कार्यात्मक व्युत्पन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
विविधताओं की कलन में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक फ़ंक्शन है जो कार्यों पर कार्य करता है) फ़ंक्शन (गणित) में परिवर्तन के लिए जिस पर कार्यात्मक निर्भर करता है।
विविधताओं की गणना में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)|कार्यात्मक]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यात्मक पर कार्य करता है) [[फलन]] में परिवर्तन जिस पर फलन निर्भर करता है।


भिन्नरूपों की गणना में, प्रकार्यों को आम तौर पर कार्यों के [[अभिन्न]] अंग, उनके कार्य के तर्क और उनके [[ यौगिक |यौगिक]]<nowiki> के संदर्भ में व्यक्त किया जाता है। अभिन्न में {{math|</nowiki>''L''} कार्यात्मक का }, यदि कोई कार्य {{math|''f''}} इसमें और फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}} जो मनमाने ढंग से छोटा है, और परिणामी इंटीग्रैंड की शक्तियों में विस्तार किया गया है {{math|''δf''}}, का गुणांक {{math|''δf''}} पहले क्रम की अवधि में कार्यात्मक व्युत्पन्न कहा जाता है।
विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के [[समाकलक (इंटीग्रेटर)|समाकलक]], उनके कार्य के [[तर्क]] और उनके [[ यौगिक |यौगिक]] के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक ''L'' , यदि कोई कार्य {{math|''f''}} इसमें और व्युत्पन्न {{math|''δf''}} जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी {{math|''δf''}}, का समाकलन की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में {{math|''δf''}} के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।


उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>
उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>जहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. यदि {{math|''f''}} इसमें व्युत्पन्न जोड़कर {{math|''δf''}} भिन्न होता है और परिणामी समाकलन {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में प्रसारित {{math|''δf''}} है, जब {{math|''δf''}} में {{math|''J''}} के पहले क्रम के मान में परिवर्तन निम्नानुसार व्यक्त किया जा सकता है। <ref name="GiaquintaHildebrandtP18" /><ref group="Note">According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
कहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. अगर {{math|''f''}} इसमें फ़ंक्शन जोड़कर भिन्न होता है {{math|''δf''}}, और परिणामी इंटीग्रैंड {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में विस्तारित है {{math|''δf''}}, फिर के मूल्य में परिवर्तन {{math|''J''}} पहले ऑर्डर करने के लिए {{math|''δf''}} को इस प्रकार व्यक्त किया जा सकता है:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से {{math|(''δf'') &prime;}} लिखा गया था और [[भागों द्वारा एकीकरण|भागों द्वारा समाकलन]] का उपयोग किया गया था।
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से लिखा गया था {{math|(''δf'') &prime;}}, और [[भागों द्वारा एकीकरण]] का उपयोग किया गया था।


== परिभाषा ==
== परिभाषा ==
Line 11: Line 10:


=== कार्यात्मक व्युत्पन्न ===
=== कार्यात्मक व्युत्पन्न ===
[[कई गुना]] दिया {{math|''M''}} प्रतिनिधित्व ([[निरंतर कार्य (टोपोलॉजी)]] / सुचारू कार्य) कार्य करता है {{math|''ρ''}} (कुछ सीमा स्थितियों आदि के साथ), और कार्यात्मक (गणित) {{math|''F''}} के रूप में परिभाषित<math display="block">F\colon M \to \mathbb{R} \quad \text{or} \quad F\colon M \to \mathbb{C} \, ,</math>का कार्यात्मक व्युत्पन्न {{math|''F''[''ρ'']}}, निरूपित {{math|''δF''/''δρ''}} द्वारा परिभाषित किया गया है<ref name="ParrYangP246A.2">{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.2}}.</ref><math display="block">\begin{align}
अधिक संख्या {{math|''M''}} का प्रतिनिधित्व (निरंतर/चिकनी) कार्य {{math|''ρ''}} करता है (कुछ सीमा स्थितियों आदि के साथ), और कार्यात्मक (गणित) {{math|''F''}} के रूप में परिभाषित<math display="block">F\colon M \to \mathbb{R} \quad \text{or} \quad F\colon M \to \mathbb{C} \, ,</math>{{math|''F''[''ρ'']}} का कार्यात्मक व्युत्पन्न, निरूपित {{math|''δF''/''δρ''}} द्वारा परिभाषित किया गया है<ref name="ParrYangP246A.2">{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.2}}.</ref><math display="block">\begin{align}
  \int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx
  \int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx
&= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\
&= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\
&= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0},
&= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0},
\end{align}</math>कहाँ <math>\phi</math> मनमाना कार्य है। मात्रा <math>\varepsilon\phi</math> की भिन्नता कहलाती है {{math|''ρ''}}.
\end{align}</math>जहाँ <math>\phi</math> विवेकाधीन फलन है। मात्रा <math>\varepsilon\phi</math> को {{math|''ρ''}} की भिन्नता कहा जाता है। दूसरे शब्दों में,<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math>रेखीय कार्यात्मक है,इसलिए कोई भी उपाय के विरुद्ध समाकलन के रूप में इस कार्यात्मक का प्रतिनिधित्व करने के लिए [[रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय]] लागू कर सकता है।
तब {{math|''δF''/''δρ''}} को इस उपाय के [[रेडॉन-निकोडिम]] व्युत्पन्न के रूप में परिभाषित किया गया है।


दूसरे शब्दों में,<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math>रेखीय कार्यात्मक है, इसलिए कोई व्यक्ति इस कार्यात्मक को कुछ माप (गणित) के विरुद्ध एकीकरण के रूप में प्रस्तुत करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है।
एक व्यक्ति कार्य {{math|''δF''/''δρ''}} को {{math|''F''}} बिंदु पर {{math|''ρ''}} प्रवणता के रूप में सोचता है (अर्थात, कितना कार्यात्मक {{math|''F''}} बदल जाएगा यदि कार्य {{math|''ρ''}} बिंदु {{math|''x''}} पर बदल जाता है ) और<math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math>बिंदु {{math|''ρ''}} पर {{math|''ϕ''}} दिशात्मक व्युत्पन्न के रूप में कम है। फिर सदिश कलन के अनुरूप, आंतरिक गुणनफल ढाल के साथ दिशात्मक व्युत्पन्न देता है।
तब {{math|''δF''/''δρ''}} को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है।
 
समारोह के बारे में सोचता है {{math|''δF''/''δρ''}} की ढाल के रूप में {{math|''F''}} बिंदु पर {{math|''ρ''}} (यानी, कितना कार्यात्मक {{math|''F''}} बदल जाएगा अगर समारोह {{math|''ρ''}} बिंदु पर बदल जाता है {{math|''x''}}) और<math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math>बिंदु पर दिशात्मक व्युत्पन्न के रूप में {{math|''ρ''}} कम है {{math|''ϕ''}}. फिर सदिश कलन के अनुरूप, आंतरिक उत्पाद ढाल के साथ दिशात्मक व्युत्पन्न देता है।


=== कार्यात्मक अंतर ===
=== कार्यात्मक अंतर ===
कार्यात्मक का अंतर (या भिन्नता या पहली भिन्नता)। <math>F\left[\rho\right]</math> है <ref name=ParrYangP246A.1>{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.1}}.</ref> <ref group="Note">में अंतर कहलाता है {{harv|Parr|Yang|1989|p=246}}, भिन्नता या पहली भिन्नता {{harv|Courant|Hilbert|1953|p=186}}, और भिन्नता या अंतर {{harv|Gelfand|Fomin|2000|loc= p. 11, § 3.2}}.</रेफरी>
कार्यात्मक <math>F\left[\rho\right]</math> का अंतर भिन्नता या पहली भिन्नता है। <ref name=ParrYangP246A.1>{{harv|Parr|Yang|1989|loc= p. 246, Eq. A.1}}.</ref> <ref group="Note">में अंतर कहलाता है {{harv|Parr|Yang|1989|p=246}}, भिन्नता या पहली भिन्नता {{harv|Courant|Hilbert|1953|p=186}}, और भिन्नता या अंतर {{harv|Gelfand|Fomin|2000|loc= p. 11, § 3.2}}.</रेफरी>
<math display="block">\delta F [\rho; \phi] = \int \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx \ .</math>
<math display="block">\delta F [\rho; \phi] = \int \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx \ .</math>
अनुमान के अनुसार, <math>\phi</math> में परिवर्तन है <math>\rho</math>, तो हमारे पास 'औपचारिक' है <math>\phi = \delta\rho</math>, और फिर यह एक फ़ंक्शन के [[कुल अंतर]] के रूप में समान है <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>,
अनुमान के अनुसार, <math>\phi</math> में परिवर्तन है <math>\rho</math>, तो हमारे पास 'औपचारिक' है <math>\phi = \delta\rho</math>, और फिर यह एक फ़ंक्शन के [[कुल अंतर]] के रूप में समान है <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>,
Line 30: Line 27:
पिछले दो समीकरणों की तुलना, कार्यात्मक व्युत्पन्न <math>\delta F/\delta\rho(x)</math> आंशिक व्युत्पन्न के समान भूमिका है <math>\partial F/\partial\rho_i</math>, जहां एकीकरण का चर <math>x</math> सारांश सूचकांक के एक सतत संस्करण की तरह है <math>i</math>.<nowiki><ref name=ParrYangP246></nowiki>{{harv|Parr|Yang|1989|p=246}}.</ref>
पिछले दो समीकरणों की तुलना, कार्यात्मक व्युत्पन्न <math>\delta F/\delta\rho(x)</math> आंशिक व्युत्पन्न के समान भूमिका है <math>\partial F/\partial\rho_i</math>, जहां एकीकरण का चर <math>x</math> सारांश सूचकांक के एक सतत संस्करण की तरह है <math>i</math>.<nowiki><ref name=ParrYangP246></nowiki>{{harv|Parr|Yang|1989|p=246}}.</ref>
== गुण ==
== गुण ==
किसी फ़ंक्शन के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां {{math|''F''[''ρ'']}} और {{math|''G''[''ρ'']}} कार्यात्मक हैं:<ref group="Note">
किसी कार्य के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां {{math|''F''[''ρ'']}} और {{math|''G''[''ρ'']}} कार्यात्मक हैं:<ref group="Note">
Here the notation
Here the notation
<math display="block">\frac{\delta{F}}{\delta\rho}(x) \equiv \frac{\delta{F}}{\delta\rho(x)}</math>
<math display="block">\frac{\delta{F}}{\delta\rho}(x) \equiv \frac{\delta{F}}{\delta\rho(x)}</math>
is introduced.
is introduced.
</ref>
</ref>
* रैखिकता:<ref name=ParrYangP247A.3>{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.3}}.</ref> <math display="block">\frac{\delta(\lambda F + \mu G)[\rho ]}{\delta \rho(x)} = \lambda \frac{\delta F[\rho]}{\delta \rho(x)} + \mu \frac{\delta G[\rho]}{\delta \rho(x)},</math> कहाँ {{math|''λ'', ''μ''}} नियतांक हैं।
* रैखिकता:<ref name=ParrYangP247A.3>{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.3}}.</ref> <math display="block">\frac{\delta(\lambda F + \mu G)[\rho ]}{\delta \rho(x)} = \lambda \frac{\delta F[\rho]}{\delta \rho(x)} + \mu \frac{\delta G[\rho]}{\delta \rho(x)},</math> जहाँ {{math|''λ'', ''μ''}} नियतांक हैं।
* प्रॉडक्ट नियम:<ref name=ParrYangP247A.4>{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.4}}.</ref> <math display="block">\frac{\delta(FG)[\rho]}{\delta \rho(x)} = \frac{\delta F[\rho]}{\delta \rho(x)} G[\rho] + F[\rho] \frac{\delta G[\rho]}{\delta \rho(x)} \, , </math>
* गुणनफल नियम:<ref name=ParrYangP247A.4>{{harv|Parr|Yang|1989|loc= p. 247, Eq. A.4}}.</ref> <math display="block">\frac{\delta(FG)[\rho]}{\delta \rho(x)} = \frac{\delta F[\rho]}{\delta \rho(x)} G[\rho] + F[\rho] \frac{\delta G[\rho]}{\delta \rho(x)} \, , </math>
* चेन नियम:
* श्रृंखला नियम:
**अगर {{math|''F''}} कार्यात्मक और है {{math|''G''}} और कार्यात्मक, फिर<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 6}}.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math>
**यदि {{math|''F''}} और {{math|''G''}} कार्यात्मक है, फिर<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 6}}.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math>
**अगर {{math|''G''}} साधारण भिन्न कार्य है (स्थानीय कार्यात्मक) {{math|''g''}}, तो यह कम हो जाता है<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 7}}.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math>
**यदि {{math|''G''}} अवकलनीय फलन (स्थानीय फलन) {{math|''g''}} है, तो यह कम हो जाता है<ref>{{harv|Greiner|Reinhardt|1996|loc=p. 38, Eq. 7}}.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math>
== कार्यात्मक डेरिवेटिव का निर्धारण ==
== कार्यात्मक व्युत्पन्न का निर्धारण ==
कार्यात्मकताओं के सामान्य वर्ग के लिए कार्यात्मक डेरिवेटिव निर्धारित करने के लिए सूत्र को फ़ंक्शन और उसके डेरिवेटिव के अभिन्न अंग के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का सामान्यीकरण है: वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्रवाई के सिद्धांत से दूसरे प्रकार के [[जोसेफ-लुई लाग्रेंज]] समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न पेश किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे [[सांख्यिकीय यांत्रिकी]] (19वीं सदी) से लिए गए हैं।
कार्यात्मकताओं के सामान्य वर्ग के लिए कार्यात्मक व्युत्पन्न निर्धारित करने के लिए सूत्र के फलन और उसके व्युत्पन्न के समाकल के रूप में लिखा जा सकता है। यह [[यूलर-लैग्रेंज समीकरण]] का सामान्यीकरण है। वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्य के सिद्धांत से दूसरे प्रकार के [[जोसेफ-लुई लाग्रेंज]] समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न प्रस्तुत किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे [[सांख्यिकीय यांत्रिकी]] (19वीं सदी) से लिए गए हैं।


=== सूत्र ===
=== सूत्र ===
कार्यात्मक दिया<math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math>और समारोह {{math|''ϕ''('''''r''''')}} जो एकीकरण के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न#परिभाषा से,<math display="block">\begin{align}
कार्यात्मक दिया<math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math>और फलन {{math|''ϕ''('''''r''''')}} जो समाकलन के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न की परिभाषा से,<math display="block">\begin{align}
\int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r}
\int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r}
& = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\
& = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\
Line 54: Line 51:




[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''&part;f'' /''&part;&nabla;''''ρ''}}''' मैट्रिक्स कैलकुलस#स्केलर-बाय-वेक्टर है।<ref group="Note">For a three-dimensional Cartesian coordinate system,
 
[[कुल व्युत्पन्न]] का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ {{math|''&part;f'' /''&part;&nabla;''''ρ''}}''' [[सदिश के संबंध में अदिश का व्युत्पन्न है।]]<ref group="Note">For a three-dimensional Cartesian coordinate system,
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
डायवर्जेंस # गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। डायवर्जेंस प्रमेय और शर्त का उपयोग करके चौथी पंक्ति प्राप्त की गई थी {{math|1=''ϕ'' = 0}} एकीकरण के क्षेत्र की सीमा पर। तब से {{math|''ϕ''}} भी मनमाना कार्य है, अंतिम पंक्ति में भिन्नता के कलन के मूलभूत लेम्मा को लागू करते हुए, कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>कहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', &nabla;''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के मामले के लिए है {{math|''F''[''ρ'']}} इस खंड की शुरुआत में। अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए शुरुआती बिंदु के रूप में इस्तेमाल किया जा सकता है। (कार्यात्मक व्युत्पन्न#Coulomb स्थितिज ऊर्जा कार्यात्मक उदाहरण देखें।)
[[विचलन]] के लिए गुणनफल नियम गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। [[विचलन प्रमेय]] का उपयोग करके चौथी पंक्ति प्राप्त की गई थी और परिस्थिति यह है कि समाकलन के क्षेत्र की सीमा पर ϕ = 0। {{math|1=''ϕ'' = 0}} तब से {{math|''ϕ''}} भी विवेकाधीन फलन है, विविधताओं की गणना की मौलिक लेम्मा को अंतिम पंक्ति में लागू करना, कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>जहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', &nabla;''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के {{math|''F''[''ρ'']}} स्थितियों के लिए है। इस खंड की प्रारंभिक में अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थिति में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश व्युत्पन्न सम्मलित हैं।  
कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस मामले में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश डेरिवेटिव शामिल हैं। कार्यात्मक होगा,<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>जहां वेक्टर {{math|'''''r''''' &isin; '''R'''<sup>''n''</sup>}}, और {{math|&nabla;<sup>(''i'')</sup>}} टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक ऑर्डर के आंशिक डेरिवेटिव ऑपरेटर हैं {{math|''i''}},<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|&nabla;<sup>(2)</sup>}} has components,
 
<math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref>
कार्यात्मक व्युत्पन्न होगा,<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>जहां सदिश {{math|'''''r''''' &isin; '''R'''<sup>''n''</sup>}}, और {{math|&nabla;<sup>(''i'')</sup>}} टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक क्रम {{math|''i''}} के आंशिक व्युत्पन्न संक्रियक हैं ,<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|&nabla;<sup>(2)</sup>}} has components,
कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग<math display="block">\begin{align}
<math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref> कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग<math display="block">\begin{align}
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\
&{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ .
&{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ .
\end{align}</math>पिछले दो समीकरणों में, {{math|''n<sup>i</sup>''}} टेंसर के घटक <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> के आंशिक व्युत्पन्न हैं {{math|''f''}} ρ के आंशिक डेरिवेटिव के संबंध में,<math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \qquad \qquad \text{where} \quad \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\, i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ , </math>और टेंसर स्केलर उत्पाद है,<math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math><ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is,
\end{align}</math>पिछले दो समीकरणों में, {{math|''n<sup>i</sup>''}} टेंसर के घटक <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> के आंशिक व्युत्पन्न हैं {{math|''f''}} ρ के आंशिक व्युत्पन्न के संबंध में,<math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \qquad \qquad \text{where} \quad \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\, i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ , </math>और टेंसर अदिश गुणनफल है,<math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math><ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is,
<math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \ \frac {\partial f} {\partial \rho_{\alpha \beta} } \qquad \text{where} \ \ \rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} } \ . </math></ref>
<math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \ \frac {\partial f} {\partial \rho_{\alpha \beta} } \qquad \text{where} \ \ \rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} } \ . </math></ref>


Line 69: Line 67:


====थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक====
====थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक====
1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में गैर-बाधित समान [[मुक्त इलेक्ट्रॉन मॉडल]] के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:<math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math>के एकीकरण के बाद से {{math|''T''<sub>TF</sub>[''ρ'']}} का डेरिवेटिव शामिल नहीं है {{math|''ρ''('''''r''''')}}, का कार्यात्मक व्युत्पन्न {{math|''T''<sub>TF</sub>[''ρ'']}} है,<ref name="ParrYangP247A.6">{{harv|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref><math display="block">\begin{align}
1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में गैर-बाधित समान [[मुक्त इलेक्ट्रॉन मॉडल]] के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:<math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math>चूँकि {{math|''T''<sub>TF</sub>[''ρ'']}} के समाकलन में {{math|''ρ''('''''r''''')}} का व्युत्पन्न सम्मलित नहीं है , {{math|''T''<sub>TF</sub>[''ρ'']}} का कार्यात्मक व्युत्पन्न है,<ref name="ParrYangP247A.6">{{harv|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref><math display="block">\begin{align}
\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) }
\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) }
& = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} \\
& = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} \\
Line 75: Line 73:
\end{align}</math>
\end{align}</math>


==== कूलम्ब स्थितिज ऊर्जा क्रियाशील ====
==== कूलम्ब संभावित ऊर्जा कार्यात्मक ====
इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया<math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math>कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,<math display="block">\begin{align}
इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया<math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math>कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,<math display="block">\begin{align}
\int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r}
\int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r}
& {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\
& {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\
& {} = \int \frac {1} {|\boldsymbol{r}|} \, \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, .
& {} = \int \frac {1} {|\boldsymbol{r}|} \, \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, .
\end{align}</math>इसलिए,<math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math>इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के शास्त्रीय भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया<math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math>कार्यात्मक व्युत्पन्न#कार्यात्मक व्युत्पन्न से,<math display="block">\begin{align}
\end{align}</math>इसलिए,<math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math>इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के मौलिक भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया,<math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math>कार्यात्मक व्युत्पन्न से,<math display="block">\begin{align}
\int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r}
\int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r}
& {} = \left [ \frac {d \ }{d\epsilon} \, J[\rho + \epsilon\phi] \right ]_{\epsilon = 0} \\
& {} = \left [ \frac {d \ }{d\epsilon} \, J[\rho + \epsilon\phi] \right ]_{\epsilon = 0} \\
& {} = \left [ \frac {d \ }{d\epsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \epsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \epsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\epsilon = 0} \\
& {} = \left [ \frac {d \ }{d\epsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \epsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \epsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\epsilon = 0} \\
& {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\
& {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\
\end{align}</math>अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि {{math|'''''r'''''}} और {{math|'''''r&prime;'''''}} दूसरे पद में अभिन्न के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,<math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math><nowiki>और इलेक्ट्रॉन-इलेक्ट्रॉन कूलम्ब संभावित ऊर्जा कार्यात्मक के कार्यात्मक व्युत्पन्न {{math|</nowiki>''J''}[ρ] है,<ref name="ParrYangP248A.11">{{harv|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref><math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math>दूसरा कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math>
\end{align}</math>अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि दूसरे पद में {{math|'''''r'''''}} और {{math|'''''r&prime;'''''}} को समाकल के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,<math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math>और इलेक्ट्रॉन-इलेक्ट्रॉन कूलॉम का कार्यात्मक व्युत्पन्न स्थितिज ऊर्जा कार्यात्मक ''J''[ρ] है,<ref name="ParrYangP248A.11">{{harv|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref><math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math>दूसरा कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math>


====Weizsäcker काइनेटिक एनर्जी फंक्शनल====
====वेइज़ेकर गतिज ऊर्जा कार्यात्मक====
1935 में कार्ल फ्रेडरिक वॉन वीज़सैकर | वॉन वीज़स्कर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में क्रमिक सुधार जोड़ने का प्रस्ताव दिया ताकि इसे आणविक इलेक्ट्रॉन बादल के लिए बेहतर बनाया जा सके:<math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W} \ d\mathbf{r} \, ,</math>कहाँ<math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math>कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न#फॉर्मूला का उपयोग करना,<math display="block">\begin{align}
1935 में कार्ल फ्रेडरिक वॉन वेइज़ेकर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में क्रमिक सुधार जोड़ने का प्रस्ताव दिया जिससे कि इसे आणविक इलेक्ट्रॉन बदलने के लिए उचित बनाया जा सके:<math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W} \ d\mathbf{r} \, ,</math>जहाँ<math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math>कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न सूत्र का उपयोग करना,<math display="block">\begin{align}
\frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})}
\frac{\delta T_\mathrm{W}}{\delta \rho(\boldsymbol{r})}
& = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\
& = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\
Line 95: Line 93:


==== एंट्रॉपी ====
==== एंट्रॉपी ====
असतत यादृच्छिक चर की [[सूचना एन्ट्रापी]] संभाव्यता द्रव्यमान समारोह का कार्य है।<math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math>इस प्रकार,
असतत यादृच्छिक चर की [[सूचना एन्ट्रापी]] संभाव्यता द्रव्यमान फलन का एक फलन है।<math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math>इस प्रकार,
<math display="block">\begin{align}
<math display="block">\begin{align}
\sum_x \frac{\delta H}{\delta p(x)} \, \phi(x)
\sum_x \frac{\delta H}{\delta p(x)} \, \phi(x)
Line 110: Line 108:
होने देना
होने देना
<math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math>
<math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math>
डेल्टा फ़ंक्शन का परीक्षण फ़ंक्शन के रूप में उपयोग करना,
डेल्टा व्युत्पन्न का परीक्षण व्युत्पन्न के रूप में उपयोग करना,
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{\delta F[\varphi(x)]}{\delta \varphi(y)}
\frac{\delta F[\varphi(x)]}{\delta \varphi(y)}
Line 121: Line 119:
इस प्रकार,
इस प्रकार,
<math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math>
<math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math>
यह क्वांटम फील्ड थ्योरी में पार्टिशन फंक्शन (क्वांटम फील्ड थ्योरी) से [[ सहसंबंध समारोह ([[क्वांटम क्षेत्र सिद्धांत]]) ]] की गणना करने में विशेष रूप से उपयोगी है।
यह विशेष रूप से [[क्वांटम क्षेत्र सिद्धांत]] में [[विभाजन फलन (गणित)]] से सहसंबंध कार्यों की गणना करने में उपयोगी है


==== समारोह के कार्यात्मक व्युत्पन्न ====
==== फलन के कार्यात्मक व्युत्पन्न ====
फंक्शन को फंक्शनल की तरह इंटीग्रल के रूप में लिखा जा सकता है। उदाहरण के लिए,
फलन के कार्यात्मक व्युत्पन्न की तरह समाकल के रूप में लिखा जा सकता है। उदाहरण के लिए,
<math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math>
<math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math>
चूंकि इंटीग्रैंड ρ के डेरिवेटिव पर निर्भर नहीं करता है, ρ के कार्यात्मक डेरिवेटिव{{math|('''''r''''')}} है,
चूंकि समाकलन ρ के व्युत्पन्न पर निर्भर नहीं करता है, ρ के कार्यात्मक व्युत्पन्न {{math|('''''r''''')}} है,
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')}
\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')}
Line 134: Line 132:




==== पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न ====
==== पुनरावृत्त फलन का कार्यात्मक व्युत्पन्न ====
पुनरावृत्त फ़ंक्शन का कार्यात्मक व्युत्पन्न <math>f(f(x))</math> द्वारा दिया गया है:
पुनरावृत्त फलन का कार्यात्मक व्युत्पन्न <math>f(f(x))</math> द्वारा दिया गया है:
<math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math>
<math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math>
और<math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math>सामान्य रूप में:<math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math>अंदर डालते हुए {{math|1=''N'' = 0}} देता है:<math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math>
और<math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math>सामान्य रूप में:<math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math>{{math|1=''N'' = 0}} लगाने पर प्राप्त <math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math>
 
== डेल्टा फलन का परीक्षण फलन के रूप में उपयोग करना ==
भौतिकी में, [[डिराक डेल्टा समारोह|डिराक डेल्टा]] फलन <math>\delta(x-y)</math> का उपयोग करना साधारण है सामान्य परीक्षण फलन के स्थान पर <math>\phi(x)</math>, बिंदु पर कार्यात्मक व्युत्पन्न उपज के लिए <math>y</math> (यह संपूर्ण कार्यात्मक व्युत्पन्न का बिंदु है क्योंकि [[आंशिक व्युत्पन्न]] ढाल का घटक है):<ref>{{harvnb|Greiner|Reinhardt|1996|p=37}}</ref><math display="block">\frac{\delta F[\rho(x)]}{\delta \rho(y)}=\lim_{\varepsilon\to 0}\frac{F[\rho(x)+\varepsilon\delta(x-y)]-F[\rho(x)]}{\varepsilon}.</math>


== डेल्टा फ़ंक्शन का परीक्षण फ़ंक्शन के रूप में उपयोग करना ==
भौतिकी में, [[डिराक डेल्टा समारोह]] का उपयोग करना आम है <math>\delta(x-y)</math> सामान्य परीक्षण समारोह के स्थान पर <math>\phi(x)</math>, बिंदु पर कार्यात्मक व्युत्पन्न उपज के लिए <math>y</math> (यह संपूर्ण कार्यात्मक व्युत्पन्न का बिंदु है क्योंकि [[आंशिक व्युत्पन्न]] ढाल का घटक है):<ref>{{harvnb|Greiner|Reinhardt|1996|p=37}}</ref><math display="block">\frac{\delta F[\rho(x)]}{\delta \rho(y)}=\lim_{\varepsilon\to 0}\frac{F[\rho(x)+\varepsilon\delta(x-y)]-F[\rho(x)]}{\varepsilon}.</math>




यह उन मामलों में काम करता है जब <math>F[\rho(x)+\varepsilon f(x)]</math> औपचारिक रूप से श्रृंखला (या कम से कम पहले क्रम तक) के रूप में विस्तारित किया जा सकता है <math>\varepsilon</math>. सूत्र हालांकि गणितीय रूप से कठोर नहीं है, क्योंकि <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> आमतौर पर परिभाषित भी नहीं किया जाता है।
यह उन स्थितियों में काम करता है जब <math>F[\rho(x)+\varepsilon f(x)]</math> औपचारिक रूप से श्रृंखला (या कम से कम पहले क्रम तक) के रूप में <math>\varepsilon</math> प्रसारित किया जा सकता है। सूत्र चूंकि गणितीय रूप से कठोर नहीं है, क्योंकि <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> सामान्यतः परिभाषित भी नहीं किया जाता है।


पिछले खंड में दी गई परिभाषा ऐसे संबंध पर आधारित है जो सभी परीक्षण कार्यों के लिए है <math>\phi(x)</math>, तो कोई सोच सकता है कि इसे तब भी धारण करना चाहिए जब <math>\phi(x)</math> विशिष्ट कार्य के रूप में चुना जाता है जैसे कि डायराक डेल्टा फ़ंक्शन। हालाँकि, बाद वाला वैध परीक्षण कार्य नहीं है (यह उचित कार्य भी नहीं है)।
पिछले खंड में दी गई परिभाषा ऐसे संबंध पर आधारित है जो सभी <math>\phi(x)</math> परीक्षण फलन के लिए है , तो कोई सोच सकता है कि इसे तब भी धारण करना चाहिए जब <math>\phi(x)</math> विशिष्ट कार्य के रूप में चुना जाता है जैसे कि डायराक डेल्टा फलन । चूँकि , बाद वाला वैध परीक्षण कार्य नहीं है (यह उचित कार्य भी नहीं है)।


परिभाषा में, कार्यात्मक व्युत्पन्न वर्णन करता है कि कैसे कार्यात्मक <math>F[\rho(x)]</math> पूरे समारोह में छोटे से परिवर्तन के परिणामस्वरूप परिवर्तन <math>\rho(x)</math>. में परिवर्तन का विशेष रूप <math>\rho(x)</math> निर्दिष्ट नहीं है, लेकिन इसे पूरे अंतराल पर फैलाना चाहिए <math>x</math> परिभाषित किया गया। डेल्टा फ़ंक्शन द्वारा दिए गए गड़बड़ी के विशेष रूप को नियोजित करने का अर्थ है <math>\rho(x)</math> केवल बिंदु में भिन्न है <math>y</math>. इस बिंदु को छोड़कर इसमें कोई भिन्नता नहीं है <math>\rho(x)</math>.
परिभाषा में, कार्यात्मक व्युत्पन्न वर्णन करता है कि कैसे कार्यात्मक <math>F[\rho(x)]</math> पूरे फलन <math>\rho(x)</math> में छोटे से परिवर्तन के परिणामस्वरूप परिवर्तन है। <math>\rho(x)</math> में परिवर्तन का विशेष रूप निर्दिष्ट नहीं है, किन्तु इसे पूरे अंतराल पर <math>x</math> फैलाना चाहिए परिभाषित किया गया। डेल्टा व्युत्पन्न <math>\rho(x)</math> द्वारा दिए गए गड़बड़ी के विशेष रूप को नियोजित करने का अर्थ है केवल बिंदु <math>y</math> में भिन्न है . इस बिंदु <math>\rho(x)</math> को छोड़कर इसमें कोई भिन्नता नहीं है।


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 240: Line 239:
{{Functional analysis}}
{{Functional analysis}}
{{Analysis in topological vector spaces}}
{{Analysis in topological vector spaces}}
[[Category: विविधताओं की गणना]] [[Category: अंतर कलन]] [[Category: विभेदक संचालक]] [[Category: सामयिक वेक्टर रिक्त स्थान]] [[Category: परिवर्तनशील विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:CS1]]
[[Category:Collapse templates]]
[[Category:Created On 27/04/2023]]
[[Category:Created On 27/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:अंतर कलन]]
[[Category:परिवर्तनशील विश्लेषण]]
[[Category:विभेदक संचालक]]
[[Category:विविधताओं की गणना]]
[[Category:सामयिक वेक्टर रिक्त स्थान]]

Latest revision as of 16:07, 8 May 2023

विविधताओं की गणना में, गणितीय विश्लेषण का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)[1] कार्यात्मक में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यात्मक पर कार्य करता है) फलन में परिवर्तन जिस पर फलन निर्भर करता है।

विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के समाकलक, उनके कार्य के तर्क और उनके यौगिक के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक L , यदि कोई कार्य f इसमें और व्युत्पन्न δf जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी δf, का समाकलन की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में δf के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।

उदाहरण के लिए, कार्यात्मक पर विचार करें

जहाँ f ′(x) ≡ df/dx. यदि f इसमें व्युत्पन्न जोड़कर δf भिन्न होता है और परिणामी समाकलन L(x, f +δf, f '+δf ′) की शक्तियों में प्रसारित δf है, जब δf में J के पहले क्रम के मान में परिवर्तन निम्नानुसार व्यक्त किया जा सकता है। [1][Note 1]
जहां व्युत्पन्न में भिन्नता, δf को भिन्नता के व्युत्पन्न के रूप में फिर से (δf) ′ लिखा गया था और भागों द्वारा समाकलन का उपयोग किया गया था।

परिभाषा

इस खंड में, कार्यात्मक व्युत्पन्न परिभाषित किया गया है। फिर कार्यात्मक अंतर को कार्यात्मक व्युत्पन्न के संदर्भ में परिभाषित किया गया है।

कार्यात्मक व्युत्पन्न

अधिक संख्या M का प्रतिनिधित्व (निरंतर/चिकनी) कार्य ρ करता है (कुछ सीमा स्थितियों आदि के साथ), और कार्यात्मक (गणित) F के रूप में परिभाषित

F[ρ] का कार्यात्मक व्युत्पन्न, निरूपित δF/δρ द्वारा परिभाषित किया गया है[2]
जहाँ विवेकाधीन फलन है। मात्रा को ρ की भिन्नता कहा जाता है। दूसरे शब्दों में,
रेखीय कार्यात्मक है,इसलिए कोई भी उपाय के विरुद्ध समाकलन के रूप में इस कार्यात्मक का प्रतिनिधित्व करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है। तब δF/δρ को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है।

एक व्यक्ति कार्य δF/δρ को F बिंदु पर ρ प्रवणता के रूप में सोचता है (अर्थात, कितना कार्यात्मक F बदल जाएगा यदि कार्य ρ बिंदु x पर बदल जाता है ) और

बिंदु ρ पर ϕ दिशात्मक व्युत्पन्न के रूप में कम है। फिर सदिश कलन के अनुरूप, आंतरिक गुणनफल ढाल के साथ दिशात्मक व्युत्पन्न देता है।

कार्यात्मक अंतर

कार्यात्मक का अंतर भिन्नता या पहली भिन्नता है। [3] [Note 2]

गुण

किसी कार्य के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां F[ρ] और G[ρ] कार्यात्मक हैं:[Note 3]

  • रैखिकता:[4]
    जहाँ λ, μ नियतांक हैं।
  • गुणनफल नियम:[5]
  • श्रृंखला नियम:
    • यदि F और G कार्यात्मक है, फिर[6]
    • यदि G अवकलनीय फलन (स्थानीय फलन) g है, तो यह कम हो जाता है[7]

कार्यात्मक व्युत्पन्न का निर्धारण

कार्यात्मकताओं के सामान्य वर्ग के लिए कार्यात्मक व्युत्पन्न निर्धारित करने के लिए सूत्र के फलन और उसके व्युत्पन्न के समाकल के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का सामान्यीकरण है। वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्य के सिद्धांत से दूसरे प्रकार के जोसेफ-लुई लाग्रेंज समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न प्रस्तुत किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे सांख्यिकीय यांत्रिकी (19वीं सदी) से लिए गए हैं।

सूत्र

कार्यात्मक दिया

और फलन ϕ(r) जो समाकलन के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न की परिभाषा से,


कुल व्युत्पन्न का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ ∂f /∂∇'ρ सदिश के संबंध में अदिश का व्युत्पन्न है।[Note 4] विचलन के लिए गुणनफल नियम गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। विचलन प्रमेय का उपयोग करके चौथी पंक्ति प्राप्त की गई थी और परिस्थिति यह है कि समाकलन के क्षेत्र की सीमा पर ϕ = 0। ϕ = 0 । तब से ϕ भी विवेकाधीन फलन है, विविधताओं की गणना की मौलिक लेम्मा को अंतिम पंक्ति में लागू करना, कार्यात्मक व्युत्पन्न है

जहाँ ρ = ρ(r) और f = f (r, ρ, ∇ρ). यह सूत्र द्वारा दिए गए कार्यात्मक रूप के F[ρ] स्थितियों के लिए है। इस खंड की प्रारंभिक में अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थिति में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश व्युत्पन्न सम्मलित हैं।

कार्यात्मक व्युत्पन्न होगा,

जहां सदिश rRn, और (i) टेन्सर है जिसका ni घटक क्रम i के आंशिक व्युत्पन्न संक्रियक हैं ,
[Note 5] कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग
पिछले दो समीकरणों में, ni टेंसर के घटक के आंशिक व्युत्पन्न हैं f ρ के आंशिक व्युत्पन्न के संबंध में,
और टेंसर अदिश गुणनफल है,
[Note 6]

उदाहरण

थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक

1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में गैर-बाधित समान मुक्त इलेक्ट्रॉन मॉडल के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:

चूँकि TTF[ρ] के समाकलन में ρ(r) का व्युत्पन्न सम्मलित नहीं है , TTF[ρ] का कार्यात्मक व्युत्पन्न है,[8]

कूलम्ब संभावित ऊर्जा कार्यात्मक

इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया

कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,
इसलिए,
इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के मौलिक भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया,
कार्यात्मक व्युत्पन्न से,
अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि दूसरे पद में r और r′ को समाकल के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,
और इलेक्ट्रॉन-इलेक्ट्रॉन कूलॉम का कार्यात्मक व्युत्पन्न स्थितिज ऊर्जा कार्यात्मक J[ρ] है,[9]
दूसरा कार्यात्मक व्युत्पन्न है

वेइज़ेकर गतिज ऊर्जा कार्यात्मक

1935 में कार्ल फ्रेडरिक वॉन वेइज़ेकर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में क्रमिक सुधार जोड़ने का प्रस्ताव दिया जिससे कि इसे आणविक इलेक्ट्रॉन बदलने के लिए उचित बनाया जा सके:

जहाँ
कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न सूत्र का उपयोग करना,
और परिणाम है,[10]

एंट्रॉपी

असतत यादृच्छिक चर की सूचना एन्ट्रापी संभाव्यता द्रव्यमान फलन का एक फलन है।

इस प्रकार,
इस प्रकार,


घातीय

होने देना

डेल्टा व्युत्पन्न का परीक्षण व्युत्पन्न के रूप में उपयोग करना,