आन्तरिक कोण तथा बाह्य कोण: Difference between revisions

From Vigyanwiki
No edit summary
Line 29: Line 29:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/04/2023]]
[[Category:Created On 10/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:26, 9 May 2023

आंतरिक और बहिष्कोण

ज्यामिति में, बहुभुज का एक कोण, बहुभुज की उस दो भुजाओं से बनता है जो एक अंतबिंदु साझा करते हैं। एक साधारण बहुभुज (गैर-स्व-प्रतिच्छेदी) बहुभुज के लिए, भले ही यह बहुभुज (Convexity) और गैर-उत्तल |उत्तल या गैर-उत्तल हो, इस कोण को एक आंतरिक (टोपोलॉजी) कोण कहा जाता है (या internal angle) यदि कोण के भीतर कोई बिंदु बहुभुज के आंतरिक भाग में है। एक बहुभुज का प्रति शीर्ष (ज्यामिति) ठीक एक आंतरिक कोण होता है।

यदि साधारण बहुभुज का प्रत्येक आंतरिक कोण pi|π रेडियन (180°) से कम है, तो बहुभुज को उत्तल बहुभुज कहा जाता है।

इसके विपरीत, बहिष्कोण (टोपोलॉजी) (जिसे external angle या टर्निंग एंगल) साधारण बहुभुज के एक तरफ और एक विस्तारित पक्ष द्वारा गठित कोण है।[1][2]: pp. 261-264 

गुण

  • एक ही शीर्ष पर आंतरिक कोण और बाह्य कोण का योग π रेडियन (180°) होता है।
  • साधारण बहुभुज के सभी आंतरिक कोणों का योग π(n−2) रेडियन या 180(n–2) डिग्री है, जहाँ n भुजाओं की संख्या है। गणितीय प्रेरण का उपयोग करके सूत्र को सिद्ध किया जा सकता है: एक त्रिकोण से प्रारम्भ करना, जिसके लिए कोण योग 180 डिग्री है, फिर एक पक्ष को दो पक्षों के साथ दूसरे शीर्ष पर जोड़ा जाता है, और इसी तरह से आगे भी जोड़ा जाता है।
  • किसी भी सरल उत्तल या गैर-उत्तल बहुभुज के बाह्य कोणों का योग, यदि प्रत्येक शीर्ष पर दो बाह्य कोणों में से केवल एक को ग्रहण किया जाता है, तो वह 2π रेडियन (360°) होता है।
  • एक शीर्ष पर बहिष्कोण का माप उस तरफ से अप्रभावित रहता है जिसे बढ़ाया जाता है: दो बहिष्कोण जो एक शीर्ष पर वैकल्पिक रूप से एक तरफ या दूसरे को बढ़ाकर बनाए जा सकते हैं, ऊर्ध्वाधर कोण होते हैं और इस प्रकार बराबर होते हैं।

क्रॉसित बहुभुजों का विस्तार

आंतरिक कोण की अवधारणा को निर्देशित कोण की अवधारणा का उपयोग करके क्रॉसित बहुभुजों जैसे स्टार बहुभुजों के लिए एक सुसंगत तरीके से बढ़ाया जा सकता है। सामान्य तौर पर, किसी भी बंद बहुभुज की डिग्री में आंतरिक कोण योग, क्रॉसित बहुभुजों (स्व-प्रतिच्छेदी) सहित, फिर 180(n–2k)° द्वारा दिया जाता है, जहां n शीर्षों की संख्या है, और सख्ती से सकारात्मक पूर्णांक k है कुल (360°) चक्करों की संख्या जो एक व्यक्ति बहुभुज की परिधि के चारों ओर घूमकर करता है। दूसरे शब्दों में, सभी बाह्य कोणों का योग 2πk रेडियन या 360k डिग्री होता है। उदाहरण: साधारण उत्तल बहुभुजों और अवतल बहुभुजों के लिए, k = 1, क्योंकि बहिष्कोणों का योग 360° है, और एक परिधि के चारों ओर घूमकर केवल एक पूर्ण चक्कर लगाता है।

संदर्भ

  1. Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExteriorAngleBisector.html
  2. Posamentier, Alfred S., and Lehmann, Ingmar. The Secrets of Triangles, Prometheus Books, 2012.

बाहरी संबंध