcode = 2016ApJ...821...13A |s2cid=34191834 }</ref> धरती से जुड़ा एलआईजीओ | लेजर इंटरफेरोमीटर ग्रेविटेशनल-वेव ऑब्जर्वेटरी (एलआईजीओ) और विशेष रूप से अंतरिक्ष-आधारित ग्रेविटेशनल वेव डिटेक्टर लेजर इंटरफेरोमीटर स्पेस एंटीना (एलआईएसए) गुरुत्वाकर्षण तरंगों की खोज करेगा और संकेतों का पता लगाने के लिए पर्याप्त संवेदनशील होने की संभावना है। ब्रह्मांडीय तार, बशर्ते प्रासंगिक ब्रह्मांडीय तनाव बहुत कम न हों।

स्ट्रिंग सिद्धांत और ब्रह्मांडीय स्ट्रिंग्स

स्ट्रिंग सिद्धांत के शुरुआती दिनों में स्ट्रिंग सिद्धांतकारों और ब्रह्मांडीय स्ट्रिंग सिद्धांतकारों दोनों का मानना ​​था कि सुपरस्ट्रिंग्स और ब्रह्मांडीय तारों के मध्य कोई सीधा संबंध नहीं था (नाम सुतली के अनुरूप स्वतंत्र रूप से चुने गए थे)। प्रारंभिक ब्रह्मांड में ब्रह्मांडीय तारों के उत्पन्न होने की संभावना की कल्पना पहली बार 1976 में क्वांटम क्षेत्र के सिद्धांतकार टॉम किबल ने की थी,[1]और इसने क्षेत्र में रुचि की पहली लहर पैदा की। 1985 में, पहली सुपरस्ट्रिंग क्रांति के दौरान, एडवर्ड विटन ने प्रारंभिक ब्रह्मांड मेंमूलभूत सुपरस्ट्रिंग्स के उत्पन्न होने और मैक्रोस्कोपिक स्केल तक फैले होने की संभावना पर विचार किया था, इस मामले में (टॉम किबल के नामकरण के बाद) उन्हें ब्रह्मांडीय के रूप में संदर्भित किया जाएगा। सुपरस्ट्रिंग्स। उन्होंने निष्कर्ष निकाला कि यदि उनका उत्पादन किया गया होता तो वे मैक्रोस्कोपिक पैमानों तक पहुँचने से पहले या तो छोटे तारों में बिखर गए होते (टाइप I सुपरस्ट्रिंग सिद्धांत के मामले में), वे हमेशा डोमेन दीवार (स्ट्रिंग सिद्धांत) की सीमाओं के रूप में दिखाई देंगे जिनका तनाव स्ट्रिंग्स को बाध्य करेगा। ब्रह्मांडीय स्केल (हेटेरोटिक स्ट्रिंग सिद्धांत के संदर्भ में) के बढ़ने के बजाय ढहने के लिए, या प्लैंक ऊर्जा के करीब एक विशिष्ट ऊर्जा स्केल होने के कारण वे कॉस्मोलॉजिकल इन्फ्लेशन से पहले उत्पन्न होंगे और इसलिए ब्रह्मांड के विस्तार से दूर हो जाएंगे और नहीं देखने योग्य।

इन शुरुआती दिनों से काफी कुछ बदल गया है, मुख्य रूप से दूसरी सुपरस्ट्रिंग क्रांति के कारण। अब यह ज्ञात है कि स्ट्रिंग सिद्धांतमूलभूत स्ट्रिंग्स के अतिरिक्त जो सिद्धांत को परेशान रूप से परिभाषित करती है, में अन्य एक-आयामी वस्तुएं भी शामिल हैं, जैसे कि डी-स्ट्रिंग्स, और उच्च-आयामी ऑब्जेक्ट्स जैसे डी-ब्रेन, एनएस-ब्रेन और एम-ब्रेन्स कॉम्पैक्ट आंतरिक स्पेसटाइम आयामों पर आंशिक रूप से लिपटे हुए, जबकि एक गैर-कॉम्पैक्ट आयाम में स्थानिक रूप से विस्तारित किया जा रहा है। बड़े अतिरिक्त आयाम और बड़े रान्डेल-सुंदरम मॉडल की संभावना प्लैंक स्केल की तुलना में बहुत कम तनाव वाले तारों की अनुमति देती है। इसके अलावा, खोजे गए विभिन्न द्वैत इस निष्कर्ष की ओर इशारा करते हैं कि वास्तव में ये सभी स्पष्ट रूप से विभिन्न प्रकार के तार केवल एक ही वस्तु हैं, जैसा कि यह पैरामीटर स्थान के विभिन्न क्षेत्रों में दिखाई देता है। इन नए विकासों ने 2000 के दशक की शुरुआत में बड़े पैमाने पर ब्रह्मांडीय तारों में रुचि को पुनर्जीवित किया है।

2002 में, हेनरी टाय और सहयोगियों ने ब्रैन कॉस्मोलॉजी के अंतिम चरणों के दौरान ब्रह्मांडीय सुपरस्ट्रिंग्स के उत्पादन की भविष्यवाणी की,[11] प्रारंभिक ब्रह्मांड का एक स्ट्रिंग सिद्धांत निर्माण जो एक विस्तारित ब्रह्मांड और ब्रह्माण्ड संबंधी मुद्रास्फीति की ओर जाता है। बाद में स्ट्रिंग थिओरिस्ट योसेफ पोलकिंस्की द्वारा यह महसूस किया गया कि विस्तारित ब्रह्मांड एकमूलभूत स्ट्रिंग (सुपरस्ट्रिंग सिद्धांत को मानता है) को तब तक फैला सकता है जब तक कि यह इंटरगैलेक्टिक आकार का न हो। इस तरह की एक फैली हुई स्ट्रिंग पुरानी ब्रह्मांडीय स्ट्रिंग किस्म के कई गुणों को प्रदर्शित करेगी, जिससे पुरानी गणना फिर से उपयोगी हो जाएगी। सिद्धांतकार टॉम किब्बल की टिप्पणी के अनुसार, स्ट्रिंग सिद्धांत कॉस्मोलॉजिस्ट ने अंडरग्रोथ में हर जगह गुप्त ब्रह्मांडीय तारों की खोज की है। ब्रह्मांडीय तारों का पता लगाने के पुराने प्रस्तावों का उपयोग अब सुपरस्ट्रिंग सिद्धांत की जांच के लिए किया जा सकता है।

सुपरस्ट्रिंग्स, डी-स्ट्रिंग्स या ऊपर उल्लिखित अन्य रेशे वाली वस्तुएं अंतरिक्षीय पैमानों तक फैली हुई हैं, जो गुरुत्वाकर्षण तरंगों को विकीर्ण करेंगी, जिन्हें LIGO और विशेष रूप से अंतरिक्ष-आधारित गुरुत्वाकर्षण तरंग प्रयोग LISA जैसे प्रयोगों का उपयोग करके पता लगाया जा सकता है। वे ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि में थोड़ी अनियमितताएं भी पैदा कर सकते हैं, बहुत सूक्ष्म अभी तक पता चला है लेकिन संभवतः भविष्य के अवलोकन के दायरे में है।

ध्यान दें कि इनमें से अधिकांश प्रस्ताव उचित ब्रह्माण्ड संबंधी मूलभूत सिद्धांतों (स्ट्रिंग्स, ब्रैन्स, इत्यादि) पर निर्भर करते हैं, और आज तक इनकी पुष्टि करने वाले प्रायोगिक सत्यापन की पुष्टि नहीं की गई है। लौकिक तार फिर भी स्ट्रिंग सिद्धांत में एक खिड़की प्रदान करते हैं। यदि ब्रह्मांडीय तार देखे जाते हैं जो ब्रह्मांड संबंधी स्ट्रिंग मॉडल की एक विस्तृत श्रृंखला के लिए एक वास्तविक संभावना है, तो यह अंतरिक्ष-समय की संरचना में अंतर्निहित एक स्ट्रिंग सिद्धांत मॉडल का पहला प्रायोगिक साक्ष्य प्रदान करेगा।

ब्रह्मांडीय स्ट्रिंग नेटवर्क

ब्रह्मांडीय स्ट्रिंग्स नेटवर्क के पदचिह्न का पता लगाने के कई प्रयास हैं।[12][13][14]


यह भी देखें

  • 0-आयामी सामयिक दोष: चुंबकीय मोनोपोल
  • 2-आयामी टोपोलॉजिकल दोष: डोमेन वॉल (स्ट्रिंग सिद्धांत) (जैसे 1-डायमेंशनल टोपोलॉजिकल डिफेक्ट: एक ब्रह्मांडीय स्ट्रिंग)
  • ब्रह्मांडीय स्ट्रिंग लूप एक फ़र्मोनिक सुपरकरंट द्वारा स्थिर: शब्द

संदर्भ

  1. 1.0 1.1 Kibble, Tom W K (1976). "कॉस्मिक डोमेन और स्ट्रिंग्स की टोपोलॉजी". Journal of Physics A: Mathematical and General. 9 (8): 1387–1398. Bibcode:1976JPhA....9.1387K. doi:10.1088/0305-4470/9/8/029.
  2. Copeland, Edmund J; Myers, Robert C; Polchinski, Joseph (2004). "कॉस्मिक एफ- और डी-स्ट्रिंग्स". Journal of High Energy Physics. 2004 (6): 013. arXiv:hep-th/0312067. Bibcode:2004JHEP...06..013C. doi:10.1088/1126-6708/2004/06/013. S2CID 140465.
  3. Cramer, John; Forward, Robert; Morris, Michael; Visser, Matt; Benford, Gregory; Landis, Geoffrey (1995). "गुरुत्वाकर्षण लेंस के रूप में प्राकृतिक वर्महोल". Physical Review D. 51 (6): 3117–3120. arXiv:astro-ph/9409051. Bibcode:1995PhRvD..51.3117C. doi:10.1103/PhysRevD.51.3117. PMID 10018782. S2CID 42837620.
  4. "'सबवे टू द स्टार्स' की खोज" (Press release). Archived from the original on 2012-04-15.
  5. Niedermann, Florian; Schneider, Robert (2015). "लौकिक तारों को फुलाते हुए रेडियल रूप से स्थिर". Phys. Rev. D. 91 (6): 064010. arXiv:1412.2750. Bibcode:2015PhRvD..91f4010N. doi:10.1103/PhysRevD.91.064010. S2CID 118411378.
  6. Sazhin, M.; Longo, G.; Capaccioli, M.; Alcala, J. M.; Silvotti, R.; Covone, G.; Khovanskaya, O.; Pavlov, M.; Pannella, M.; et al. (2003). "CSL-1: Chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?". Monthly Notices of the Royal Astronomical Society. 343 (2): 353. arXiv:astro-ph/0302547. Bibcode:2003MNRAS.343..353S. doi:10.1046/j.1365-8711.2003.06568.x. S2CID 18650564.
  7. Agol, Eric; Hogan, Craig; Plotkin, Richard (2006). "हबल इमेजिंग में कॉस्मिक स्ट्रिंग लेंस शामिल नहीं है". Physical Review D. 73 (8): 87302. arXiv:astro-ph/0603838. Bibcode:2006PhRvD..73h7302A. doi:10.1103/PhysRevD.73.087302. S2CID 119450257.
  8. Sazhin, M. V.; Capaccioli, M.; Longo, G.; Paolillo, M.; Khovanskaya, O. S.; Grogin, N. A.; Schreier, E. J.; Covone, G. (2006). "CSL-1 की वास्तविक प्रकृति". arXiv:astro-ph/0601494.
  9. Fraisse, Aurélien; Ringeval, Christophe; Spergel, David; Bouchet, François (2008). "कॉस्मिक स्ट्रिंग्स द्वारा प्रेरित लघु-कोण CMB तापमान अनिसोट्रॉपी". Physical Review D. 78 (4): 43535. arXiv:0708.1162. Bibcode:2008PhRvD..78d3535F. doi:10.1103/PhysRevD.78.043535. S2CID 119145024.
  10. Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; et al. (2013). "प्लैंक 2013 परिणाम। XXV। कॉस्मिक स्ट्रिंग्स और अन्य टोपोलॉजिकल दोषों की खोज करता है". Astronomy & Astrophysics. 571: A25. arXiv:1303.5085. Bibcode:2014A&A...571A..25P. doi:10.1051/0004-6361/201321621. S2CID 15347782.
  11. Sarangi, Saswat; Tye, S.-H.Henry (2002). "ब्रैन मुद्रास्फीति के अंत की ओर लौकिक स्ट्रिंग उत्पादन". Physics Letters B. 536 (3–4): 185. arXiv:hep-th/0204074. Bibcode:2002PhLB..536..185S. doi:10.1016/S0370-2693(02)01824-5. S2CID 14274241.
  12. Movahed, M. Sadegh; Javanmardi, B.; Sheth, Ravi K. (2013-10-01). "Peak–peak correlations in the cosmic background radiation from cosmic strings". Monthly Notices of the Royal Astronomical Society (in English). 434 (4): 3597–3605. arXiv:1212.0964. Bibcode:2013MNRAS.434.3597M. doi:10.1093/mnras/stt1284. ISSN 0035-8711. S2CID 53499674.
  13. Vafaei Sadr, A; Movahed, S M S; Farhang, M; Ringeval, C; Bouchet, F R (2017-12-14). "स्ट्रिंग-प्रेरित सीएमबी अनिसोट्रॉपी की खोज के लिए एक मल्टीस्केल पाइपलाइन". Monthly Notices of the Royal Astronomical Society (in English). 475 (1): 1010–1022. arXiv:1710.00173. Bibcode:2018MNRAS.475.1010V. doi:10.1093/mnras/stx3126. ISSN 0035-8711. S2CID 5825048.
  14. Vafaei Sadr, A; Farhang, M; Movahed, S M S; Bassett, B; Kunz, M (2018-05-01). "ट्री-आधारित मशीन लर्निंग के साथ कॉस्मिक स्ट्रिंग डिटेक्शन". Monthly Notices of the Royal Astronomical Society (in English). 478 (1): 1132–1140. arXiv:1801.04140. Bibcode:2018MNRAS.478.1132V. doi:10.1093/mnras/sty1055. ISSN 0035-8711. S2CID 53330913.


बाहरी संबंध