कोडिमेंशन: Difference between revisions
No edit summary |
No edit summary |
||
| (13 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Difference between the dimensions of mathematical object and a sub-object}} | {{short description|Difference between the dimensions of mathematical object and a sub-object}} | ||
गणित में, कोडिमेंशन एक मूलभूत ज्यामितीय अवधारणा है जो | गणित में, कोडिमेंशन एक मूलभूत ज्यामितीय अवधारणा है जो सदिश स्थानों में [[ वेक्टर उप-स्थान ]] पर लागू होता है, [[कई गुना|मैनिफोल्ड]] में [[सबमेनिफोल्ड]] और बीजगणितीय विविधता के उपयुक्त उपसमुच्चय है। | ||
[[एफ़िन किस्म]] और | [[एफ़िन किस्म]] और प्रक्षेपीय बीजगणितीय विविधता के लिए, कोडिमेंशन परिभाषित आदर्श (रिंग थ्योरी) की ऊंचाई के बराबर है। इस कारण से, किसी आदर्श की ऊंचाई को अधिकांशतः उसका कोडिमेंशन कहा जाता है। | ||
दोहरी अवधारणा [[सापेक्ष आयाम]] है। | दोहरी अवधारणा [[सापेक्ष आयाम]] है। | ||
== परिभाषा == | == परिभाषा == | ||
कोडिमेंशन एक सापेक्ष अवधारणा है: यह केवल एक वस्तु के लिए दूसरे के अंदर परिभाषित किया गया है। कोई "सदिश स्थान (अलगाव में)" का कोडिमेंशन नहीं होता है, केवल सदिश उप- | कोडिमेंशन एक सापेक्ष अवधारणा है: यह केवल एक वस्तु के लिए दूसरे के अंदर परिभाषित किया गया है। कोई "सदिश स्थान (अलगाव में)" का कोडिमेंशन नहीं होता है, केवल सदिश उप-स्थान का कोडिमेंशन होता है। | ||
यदि W परिमित-विम सदिश समष्टि V | यदि W परिमित-विम सदिश समष्टि V का एक रैखिक उपसमष्टि है, तो V में W का कोडिमेंशन आयामों के बीच का अंतर होगा: | ||
:<math>\operatorname{codim}(W) = \dim(V) - \dim(W).</math> | :<math>\operatorname{codim}(W) = \dim(V) - \dim(W).</math> | ||
यह W के आयाम का पूरक है, इसमें W के आयाम के साथ, यह परिवेशी स्थान V के आयाम को जोड़ता है: | यह W के आयाम का पूरक है, इसमें W के आयाम के साथ, यह परिवेशी स्थान V के आयाम को भी जोड़ता है: | ||
:<math>\dim(W) + \operatorname{codim}(W) = \dim(V).</math> | :<math>\dim(W) + \operatorname{codim}(W) = \dim(V).</math> | ||
इसी प्रकार, यदि N, M में एक सबमनीफोल्ड या | इसी प्रकार, यदि N, M में एक सबमनीफोल्ड या उप-विविधता है, तो M में N का कोडिमेंशन होगा | ||
:<math>\operatorname{codim}(N) = \dim(M) - \dim(N).</math> | :<math>\operatorname{codim}(N) = \dim(M) - \dim(N).</math> | ||
जैसे सबमेनिफोल्ड का आयाम [[स्पर्शरेखा बंडल]] का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड पर ले जा सकते हैं), कोडिमेंशन [[सामान्य बंडल]] का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड से हटा सकते हैं)। | जैसे सबमेनिफोल्ड का आयाम [[स्पर्शरेखा बंडल]] का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड पर ले जा सकते हैं), उसी प्रकार कोडिमेंशन [[सामान्य बंडल]] का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड से हटा सकते हैं)। | ||
अधिक सामान्यतः, यदि W एक (संभवतः अनंत आयामी) सदिश स्थान V का एक रैखिक उप-स्थान है, तो V में W का कोडिमेंशन [[भागफल स्थान (रैखिक बीजगणित)]] V/W का आयाम (संभवतः अनंत) है, जो अधिक संक्षेप में समावेशन के [[cokernel|कोकर्नेल]] के रूप में जाना जाता है। परिमित-आयामी सदिश रिक्त स्थान के लिए, यह पिछली परिभाषा से सहमत है | अधिक सामान्यतः, यदि W एक (संभवतः अनंत आयामी) सदिश स्थान V का एक रैखिक उप-स्थान है, तो V में W का कोडिमेंशन [[भागफल स्थान (रैखिक बीजगणित)]] V/W का आयाम (संभवतः अनंत) है, जो अधिक संक्षेप में समावेशन के [[cokernel|कोकर्नेल]] के रूप में जाना जाता है। परिमित-आयामी सदिश रिक्त स्थान के लिए, यह पिछली परिभाषा से सहमत है | ||
| Line 21: | Line 21: | ||
और कर्नेल (बीजगणित) के आयाम के रूप में सापेक्ष आयाम के लिए दोहरा है। | और कर्नेल (बीजगणित) के आयाम के रूप में सापेक्ष आयाम के लिए दोहरा है। | ||
अनंत-आयामी रिक्त स्थान के परिमित-कोड-आयामी उप-स्थान अधिकांशतः [[टोपोलॉजिकल वेक्टर स्पेस]] | अनंत-आयामी रिक्त स्थान के परिमित-कोड-आयामी उप-स्थान अधिकांशतः [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश स्थान]] के अध्ययन में उपयोगी होते हैं। | ||
== कोडिमेंशन और | == कोडिमेंशन और आयाम गणना की परिशुद्धता == | ||
कोडिमेंशन के मूलभूत गुण इसके प्रतिच्छेदन (सेट सिद्धांत) के संबंध में निहित है: यदि W1 का कोडिमेंशन k1 है, और W2 का कोडिमेंशन k2 है, तो यदि U कोडिमेंशन j के साथ उनका प्रतिच्छेदन है तो हमारे पास है | कोडिमेंशन के मूलभूत गुण इसके प्रतिच्छेदन (सेट सिद्धांत) के संबंध में निहित है: यदि W1 का कोडिमेंशन k1 है, और W2 का कोडिमेंशन k2 है, तो यदि U कोडिमेंशन j के साथ उनका प्रतिच्छेदन है तो हमारे पास है | ||
| Line 31: | Line 31: | ||
:कोडिमेंशन (अधिकतम) जोड़ें। | :कोडिमेंशन (अधिकतम) जोड़ें। | ||
: यदि | : यदि उप-स्थान या सबमेनिफोल्ड्स [[ट्रांसवर्सलिटी (गणित)]] (जो [[सामान्य स्थिति]] में होता है) का प्रतिच्छेद करते हैं, तो यह कोडिमेंशन को बिल्कुल जोड़ते हैं। | ||
इस कथन को 'आयाम गणना' कहा जाता है, विशेष रूप से [[प्रतिच्छेदन सिद्धांत]] में। | इस कथन को 'आयाम गणना' कहा जाता है, विशेष रूप से [[प्रतिच्छेदन सिद्धांत]] में। | ||
| Line 38: | Line 38: | ||
दोहरे स्थान के संदर्भ में, यह काफी स्पष्ट है कि आयाम क्यों जुड़ते हैं। उप-स्थानों को एक निश्चित संख्या में रैखिक क्रियाओं के लुप्त होने से परिभाषित किया जा सकता है, जो कि अगर हम [[रैखिक रूप से स्वतंत्र]] होने के लिए लेते हैं, तो उनकी संख्या कोडिमेंशन है। इसलिए, हम देखते हैं कि ''W''<sub>i</sub> को परिभाषित करने वाले रैखिक कार्यों के सेट के [[संघ (सेट सिद्धांत)]] को लेकर ''U'' को परिभाषित किया गया है। वह संघ कुछ हद तक [[रैखिक निर्भरता]] का परिचय दे सकता है: j के संभावित मान उस निर्भरता को व्यक्त करते हैं, RHS योग के मामले में जहां कोई निर्भरता नहीं है। उप-स्थान को छाँटने के लिए आवश्यक कार्यों की संख्या के संदर्भ में कोडिमेंशन की यह परिभाषा उन स्थितियों तक फैली हुई है जिनमें परिवेश स्थान और उप-स्थान दोनों अनंत आयामी हैं। | दोहरे स्थान के संदर्भ में, यह काफी स्पष्ट है कि आयाम क्यों जुड़ते हैं। उप-स्थानों को एक निश्चित संख्या में रैखिक क्रियाओं के लुप्त होने से परिभाषित किया जा सकता है, जो कि अगर हम [[रैखिक रूप से स्वतंत्र]] होने के लिए लेते हैं, तो उनकी संख्या कोडिमेंशन है। इसलिए, हम देखते हैं कि ''W''<sub>i</sub> को परिभाषित करने वाले रैखिक कार्यों के सेट के [[संघ (सेट सिद्धांत)]] को लेकर ''U'' को परिभाषित किया गया है। वह संघ कुछ हद तक [[रैखिक निर्भरता]] का परिचय दे सकता है: j के संभावित मान उस निर्भरता को व्यक्त करते हैं, RHS योग के मामले में जहां कोई निर्भरता नहीं है। उप-स्थान को छाँटने के लिए आवश्यक कार्यों की संख्या के संदर्भ में कोडिमेंशन की यह परिभाषा उन स्थितियों तक फैली हुई है जिनमें परिवेश स्थान और उप-स्थान दोनों अनंत आयामी हैं। | ||
दूसरी भाषा में, जो किसी भी प्रकार के प्रतिच्छेदन सिद्धांत के लिए | दूसरी भाषा में, जो किसी भी प्रकार के प्रतिच्छेदन सिद्धांत के लिए मूलभूत है, हम एक निश्चित संख्या में [[बाधा (गणित)]] का संघ ले रहे हैं। हमारे पास देखने के लिए दो घटनाएं हैं: | ||
# बाधाओं के दो सेट स्वतंत्र नहीं हो सकते हैं; | # बाधाओं के दो सेट स्वतंत्र नहीं हो सकते हैं; | ||
# बाधाओं के दो सेट संगत नहीं हो सकते हैं। | # बाधाओं के दो सेट संगत नहीं हो सकते हैं। | ||
इनमें से पहले को अधिकांशतः गिनती बाधाओं (गणित) के सिद्धांत' के रूप में व्यक्त किया जाता है: यदि हमारे पास समायोजित करने के लिए कई एन [[पैरामीटर]] हैं (अर्थात हमारे पास स्वतंत्रता की एन डिग्री (भौतिकी और रसायन विज्ञान) है), और एक बाधा का मतलब है कि हमें इसे संतुष्ट करने के लिए एक पैरामीटर का 'उपभोग' करना है, तो [[समाधान सेट]] का कोडिमेंशन अधिक से अधिक बाधाओं की संख्या है। हम एक समाधान खोजने में सक्षम होने | इनमें से पहले को अधिकांशतः गिनती बाधाओं (गणित) के सिद्धांत' के रूप में व्यक्त किया जाता है: यदि हमारे पास समायोजित करने के लिए कई एन [[पैरामीटर]] हैं (अर्थात हमारे पास स्वतंत्रता की एन डिग्री (भौतिकी और रसायन विज्ञान) है), और एक बाधा का मतलब है कि हमें इसे संतुष्ट करने के लिए एक पैरामीटर का 'उपभोग' करना है, तो [[समाधान सेट]] का कोडिमेंशन अधिक से अधिक बाधाओं की संख्या है। हम एक समाधान खोजने में सक्षम होने का विश्वास नहीं करते हैं यदि अनुमानित कोडिमेंशन, अर्थात स्वतंत्र बाधाओं की संख्या एन से अधिक है (रैखिक बीजगणित मामले में, हमेशा एक तुच्छ, शून्य वेक्टर समाधान होता है, इसलिए छूट दी जाती है)। | ||
दूसरा ज्यामिति का मामला है, समानांतर रेखाओं के मॉडल पर; यह कुछ ऐसा है जिस पर रैखिक बीजगणित के उपाय से [[रैखिक समस्या|रैखिक समस्याओं]] के लिए चर्चा की जा सकती है, और [[जटिल संख्या]] क्षेत्र में [[ प्रक्षेपण स्थान ]] में गैर-रैखिक समस्याओं के लिए चर्चा की जा सकती है। | दूसरा ज्यामिति का मामला है, समानांतर रेखाओं के मॉडल पर; यह कुछ ऐसा है जिस पर रैखिक बीजगणित के उपाय से [[रैखिक समस्या|रैखिक समस्याओं]] के लिए चर्चा की जा सकती है, और [[जटिल संख्या]] क्षेत्र में [[ प्रक्षेपण स्थान ]] में गैर-रैखिक समस्याओं के लिए चर्चा की जा सकती है। | ||
| Line 50: | Line 50: | ||
कोडिमेंशन का ज्यामितीय टोपोलॉजी में भी कुछ स्पष्ट अर्थ है: कई गुना पर, कोडिमेंशन 1 सबमनीफोल्ड द्वारा टोपोलॉजिकल पृथकत्व का आयाम है, जबकि कोडिमेंशन 2 रेमिफिकेशन (गणित) और [[गाँठ सिद्धांत]] का आयाम है। वास्तव में, उच्च-आयामी मैनिफोल्ड्स का सिद्धांत, जो आयाम 5 और ऊपर में शुरू होता है, को वैकल्पिक रूप से कोडिमेंशन 3 में शुरू करने के लिए कहा जा सकता है, क्योंकि उच्च कोडिमेंशन गाँठ की घटना से बचते हैं। चूंकि [[शल्य चिकित्सा सिद्धांत]] को मध्य आयाम तक काम करने की आवश्यकता होती है, एक बार जब कोई आयाम 5 में होता है, तो मध्य आयाम में 2 से अधिक कोडिमेंशन होता है, और इसलिए गांठों से बचा जाता है। | कोडिमेंशन का ज्यामितीय टोपोलॉजी में भी कुछ स्पष्ट अर्थ है: कई गुना पर, कोडिमेंशन 1 सबमनीफोल्ड द्वारा टोपोलॉजिकल पृथकत्व का आयाम है, जबकि कोडिमेंशन 2 रेमिफिकेशन (गणित) और [[गाँठ सिद्धांत]] का आयाम है। वास्तव में, उच्च-आयामी मैनिफोल्ड्स का सिद्धांत, जो आयाम 5 और ऊपर में शुरू होता है, को वैकल्पिक रूप से कोडिमेंशन 3 में शुरू करने के लिए कहा जा सकता है, क्योंकि उच्च कोडिमेंशन गाँठ की घटना से बचते हैं। चूंकि [[शल्य चिकित्सा सिद्धांत]] को मध्य आयाम तक काम करने की आवश्यकता होती है, एक बार जब कोई आयाम 5 में होता है, तो मध्य आयाम में 2 से अधिक कोडिमेंशन होता है, और इसलिए गांठों से बचा जाता है। | ||
यह क्विप खाली नहीं है: कोडिमेंशन 2 में | यह क्विप खाली नहीं है: कोडिमेंशन 2 में अंत:स्थापन का अध्ययन गाँठ सिद्धांत है, और कठिन है, जबकि कोडिमेंशन 3 या अधिक में अंत:स्थापन का अध्ययन उच्च-आयामी ज्यामितीय टोपोलॉजी के उपकरणों के लिए उत्तरदायी है, और इसलिए काफी आसान है। | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 57: | Line 57: | ||
==संदर्भ== | ==संदर्भ== | ||
*{{Springer|id=C/c022870|title=कोडिमेंशन}} | *{{Springer|id=C/c022870|title=कोडिमेंशन}} | ||
[[Category:Created On 11/04/2023]] | [[Category:Created On 11/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:आयाम]] | |||
[[Category:आयाम सिद्धांत]] | |||
[[Category:ज्यामितीय टोपोलॉजी]] | |||
[[Category:बीजगणितीय ज्यामिति]] | |||
[[Category:लीनियर अलजेब्रा]] | |||
Latest revision as of 21:01, 26 April 2023
गणित में, कोडिमेंशन एक मूलभूत ज्यामितीय अवधारणा है जो सदिश स्थानों में वेक्टर उप-स्थान पर लागू होता है, मैनिफोल्ड में सबमेनिफोल्ड और बीजगणितीय विविधता के उपयुक्त उपसमुच्चय है।
एफ़िन किस्म और प्रक्षेपीय बीजगणितीय विविधता के लिए, कोडिमेंशन परिभाषित आदर्श (रिंग थ्योरी) की ऊंचाई के बराबर है। इस कारण से, किसी आदर्श की ऊंचाई को अधिकांशतः उसका कोडिमेंशन कहा जाता है।
दोहरी अवधारणा सापेक्ष आयाम है।
परिभाषा
कोडिमेंशन एक सापेक्ष अवधारणा है: यह केवल एक वस्तु के लिए दूसरे के अंदर परिभाषित किया गया है। कोई "सदिश स्थान (अलगाव में)" का कोडिमेंशन नहीं होता है, केवल सदिश उप-स्थान का कोडिमेंशन होता है।
यदि W परिमित-विम सदिश समष्टि V का एक रैखिक उपसमष्टि है, तो V में W का कोडिमेंशन आयामों के बीच का अंतर होगा:
यह W के आयाम का पूरक है, इसमें W के आयाम के साथ, यह परिवेशी स्थान V के आयाम को भी जोड़ता है:
इसी प्रकार, यदि N, M में एक सबमनीफोल्ड या उप-विविधता है, तो M में N का कोडिमेंशन होगा
जैसे सबमेनिफोल्ड का आयाम स्पर्शरेखा बंडल का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड पर ले जा सकते हैं), उसी प्रकार कोडिमेंशन सामान्य बंडल का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड से हटा सकते हैं)।
अधिक सामान्यतः, यदि W एक (संभवतः अनंत आयामी) सदिश स्थान V का एक रैखिक उप-स्थान है, तो V में W का कोडिमेंशन भागफल स्थान (रैखिक बीजगणित) V/W का आयाम (संभवतः अनंत) है, जो अधिक संक्षेप में समावेशन के कोकर्नेल के रूप में जाना जाता है। परिमित-आयामी सदिश रिक्त स्थान के लिए, यह पिछली परिभाषा से सहमत है
और कर्नेल (बीजगणित) के आयाम के रूप में सापेक्ष आयाम के लिए दोहरा है।
अनंत-आयामी रिक्त स्थान के परिमित-कोड-आयामी उप-स्थान अधिकांशतः टोपोलॉजिकल सदिश स्थान के अध्ययन में उपयोगी होते हैं।
कोडिमेंशन और आयाम गणना की परिशुद्धता
कोडिमेंशन के मूलभूत गुण इसके प्रतिच्छेदन (सेट सिद्धांत) के संबंध में निहित है: यदि W1 का कोडिमेंशन k1 है, और W2 का कोडिमेंशन k2 है, तो यदि U कोडिमेंशन j के साथ उनका प्रतिच्छेदन है तो हमारे पास है
- अधिकतम (k1, k2) ≤ j ≤ k1 + k2.
वास्तव में j इस श्रेणी में कोई पूर्णांक मान ले सकता है। यह कथन आयामों के संदर्भ में अनुवाद की तुलना में अधिक सुस्पष्ट है, क्योंकि एक समीकरण की भुजाएँ केवल कोडिमेंशन का योग होती हैं। शब्दों में
- कोडिमेंशन (अधिकतम) जोड़ें।
- यदि उप-स्थान या सबमेनिफोल्ड्स ट्रांसवर्सलिटी (गणित) (जो सामान्य स्थिति में होता है) का प्रतिच्छेद करते हैं, तो यह कोडिमेंशन को बिल्कुल जोड़ते हैं।
इस कथन को 'आयाम गणना' कहा जाता है, विशेष रूप से प्रतिच्छेदन सिद्धांत में।
दोहरी व्याख्या
दोहरे स्थान के संदर्भ में, यह काफी स्पष्ट है कि आयाम क्यों जुड़ते हैं। उप-स्थानों को एक निश्चित संख्या में रैखिक क्रियाओं के लुप्त होने से परिभाषित किया जा सकता है, जो कि अगर हम रैखिक रूप से स्वतंत्र होने के लिए लेते हैं, तो उनकी संख्या कोडिमेंशन है। इसलिए, हम देखते हैं कि Wi को परिभाषित करने वाले रैखिक कार्यों के सेट के संघ (सेट सिद्धांत) को लेकर U को परिभाषित किया गया है। वह संघ कुछ हद तक रैखिक निर्भरता का परिचय दे सकता है: j के संभावित मान उस निर्भरता को व्यक्त करते हैं, RHS योग के मामले में जहां कोई निर्भरता नहीं है। उप-स्थान को छाँटने के लिए आवश्यक कार्यों की संख्या के संदर्भ में कोडिमेंशन की यह परिभाषा उन स्थितियों तक फैली हुई है जिनमें परिवेश स्थान और उप-स्थान दोनों अनंत आयामी हैं।
दूसरी भाषा में, जो किसी भी प्रकार के प्रतिच्छेदन सिद्धांत के लिए मूलभूत है, हम एक निश्चित संख्या में बाधा (गणित) का संघ ले रहे हैं। हमारे पास देखने के लिए दो घटनाएं हैं:
- बाधाओं के दो सेट स्वतंत्र नहीं हो सकते हैं;
- बाधाओं के दो सेट संगत नहीं हो सकते हैं।
इनमें से पहले को अधिकांशतः गिनती बाधाओं (गणित) के सिद्धांत' के रूप में व्यक्त किया जाता है: यदि हमारे पास समायोजित करने के लिए कई एन पैरामीटर हैं (अर्थात हमारे पास स्वतंत्रता की एन डिग्री (भौतिकी और रसायन विज्ञान) है), और एक बाधा का मतलब है कि हमें इसे संतुष्ट करने के लिए एक पैरामीटर का 'उपभोग' करना है, तो समाधान सेट का कोडिमेंशन अधिक से अधिक बाधाओं की संख्या है। हम एक समाधान खोजने में सक्षम होने का विश्वास नहीं करते हैं यदि अनुमानित कोडिमेंशन, अर्थात स्वतंत्र बाधाओं की संख्या एन से अधिक है (रैखिक बीजगणित मामले में, हमेशा एक तुच्छ, शून्य वेक्टर समाधान होता है, इसलिए छूट दी जाती है)।
दूसरा ज्यामिति का मामला है, समानांतर रेखाओं के मॉडल पर; यह कुछ ऐसा है जिस पर रैखिक बीजगणित के उपाय से रैखिक समस्याओं के लिए चर्चा की जा सकती है, और जटिल संख्या क्षेत्र में प्रक्षेपण स्थान में गैर-रैखिक समस्याओं के लिए चर्चा की जा सकती है।
ज्यामितीय टोपोलॉजी में
कोडिमेंशन का ज्यामितीय टोपोलॉजी में भी कुछ स्पष्ट अर्थ है: कई गुना पर, कोडिमेंशन 1 सबमनीफोल्ड द्वारा टोपोलॉजिकल पृथकत्व का आयाम है, जबकि कोडिमेंशन 2 रेमिफिकेशन (गणित) और गाँठ सिद्धांत का आयाम है। वास्तव में, उच्च-आयामी मैनिफोल्ड्स का सिद्धांत, जो आयाम 5 और ऊपर में शुरू होता है, को वैकल्पिक रूप से कोडिमेंशन 3 में शुरू करने के लिए कहा जा सकता है, क्योंकि उच्च कोडिमेंशन गाँठ की घटना से बचते हैं। चूंकि शल्य चिकित्सा सिद्धांत को मध्य आयाम तक काम करने की आवश्यकता होती है, एक बार जब कोई आयाम 5 में होता है, तो मध्य आयाम में 2 से अधिक कोडिमेंशन होता है, और इसलिए गांठों से बचा जाता है।
यह क्विप खाली नहीं है: कोडिमेंशन 2 में अंत:स्थापन का अध्ययन गाँठ सिद्धांत है, और कठिन है, जबकि कोडिमेंशन 3 या अधिक में अंत:स्थापन का अध्ययन उच्च-आयामी ज्यामितीय टोपोलॉजी के उपकरणों के लिए उत्तरदायी है, और इसलिए काफी आसान है।
यह भी देखें
- अंतर ज्यामिति और टोपोलॉजी की शब्दावली
संदर्भ
- "कोडिमेंशन", Encyclopedia of Mathematics, EMS Press, 2001 [1994]