कार्यात्मक व्युत्पन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
विविधताओं की गणना में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)|कार्यात्मक]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यात्मक पर कार्य करता है) [[फलन]] में परिवर्तन जिस पर फलन निर्भर करता है।
विविधताओं की गणना में, [[गणितीय विश्लेषण]] का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)<ref name="GiaquintaHildebrandtP18">{{harv|Giaquinta|Hildebrandt|1996|p=18}}</ref> [[कार्यात्मक (गणित)|कार्यात्मक]] में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यात्मक पर कार्य करता है) [[फलन]] में परिवर्तन जिस पर फलन निर्भर करता है।


विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के [[समाकलक (इंटीग्रेटर)|समाकलक]], उनके कार्य के [[तर्क]] और उनके [[ यौगिक |यौगिक]] के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक ''L'' , यदि कोई कार्य {{math|''f''}} इसमें और व्युत्पन्न {{math|''δf''}} जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी {{math|''δf''}}, का समाकलन की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में {{math|''δf''}} के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।
विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के [[समाकलक (इंटीग्रेटर)|समाकलक]], उनके कार्य के [[तर्क]] और उनके [[ यौगिक |यौगिक]] के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक ''L'' , यदि कोई कार्य {{math|''f''}} इसमें और व्युत्पन्न {{math|''δf''}} जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी {{math|''δf''}}, का समाकलन की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में {{math|''δf''}} के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।


उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>जहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. यदि {{math|''f''}} इसमें व्युत्पन्न जोड़कर {{math|''δf''}} भिन्न होता है और परिणामी समाकलन {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में प्रसारित {{math|''δf''}} है, जब {{math|''δf''}} में {{math|''J''}} के पहले क्रम के मान में परिवर्तन निम्नानुसार व्यक्त किया जा सकता है। <ref name="GiaquintaHildebrandtP18" /><ref group="Note">According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
उदाहरण के लिए, कार्यात्मक पर विचार करें<math display="block"> J[f] = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , </math>जहाँ {{math|''f'' &prime;(''x'') &equiv; ''df/dx''}}. यदि {{math|''f''}} इसमें व्युत्पन्न जोड़कर {{math|''δf''}} भिन्न होता है और परिणामी समाकलन {{math|''L''(''x, f +δf, f '+δf'' &prime;)}} की शक्तियों में प्रसारित {{math|''δf''}} है, जब {{math|''δf''}} में {{math|''J''}} के पहले क्रम के मान में परिवर्तन निम्नानुसार व्यक्त किया जा सकता है। <ref name="GiaquintaHildebrandtP18" /><ref group="Note">According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref><math display="block"> \delta J = \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, = \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \, </math>
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से {{math|(''δf'') &prime;}} लिखा गया था और [[भागों द्वारा एकीकरण|भागों द्वारा समाकलन]] का उपयोग किया गया था।
जहां व्युत्पन्न में भिन्नता, {{math|''δf'' &prime;}} को भिन्नता के व्युत्पन्न के रूप में फिर से {{math|(''δf'') &prime;}} लिखा गया था और [[भागों द्वारा एकीकरण|भागों द्वारा समाकलन]] का उपयोग किया गया था।


Line 14: Line 14:
&= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\
&= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\
&= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0},
&= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0},
\end{align}</math>जहाँ <math>\phi</math> विवेकाधीन फलन है। मात्रा <math>\varepsilon\phi</math> को {{math|''ρ''}} की भिन्नता कहा जाता है। दूसरे शब्दों में,<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math>रेखीय कार्यात्मक है,इसलिए कोई भी उपाय के विरुद्ध समाकलन के रूप में इस कार्यात्मक का प्रतिनिधित्व करने के लिए [[रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय]] लागू कर सकता है।
\end{align}</math>जहाँ <math>\phi</math> विवेकाधीन फलन है। मात्रा <math>\varepsilon\phi</math> को {{math|''ρ''}} की भिन्नता कहा जाता है। दूसरे शब्दों में,<math display="block">\phi \mapsto \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}</math>रेखीय कार्यात्मक है,इसलिए कोई भी उपाय के विरुद्ध समाकलन के रूप में इस कार्यात्मक का प्रतिनिधित्व करने के लिए [[रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय]] लागू कर सकता है।
तब {{math|''δF''/''δρ''}} को इस उपाय के [[रेडॉन-निकोडिम]] व्युत्पन्न के रूप में परिभाषित किया गया है।
तब {{math|''δF''/''δρ''}} को इस उपाय के [[रेडॉन-निकोडिम]] व्युत्पन्न के रूप में परिभाषित किया गया है।


Line 55: Line 55:
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
<math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math>
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>'''
[[विचलन]] के लिए गुणनफल नियम गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। [[विचलन प्रमेय]] का उपयोग करके चौथी पंक्ति प्राप्त की गई थी और परिस्थिति यह है कि समाकलन के क्षेत्र की सीमा पर ϕ = 0। {{math|1=''ϕ'' = 0}} । तब से {{math|''ϕ''}} भी विवेकाधीन फलन है, विविधताओं की गणना की मौलिक लेम्मा को अंतिम पंक्ति में लागू करना, कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>जहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', &nabla;''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के {{math|''F''[''ρ'']}} स्थितियों के लिए है। इस खंड की प्रारंभिक में अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। (कार्यात्मक व्युत्पन्न कूलम्ब स्थितिज ऊर्जा कार्यात्मक उदाहरण देखें।) कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थितियों में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश व्युत्पन्न सम्मलित हैं। कार्यात्मक होगा,<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>जहां सदिश {{math|'''''r''''' &isin; '''R'''<sup>''n''</sup>}}, और {{math|&nabla;<sup>(''i'')</sup>}} टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक क्रम {{math|''i''}} के आंशिक व्युत्पन्न संक्रियक हैं ,<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|&nabla;<sup>(2)</sup>}} has components,
[[विचलन]] के लिए गुणनफल नियम गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। [[विचलन प्रमेय]] का उपयोग करके चौथी पंक्ति प्राप्त की गई थी और परिस्थिति यह है कि समाकलन के क्षेत्र की सीमा पर ϕ = 0। {{math|1=''ϕ'' = 0}} । तब से {{math|''ϕ''}} भी विवेकाधीन फलन है, विविधताओं की गणना की मौलिक लेम्मा को अंतिम पंक्ति में लागू करना, कार्यात्मक व्युत्पन्न है<math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>जहाँ {{math|1=''ρ'' = ''ρ''('''''r''''')}} और {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', &nabla;''ρ'')}}. यह सूत्र द्वारा दिए गए कार्यात्मक रूप के {{math|''F''[''ρ'']}} स्थितियों के लिए है। इस खंड की प्रारंभिक में अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थिति में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश व्युत्पन्न सम्मलित हैं।  
 
कार्यात्मक व्युत्पन्न होगा,<math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>जहां सदिश {{math|'''''r''''' &isin; '''R'''<sup>''n''</sup>}}, और {{math|&nabla;<sup>(''i'')</sup>}} टेन्सर है जिसका {{math|''n<sup>i</sup>''}} घटक क्रम {{math|''i''}} के आंशिक व्युत्पन्न संक्रियक हैं ,<math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \cdots, \alpha_i = 1, 2, \cdots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|&nabla;<sup>(2)</sup>}} has components,
<math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref> कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग<math display="block">\begin{align}
<math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} \qquad \qquad \text{where} \quad \alpha, \beta = 1, 2, 3 \, . </math></ref> कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग<math display="block">\begin{align}
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\

Revision as of 00:04, 4 May 2023

विविधताओं की गणना में, गणितीय विश्लेषण का क्षेत्र, कार्यात्मक व्युत्पन्न (या परिवर्तनशील व्युत्पन्न)[1] कार्यात्मक में परिवर्तन से संबंधित है (इस अर्थ में कार्यात्मक व्युत्पन्न है जो कार्यात्मक पर कार्य करता है) फलन में परिवर्तन जिस पर फलन निर्भर करता है।

विविधताओं की गणना में, प्रकार्यों को सामान्यतः कार्यों के समाकलक, उनके कार्य के तर्क और उनके यौगिक के संदर्भ में व्यक्त किया जाता है। समाकलन में कार्यात्मक L , यदि कोई कार्य f इसमें और व्युत्पन्न δf जोड़कर भिन्न होता है जो अव्यवस्थित रूप से छोटा है और परिणामी δf, का समाकलन की शक्तियों में विस्तार किया गया है पहले क्रम की अवधि में δf के गुणांक को कार्यात्मक व्युत्पन्न कहा जाता है।

उदाहरण के लिए, कार्यात्मक पर विचार करें

जहाँ f ′(x) ≡ df/dx. यदि f इसमें व्युत्पन्न जोड़कर δf भिन्न होता है और परिणामी समाकलन L(x, f +δf, f '+δf ′) की शक्तियों में प्रसारित δf है, जब δf में J के पहले क्रम के मान में परिवर्तन निम्नानुसार व्यक्त किया जा सकता है। [1][Note 1]
जहां व्युत्पन्न में भिन्नता, δf को भिन्नता के व्युत्पन्न के रूप में फिर से (δf) ′ लिखा गया था और भागों द्वारा समाकलन का उपयोग किया गया था।

परिभाषा

इस खंड में, कार्यात्मक व्युत्पन्न परिभाषित किया गया है। फिर कार्यात्मक अंतर को कार्यात्मक व्युत्पन्न के संदर्भ में परिभाषित किया गया है।

कार्यात्मक व्युत्पन्न

अधिक संख्या M का प्रतिनिधित्व (निरंतर/चिकनी) कार्य ρ करता है (कुछ सीमा स्थितियों आदि के साथ), और कार्यात्मक (गणित) F के रूप में परिभाषित

F[ρ] का कार्यात्मक व्युत्पन्न, निरूपित δF/δρ द्वारा परिभाषित किया गया है[2]
जहाँ विवेकाधीन फलन है। मात्रा को ρ की भिन्नता कहा जाता है। दूसरे शब्दों में,
रेखीय कार्यात्मक है,इसलिए कोई भी उपाय के विरुद्ध समाकलन के रूप में इस कार्यात्मक का प्रतिनिधित्व करने के लिए रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय लागू कर सकता है। तब δF/δρ को इस उपाय के रेडॉन-निकोडिम व्युत्पन्न के रूप में परिभाषित किया गया है।

एक व्यक्ति कार्य δF/δρ को F बिंदु पर ρ प्रवणता के रूप में सोचता है (अर्थात, कितना कार्यात्मक F बदल जाएगा यदि कार्य ρ बिंदु x पर बदल जाता है ) और

बिंदु ρ पर ϕ दिशात्मक व्युत्पन्न के रूप में कम है। फिर सदिश कलन के अनुरूप, आंतरिक गुणनफल ढाल के साथ दिशात्मक व्युत्पन्न देता है।

कार्यात्मक अंतर

कार्यात्मक का अंतर भिन्नता या पहली भिन्नता है। [3] [Note 2]

गुण

किसी कार्य के व्युत्पन्न की तरह, कार्यात्मक व्युत्पन्न निम्नलिखित गुणों को संतुष्ट करता है, जहां F[ρ] और G[ρ] कार्यात्मक हैं:[Note 3]

  • रैखिकता:[4]
    जहाँ λ, μ नियतांक हैं।
  • गुणनफल नियम:[5]
  • श्रृंखला नियम:
    • यदि F और G कार्यात्मक है, फिर[6]
    • यदि G अवकलनीय फलन (स्थानीय फलन) g है, तो यह कम हो जाता है[7]

कार्यात्मक व्युत्पन्न का निर्धारण

कार्यात्मकताओं के सामान्य वर्ग के लिए कार्यात्मक व्युत्पन्न निर्धारित करने के लिए सूत्र के फलन और उसके व्युत्पन्न के समाकल के रूप में लिखा जा सकता है। यह यूलर-लैग्रेंज समीकरण का सामान्यीकरण है। वास्तव में, लैग्रैंगियन यांत्रिकी (18 वीं शताब्दी) में कम से कम कार्य के सिद्धांत से दूसरे प्रकार के जोसेफ-लुई लाग्रेंज समीकरण की व्युत्पत्ति के भीतर भौतिकी में कार्यात्मक व्युत्पन्न प्रस्तुत किया गया था। नीचे दिए गए पहले तीन उदाहरण घनत्व कार्यात्मक सिद्धांत (20वीं सदी) से लिए गए हैं, चौथे सांख्यिकीय यांत्रिकी (19वीं सदी) से लिए गए हैं।

सूत्र

कार्यात्मक दिया

और फलन ϕ(r) जो समाकलन के क्षेत्र की सीमा पर गायब हो जाता है, पिछले खंड कार्यात्मक व्युत्पन्न की परिभाषा से,


कुल व्युत्पन्न का उपयोग करके दूसरी पंक्ति प्राप्त की जाती है, जहाँ ∂f /∂∇'ρ सदिश के संबंध में अदिश का व्युत्पन्न है।[Note 4] विचलन के लिए गुणनफल नियम गुण के उपयोग से तीसरी पंक्ति प्राप्त की गई थी। विचलन प्रमेय का उपयोग करके चौथी पंक्ति प्राप्त की गई थी और परिस्थिति यह है कि समाकलन के क्षेत्र की सीमा पर ϕ = 0। ϕ = 0 । तब से ϕ भी विवेकाधीन फलन है, विविधताओं की गणना की मौलिक लेम्मा को अंतिम पंक्ति में लागू करना, कार्यात्मक व्युत्पन्न है

जहाँ ρ = ρ(r) और f = f (r, ρ, ∇ρ). यह सूत्र द्वारा दिए गए कार्यात्मक रूप के F[ρ] स्थितियों के लिए है। इस खंड की प्रारंभिक में अन्य कार्यात्मक रूपों के लिए, कार्यात्मक व्युत्पन्न की परिभाषा को इसके निर्धारण के लिए प्रारंभिक बिंदु के रूप में उपयोग किया जा सकता है। कार्यात्मक व्युत्पन्न के लिए उपरोक्त समीकरण को उस स्थिति में सामान्यीकृत किया जा सकता है जिसमें उच्च आयाम और उच्च आदेश व्युत्पन्न सम्मलित हैं।

कार्यात्मक व्युत्पन्न होगा,

जहां सदिश rRn, और (i) टेन्सर है जिसका ni घटक क्रम i के आंशिक व्युत्पन्न संक्रियक हैं ,
[Note 5] कार्यात्मक व्युत्पन्न उपज की परिभाषा का समान अनुप्रयोग
पिछले दो समीकरणों में, ni टेंसर के घटक के आंशिक व्युत्पन्न हैं f ρ के आंशिक व्युत्पन्न के संबंध में,
और टेंसर अदिश गुणनफल है,
[Note 6]

उदाहरण

थॉमस-फर्मी गतिज ऊर्जा क्रियात्मक

1927 के थॉमस-फर्मी मॉडल ने इलेक्ट्रॉनिक संरचना के घनत्व-कार्यात्मक सिद्धांत के पहले प्रयास में गैर-बाधित समान मुक्त इलेक्ट्रॉन मॉडल के लिए कार्यात्मक गतिज ऊर्जा का उपयोग किया:

चूँकि TTF[ρ] के समाकलन में ρ(r) का व्युत्पन्न सम्मलित नहीं है , TTF[ρ] का कार्यात्मक व्युत्पन्न है,[8]

कूलम्ब संभावित ऊर्जा कार्यात्मक

इलेक्ट्रॉन-नाभिक क्षमता के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा कार्यात्मक को नियोजित किया

कार्यात्मक व्युत्पन्न की परिभाषा को लागू करना,
इसलिए,
इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया के मौलिक भाग के लिए, थॉमस और फर्मी ने कूलम्ब के नियम संभावित ऊर्जा क्रियात्मक का प्रयोग किया,
कार्यात्मक व्युत्पन्न से,
अंतिम समीकरण के दाहिने हाथ की ओर पहला और दूसरा पद बराबर हैं, क्योंकि दूसरे पद में r और r′ को समाकल के मान को बदले बिना आपस में बदला जा सकता है। इसलिए,
और इलेक्ट्रॉन-इलेक्ट्रॉन कूलॉम का कार्यात्मक व्युत्पन्न स्थितिज ऊर्जा कार्यात्मक J[ρ] है,[9]
दूसरा कार्यात्मक व्युत्पन्न है

वेइज़ेकर गतिज ऊर्जा कार्यात्मक

1935 में कार्ल फ्रेडरिक वॉन वेइज़ेकर ने थॉमस-फर्मी गतिज ऊर्जा कार्यात्मक में क्रमिक सुधार जोड़ने का प्रस्ताव दिया जिससे कि इसे आणविक इलेक्ट्रॉन बदलने के लिए उचित बनाया जा सके:

जहाँ
कार्यात्मक व्युत्पन्न के लिए पहले से व्युत्पन्न कार्यात्मक व्युत्पन्न सूत्र का उपयोग करना,
और परिणाम है,[10]

एंट्रॉपी

असतत यादृच्छिक चर की सूचना एन्ट्रापी संभाव्यता द्रव्यमान फलन का एक फलन है।

इस प्रकार,
इस प्रकार,


घातीय

होने देना

डेल्टा व्युत्पन्न का परीक्षण व्युत्पन्न के रूप में उपयोग करना,