पल्सार: Difference between revisions

From Vigyanwiki
No edit summary
 
(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
एक पल्सर (पल्सेटिंग स्टार) एक खगोलीय वस्तु है जो रेडियो तरंगों (विद्युत चुम्बकीय विकिरण) की एक नियमित पल्स उत्पन्न करती है जिसे परंपरागत रूप से घूर्णन न्यूट्रॉन स्टार के कारण माना जाता है।
एक पल्सर (पल्सेटिंग स्टार)<ref>https://www.merriam-webster.com/dictionary/pulsar</ref> एक खगोलीय वस्तु है जो रेडियो तरंगों (विद्युत चुम्बकीय विकिरण) की एक नियमित पल्स उत्पन्न करती है जिसे परंपरागत रूप से घूर्णन न्यूट्रॉन स्टार के कारण माना जाता है।


पल्सर - एक प्रकार का तेजी से घूमने वाला, ब्रह्मांडीय बीकन, जिसका द्रव्यमान सूर्य से कुछ अधिक है और लगभग दस किलोमीटर की त्रिज्या है। (पल्सर की सतह पर एक इंसान का वजन पृथ्वी की तुलना में कुछ सौ मिलियन गुना अधिक होगा।) पल्सर का "बीकन लाइट" अक्सर रेडियो तरंग क्षेत्र के भीतर होता है।
पल्सर - एक प्रकार का तेजी से घूमने वाला, ब्रह्मांडीय बीकन, जिसका द्रव्यमान सूर्य से कुछ अधिक है और लगभग दस किलोमीटर की त्रिज्या है। (पल्सर की सतह पर एक इंसान का वजन पृथ्वी की तुलना में कुछ सौ मिलियन गुना अधिक होगा।) पल्सर का "बीकन लाइट" अक्सर रेडियो तरंग क्षेत्र के भीतर होता है।
[[File:Pulsar anim.ogv|thumb|पल्सर की कार्य शैली जतलाता कृतिम चित्रण ]]
[[File:Pulsar anim.ogv|thumb|पल्सर की कार्य शैली जतलाता कृतिम चित्रण ]]
पल्सर-न्यूट्रॉन तारे एक सेकंड में सैकड़ों बार घूमते हैं-रेडियो-फ्रीक्वेंसी बीम उत्सर्जित करते हैं, जो असंभव रूप से उज्ज्वल लगते हैं। भौतिकी के नियमों  इस तरह के उज्ज्वल स्पंदनों को एक सुसंगत विकिरण तंत्र द्वारा उत्पादित किया जाए, जिसमें कणों के समूह एक दूसरे के साथ समसामयिक रूप से निकलते हैं, जैसे परमाणु जो लेजर प्रकाश उत्पन्न करने के लिए एक साथ उत्त्तेजावस्थित होते हैं। पल्सर की खोज के बाद से बहुत से शोध प्रयासों के बावजूद, इस तंत्र को समझने के लिए जटिल प्रयास जारी हैं।
पल्सर-न्यूट्रॉन तारे<ref>https://en-m-wikipedia-org.translate.goog/wiki/Neutron_star?_x_tr_sl=en&_x_tr_tl=hi&_x_tr_hl=hi&_x_tr_pto=tc</ref> एक सेकंड में सैकड़ों बार घूमते हैं-रेडियो-फ्रीक्वेंसी बीम उत्सर्जित करते हैं, जो असंभव रूप से उज्ज्वल लगते हैं। भौतिकी के नियमों  इस तरह के उज्ज्वल स्पंदनों को एक सुसंगत विकिरण तंत्र द्वारा उत्पादित किया जाए, जिसमें कणों के समूह एक दूसरे के साथ समसामयिक रूप से निकलते हैं, जैसे परमाणु जो लेजर प्रकाश उत्पन्न करने के लिए एक साथ उत्त्तेजावस्थित होते हैं। पल्सर की खोज के बाद से बहुत से शोध प्रयासों के बावजूद, इस तंत्र को समझने के लिए जटिल प्रयास जारी हैं।


== हल्स-टेलर पल्सर ==
== हल्स-टेलर पल्सर ==
Line 9: Line 9:
पहला पल्सर 1967 में कैम्ब्रिज, इंग्लैंड में रेडियोएस्ट्रोनॉमी प्रयोगशाला में खोजा गया था (एंटनी हेविश को नोबेल पुरस्कार 1974)। हल्स-टेलर पल्सर<ref>"Nobel Prize in Physics 1993"  2010-01-07 को पुनःप्राप्त
पहला पल्सर 1967 में कैम्ब्रिज, इंग्लैंड में रेडियोएस्ट्रोनॉमी प्रयोगशाला में खोजा गया था (एंटनी हेविश को नोबेल पुरस्कार 1974)। हल्स-टेलर पल्सर<ref>"Nobel Prize in Physics 1993"  2010-01-07 को पुनःप्राप्त


https://en.wikipedia.org/wiki/Pulsar#cite_note-28</ref> के बारे में जो नया था वह यह था कि, बीकन सिग्नल के व्यवहार से, यह निष्कर्ष निकाला जा सकता था कि यह लगभग समान रूप से भारी साथी के साथ दूरी पर था जो चंद्रमा से केवल कुछ गुना दूरी के अनुरूप था। धरती। इस खगोलीय प्रणाली का व्यवहार न्यूटन के सिद्धांत का उपयोग करके खगोलीय पिंडों की एक जोड़ी के लिए जो गणना की जा सकती है, उससे बहुत अलग है। यहाँ आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और गुरुत्वाकर्षण के वैकल्पिक सिद्धांतों के परीक्षण के लिए एक नई, क्रांतिकारी "अंतरिक्ष प्रयोगशाला" प्राप्त की गई है। अब तक, आइंस्टीन के सिद्धांत ने उड़ते हुए रंगों के साथ परीक्षा पास की है। सिद्धांत की भविष्यवाणी को बड़ी सटीकता के साथ सत्यापित करने की संभावना विशेष रूप से दिलचस्प रही है कि प्रणाली को गुरुत्वाकर्षण तरंगों का उत्सर्जन करके उसी तरह से ऊर्जा खोनी चाहिए जिस तरह विद्युत आवेशों की एक प्रणाली विद्युत चुम्बकीय तरंगों का उत्सर्जन करती है।
https://en.wikipedia.org/wiki/Pulsar#cite_note-28</ref> के बारे में जो नया था वह यह था कि, बीकन सिग्नल के व्यवहार से, यह निष्कर्ष निकाला जा सकता था कि यह लगभग समान रूप से भारी साथी के साथ,जो धरती से चंद्रमा के अनुरूप, केवल कुछ गुना दूरी पर था।
 
आइंस्टीन का सामान्य सापेक्षता का सिद्धांत भविष्यवाणी करता है कि इस प्रणाली को मजबूत गुरुत्वाकर्षण विकिरण का उत्सर्जन करना चाहिए,लगभग उसी तरह से ऊर्जा खोनी चाहिए, जिस तरह विद्युत आवेशों की एक प्रणाली विद्युत चुम्बकीय तरंगों का उत्सर्जन करती है। जिससे कक्षा लगातार अनुबंधित होती है क्योंकि यह कक्षीय ऊर्जा खो देती है। पल्सर-अवलोकन ने जल्द ही इस भविष्यवाणी की पुष्टि की, जिससे गुरुत्वाकर्षण तरंगों के अस्तित्व का पहला प्रमाण मिला। इस खगोलीय प्रणाली का व्यवहार न्यूटन के सिद्धांत का उपयोग करके खगोलीय पिंडों की एक जोड़ी के लिए जो गणना की जा सकती है, उससे बहुत अलग है। यहाँ आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और गुरुत्वाकर्षण के वैकल्पिक सिद्धांतों के परीक्षण के लिए एक नई, क्रांतिकारी "अंतरिक्ष प्रयोगशाला" प्राप्त की गई है।
 
1992 में, एलेक्जेंडर वोलस्ज़कज़न ने PSR B1257 12 के आसपास पहले [https://en-m-wikipedia-org.translate.goog/wiki/Exoplanet?_x_tr_sl=en&_x_tr_tl=hi&_x_tr_hl=hi&_x_tr_pto=tc एक्स्ट्रासोलर ग्रहों] की खोज की। इस खोज ने सौर मंडल से बाहर के ग्रहों के व्यापक अस्तित्व से संबंधित महत्वपूर्ण साक्ष्य प्रस्तुत किए, हालांकि यह बहुत कम संभावना है कि, तीव्र विकिरण के इस वातावरण में कोई जीवन रूप ,जीवित रह सकता है।
 
2016 में, एआर स्कॉर्पी को पहले पल्सर के रूप में पहचाना गया था जिसमें कॉम्पैक्ट ऑब्जेक्ट एक न्यूट्रॉन स्टार के बजाय एक सफेद बौना है।<ref>{{Cite journal|last=बकली, डी.ए.एच.; मींटजेस, पी.जे.; पॉटर, एस.बी.; मार्श, टी.आर.; गेन्सिके, बी.टी.|title="Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii"|journal=Nature Astronomy|volume=1 (2): 0029}}</ref> क्योंकि इसकी जड़ता का क्षण एक न्यूट्रॉन तारे की तुलना में बहुत अधिक है, इस प्रणाली में सफेद बौना हर 1.97 मिनट में एक बार घूमता है, जो न्यूट्रॉन-तारा पल्सर की तुलना में बहुत धीमा है।<ref>मार्श, टी.आर.; गेन्सिके, बी.टी.; हुमेरिच, एस.; हैम्ब्श, एफ.-जे.; बर्नहार्ड, के.; लॉयड, सी.; ब्रीड्ट, ई.; स्टैनवे, ई.आर.; स्टीघ्स, डी. टी. "A radio-pulsing white dwarf binary star". Nature. 537 (7620): 374–377 rXiv:1607.08265. Bibcode:2016Natur.537..374M. doi:10.1038/nature18620. <nowiki>PMID 27462808</nowiki>. S2CID 4451512.</ref> प्रणाली पराबैंगनी से रेडियो तरंग दैर्ध्य तक मजबूत स्पंदनों को प्रदर्शित करती है, जो प्रबल चुंबकित सफेद बौने के स्पिन-डाउन द्वारा संचालित होती है।<ref>{{Cite journal|last=बकली, डी.ए.एच.; मींटजेस, पी.जे.; पॉटर, एस.बी.; मार्श, टी.आर.; गेन्सिके, बी.टी.|date=2017-01-23|title="Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii".|journal=Nature Astronomy|volume=1 (2)|pages=0029|doi=10.1038/s41550-016-0029}}</ref>
 
== पल्सर का गठन, तंत्र व निष्क्रीय होना ==
पल्सर के निर्माण की ओर ले जाने वाली घटनाएँ तब शुरू होती हैं जब एक सुपरनोवा के दौरान एक विशाल तारे का कोर संकुचित हो जाता है, जो एक न्यूट्रॉन तारे में ढह जाता है। न्यूट्रॉन स्टार अपनी अधिकांश कोणीय गति को बरकरार रखता है, और चूंकि इसमें अपने पूर्वज त्रिज्या का केवल एक छोटा सा अंश होता है (और इसलिए इसकी जड़ता का क्षण तेजी से कम हो जाता है), यह बहुत उच्च घूर्णन गति के साथ बनता है। पल्सर के चुंबकीय अक्ष के साथ विकिरण की एक किरण उत्सर्जित होती है, जो न्यूट्रॉन तारे के घूमने के साथ-साथ घूमती है। पल्सर का चुंबकीय अक्ष विद्युत चुम्बकीय किरण की दिशा निर्धारित करता है, चुंबकीय अक्ष जरूरी नहीं कि इसके घूर्णी अक्ष के समान हो। यह अपसंरेखण किरण (मिसलिग्न्मेंट बीम) को न्यूट्रॉन स्टार के प्रत्येक घूर्णन के लिए एक बार देखने का कारण बनता है, जो इसके स्वरूप की "स्पंदित" प्रकृति की ओर जाता है।
 
घूर्णन (रोटेशन)-संचालित पल्सर में,किरण न्यूट्रॉन तारे की घूर्णी ऊर्जा का परिणाम है, जो बहुत दृढ चुंबकीय क्षेत्र की गति से एक विद्युत क्षेत्र उत्पन्न करता है, जिसके परिणामस्वरूप तारे की सतह पर प्रोटॉन और इलेक्ट्रॉनों का त्वरण और निर्माण होता है। चुंबकीय क्षेत्र के ध्रुवों से निकलने वाली विद्युत चुम्बकीय किरण।  PSR J0030 0451 के NICER द्वारा की गई टिप्पणियों से संकेत मिलता है कि दोनों किरणें दक्षिणी ध्रुव पर स्थित हॉटस्पॉट से उत्पन्न होती हैं और उस तारे पर ऐसे दो से अधिक हॉटस्पॉट हो सकते हैं। <ref>गार्नर, रोब "NASA's NICER Delivers Best-ever Pulsar Measurements, 1st Surface Map" [https://www.nasa.gov/feature/goddard/2019/nasa-s-nicer-delivers-best-ever-pulsar-measurements-1st-surface-map नासा] 14 दिसंबर 2019 को पुनःप्राप्त</ref> यह घूर्णन समय के साथ धीमा हो जाता है क्योंकि विद्युत चुम्बकीय शक्ति उत्सर्जित होती है। जब एक पल्सर की स्पिन अवधि पर्याप्त रूप से धीमी हो जाती है, तो माना जाता है कि रेडियो पल्सर तंत्र बंद हो जाता है (तथाकथित "मृत्यु रेखा")। ऐसा लगता है कि यह विरक्तिकारक (टर्न-ऑफ़) लगभग 100-1000 लाख वर्षों के बाद हुआ है, जिसका अर्थ है कि ब्रह्मांड के 13.6 अरब वर्ष की आयु में पैदा हुए सभी न्यूट्रॉन सितारों में से लगभग 99% अब स्पंदित नहीं होते हैं।<ref>"Pulsars" www.cv.nrao.edu. मूल से 2020-11-12 को पुरालेखित। 2018-09-15 को पुनःप्राप्त।</ref>
 
== अनुप्रयोग ==
पल्सर की खोज ने खगोलविदों को एक ऐसी वस्तु का अध्ययन करने की अनुमति दी जिसे पहले कभी नहीं देखा गया था, न्यूट्रॉन स्टार। इस तरह की वस्तु एकमात्र ऐसी जगह है जहां परमाणु घनत्व पर पदार्थ का व्यवहार देखा जा सकता है (हालांकि सीधे नहीं)। साथ ही, मिलीसेकंड पल्सर ने तीव्र गुरुत्वाकर्षण क्षेत्र की स्थितियों में सामान्य सापेक्षता के परीक्षण की अनुमति दी है।


== संदर्भ ==
== संदर्भ ==
<references />
[[Category:CS1]]
[[Category:CS1 maint]]
[[Category:Organic Articles]]
[[Category:Templates Vigyan Ready]]

Latest revision as of 16:11, 8 May 2023

एक पल्सर (पल्सेटिंग स्टार)[1] एक खगोलीय वस्तु है जो रेडियो तरंगों (विद्युत चुम्बकीय विकिरण) की एक नियमित पल्स उत्पन्न करती है जिसे परंपरागत रूप से घूर्णन न्यूट्रॉन स्टार के कारण माना जाता है।

पल्सर - एक प्रकार का तेजी से घूमने वाला, ब्रह्मांडीय बीकन, जिसका द्रव्यमान सूर्य से कुछ अधिक है और लगभग दस किलोमीटर की त्रिज्या है। (पल्सर की सतह पर एक इंसान का वजन पृथ्वी की तुलना में कुछ सौ मिलियन गुना अधिक होगा।) पल्सर का "बीकन लाइट" अक्सर रेडियो तरंग क्षेत्र के भीतर होता है।

पल्सर की कार्य शैली जतलाता कृतिम चित्रण

पल्सर-न्यूट्रॉन तारे[2] एक सेकंड में सैकड़ों बार घूमते हैं-रेडियो-फ्रीक्वेंसी बीम उत्सर्जित करते हैं, जो असंभव रूप से उज्ज्वल लगते हैं। भौतिकी के नियमों इस तरह के उज्ज्वल स्पंदनों को एक सुसंगत विकिरण तंत्र द्वारा उत्पादित किया जाए, जिसमें कणों के समूह एक दूसरे के साथ समसामयिक रूप से निकलते हैं, जैसे परमाणु जो लेजर प्रकाश उत्पन्न करने के लिए एक साथ उत्त्तेजावस्थित होते हैं। पल्सर की खोज के बाद से बहुत से शोध प्रयासों के बावजूद, इस तंत्र को समझने के लिए जटिल प्रयास जारी हैं।

हल्स-टेलर पल्सर

वेला पल्सार का वास्तविक स्वरूप चंद्र एक्स-रे वेधशाला द्वारा चित्रित। ऊपर दी गई चंद्र छवि वेला पल्सर को तस्वीर के बीच में एक चमकीले सफेद धब्बे के रूप में दिखाती है, जो पीले और नारंगी रंग में दिखाई गई गर्म गैस से घिरी हुई है। काउंटर जेट को ऊपरी दाहिनी ओर गर्म गैस से लड़खड़ाते हुए देखा जा सकता है। चंद्रा इस जेट का अध्ययन इतने लंबे समय से कर रहा है कि यह जेट की गति की एक फिल्म बनाने में सक्षम हो गया है

पहला पल्सर 1967 में कैम्ब्रिज, इंग्लैंड में रेडियोएस्ट्रोनॉमी प्रयोगशाला में खोजा गया था (एंटनी हेविश को नोबेल पुरस्कार 1974)। हल्स-टेलर पल्सर[3] के बारे में जो नया था वह यह था कि, बीकन सिग्नल के व्यवहार से, यह निष्कर्ष निकाला जा सकता था कि यह लगभग समान रूप से भारी साथी के साथ,जो धरती से चंद्रमा के अनुरूप, केवल कुछ गुना दूरी पर था।

आइंस्टीन का सामान्य सापेक्षता का सिद्धांत भविष्यवाणी करता है कि इस प्रणाली को मजबूत गुरुत्वाकर्षण विकिरण का उत्सर्जन करना चाहिए,लगभग उसी तरह से ऊर्जा खोनी चाहिए, जिस तरह विद्युत आवेशों की एक प्रणाली विद्युत चुम्बकीय तरंगों का उत्सर्जन करती है। जिससे कक्षा लगातार अनुबंधित होती है क्योंकि यह कक्षीय ऊर्जा खो देती है। पल्सर-अवलोकन ने जल्द ही इस भविष्यवाणी की पुष्टि की, जिससे गुरुत्वाकर्षण तरंगों के अस्तित्व का पहला प्रमाण मिला। इस खगोलीय प्रणाली का व्यवहार न्यूटन के सिद्धांत का उपयोग करके खगोलीय पिंडों की एक जोड़ी के लिए जो गणना की जा सकती है, उससे बहुत अलग है। यहाँ आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और गुरुत्वाकर्षण के वैकल्पिक सिद्धांतों के परीक्षण के लिए एक नई, क्रांतिकारी "अंतरिक्ष प्रयोगशाला" प्राप्त की गई है।

1992 में, एलेक्जेंडर वोलस्ज़कज़न ने PSR B1257 12 के आसपास पहले एक्स्ट्रासोलर ग्रहों की खोज की। इस खोज ने सौर मंडल से बाहर के ग्रहों के व्यापक अस्तित्व से संबंधित महत्वपूर्ण साक्ष्य प्रस्तुत किए, हालांकि यह बहुत कम संभावना है कि, तीव्र विकिरण के इस वातावरण में कोई जीवन रूप ,जीवित रह सकता है।

2016 में, एआर स्कॉर्पी को पहले पल्सर के रूप में पहचाना गया था जिसमें कॉम्पैक्ट ऑब्जेक्ट एक न्यूट्रॉन स्टार के बजाय एक सफेद बौना है।[4] क्योंकि इसकी जड़ता का क्षण एक न्यूट्रॉन तारे की तुलना में बहुत अधिक है, इस प्रणाली में सफेद बौना हर 1.97 मिनट में एक बार घूमता है, जो न्यूट्रॉन-तारा पल्सर की तुलना में बहुत धीमा है।[5] प्रणाली पराबैंगनी से रेडियो तरंग दैर्ध्य तक मजबूत स्पंदनों को प्रदर्शित करती है, जो प्रबल चुंबकित सफेद बौने के स्पिन-डाउन द्वारा संचालित होती है।[6]

पल्सर का गठन, तंत्र व निष्क्रीय होना

पल्सर के निर्माण की ओर ले जाने वाली घटनाएँ तब शुरू होती हैं जब एक सुपरनोवा के दौरान एक विशाल तारे का कोर संकुचित हो जाता है, जो एक न्यूट्रॉन तारे में ढह जाता है। न्यूट्रॉन स्टार अपनी अधिकांश कोणीय गति को बरकरार रखता है, और चूंकि इसमें अपने पूर्वज त्रिज्या का केवल एक छोटा सा अंश होता है (और इसलिए इसकी जड़ता का क्षण तेजी से कम हो जाता है), यह बहुत उच्च घूर्णन गति के साथ बनता है। पल्सर के चुंबकीय अक्ष के साथ विकिरण की एक किरण उत्सर्जित होती है, जो न्यूट्रॉन तारे के घूमने के साथ-साथ घूमती है। पल्सर का चुंबकीय अक्ष विद्युत चुम्बकीय किरण की दिशा निर्धारित करता है, चुंबकीय अक्ष जरूरी नहीं कि इसके घूर्णी अक्ष के समान हो। यह अपसंरेखण किरण (मिसलिग्न्मेंट बीम) को न्यूट्रॉन स्टार के प्रत्येक घूर्णन के लिए एक बार देखने का कारण बनता है, जो इसके स्वरूप की "स्पंदित" प्रकृति की ओर जाता है।

घूर्णन (रोटेशन)-संचालित पल्सर में,किरण न्यूट्रॉन तारे की घूर्णी ऊर्जा का परिणाम है, जो बहुत दृढ चुंबकीय क्षेत्र की गति से एक विद्युत क्षेत्र उत्पन्न करता है, जिसके परिणामस्वरूप तारे की सतह पर प्रोटॉन और इलेक्ट्रॉनों का त्वरण और निर्माण होता है। चुंबकीय क्षेत्र के ध्रुवों से निकलने वाली विद्युत चुम्बकीय किरण। PSR J0030 0451 के NICER द्वारा की गई टिप्पणियों से संकेत मिलता है कि दोनों किरणें दक्षिणी ध्रुव पर स्थित हॉटस्पॉट से उत्पन्न होती हैं और उस तारे पर ऐसे दो से अधिक हॉटस्पॉट हो सकते हैं। [7] यह घूर्णन समय के साथ धीमा हो जाता है क्योंकि विद्युत चुम्बकीय शक्ति उत्सर्जित होती है। जब एक पल्सर की स्पिन अवधि पर्याप्त रूप से धीमी हो जाती है, तो माना जाता है कि रेडियो पल्सर तंत्र बंद हो जाता है (तथाकथित "मृत्यु रेखा")। ऐसा लगता है कि यह विरक्तिकारक (टर्न-ऑफ़) लगभग 100-1000 लाख वर्षों के बाद हुआ है, जिसका अर्थ है कि ब्रह्मांड के 13.6 अरब वर्ष की आयु में पैदा हुए सभी न्यूट्रॉन सितारों में से लगभग 99% अब स्पंदित नहीं होते हैं।[8]

अनुप्रयोग

पल्सर की खोज ने खगोलविदों को एक ऐसी वस्तु का अध्ययन करने की अनुमति दी जिसे पहले कभी नहीं देखा गया था, न्यूट्रॉन स्टार। इस तरह की वस्तु एकमात्र ऐसी जगह है जहां परमाणु घनत्व पर पदार्थ का व्यवहार देखा जा सकता है (हालांकि सीधे नहीं)। साथ ही, मिलीसेकंड पल्सर ने तीव्र गुरुत्वाकर्षण क्षेत्र की स्थितियों में सामान्य सापेक्षता के परीक्षण की अनुमति दी है।

संदर्भ

  1. https://www.merriam-webster.com/dictionary/pulsar
  2. https://en-m-wikipedia-org.translate.goog/wiki/Neutron_star?_x_tr_sl=en&_x_tr_tl=hi&_x_tr_hl=hi&_x_tr_pto=tc
  3. "Nobel Prize in Physics 1993" 2010-01-07 को पुनःप्राप्त https://en.wikipedia.org/wiki/Pulsar#cite_note-28
  4. बकली, डी.ए.एच.; मींटजेस, पी.जे.; पॉटर, एस.बी.; मार्श, टी.आर.; गेन्सिके, बी.टी. ""Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii"". Nature Astronomy. 1 (2): 0029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. मार्श, टी.आर.; गेन्सिके, बी.टी.; हुमेरिच, एस.; हैम्ब्श, एफ.-जे.; बर्नहार्ड, के.; लॉयड, सी.; ब्रीड्ट, ई.; स्टैनवे, ई.आर.; स्टीघ्स, डी. टी. "A radio-pulsing white dwarf binary star". Nature. 537 (7620): 374–377 rXiv:1607.08265. Bibcode:2016Natur.537..374M. doi:10.1038/nature18620. PMID 27462808. S2CID 4451512.
  6. बकली, डी.ए.एच.; मींटजेस, पी.जे.; पॉटर, एस.बी.; मार्श, टी.आर.; गेन्सिके, बी.टी. (2017-01-23). ""Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii"". Nature Astronomy. 1 (2): 0029. doi:10.1038/s41550-016-0029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. गार्नर, रोब "NASA's NICER Delivers Best-ever Pulsar Measurements, 1st Surface Map" नासा 14 दिसंबर 2019 को पुनःप्राप्त
  8. "Pulsars" www.cv.nrao.edu. मूल से 2020-11-12 को पुरालेखित। 2018-09-15 को पुनःप्राप्त।