सीपी उल्लंघन: Difference between revisions
(Created page with "{{short description|Violation of charge-parity symmetry in particle physics and cosmology}} {{Use dmy dates|date=January 2016}} {{Beyond the Standard Model|expanded=Evidence}}...") |
No edit summary |
||
| (9 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Violation of charge-parity symmetry in particle physics and cosmology}} | {{short description|Violation of charge-parity symmetry in particle physics and cosmology}} | ||
{{Use dmy dates|date=January 2016}} | {{Use dmy dates|date=January 2016}} | ||
{{Beyond the Standard Model|expanded= | {{Beyond the Standard Model|expanded=प्रमाण}} | ||
[[कण भौतिकी]] में, सीपी उल्लंघन सीपी-समरूपता (या | [[कण भौतिकी]] में, सीपी उल्लंघन सीपी-समरूपता (या आवेश संयुग्मन समानता समरूपता) का उल्लंघन है: [[सी-समरूपता]] (आवेश समरूपता) और पी-समरूपता [[समता (भौतिकी)|(समता समरूपता)]] का संयोजन है। सीपी-समरूपता में कहा गया है कि भौतिकी के नियम समान होने चाहिए यदि कोई कण अपने प्रतिकण (सी-समरूपता) के साथ परिवर्तित कर दिया जाता है, जबकि इसके स्थानिक निर्देशांक व्युत्क्रमित (दर्पण या पी-समरूपता) होते हैं। 1964 में अनावेशी [[खाना|कैऑन]] के पतन में सीपी उल्लंघन की खोज के परिणामस्वरूप 1980 में इसके खोजकर्ता [[जेम्स क्रोनिन]] और [[वैल फिच]] को भौतिकी का नोबेल पुरस्कार दिया गया था। | ||
यह | यह [[भौतिक ब्रह्मांड विज्ञान|ब्रह्मांड विज्ञान]] के वर्तमान [[ब्रह्मांड]] में प्रतिद्रव्य पर पदार्थ के प्रभुत्व की व्याख्या करने के प्रयासों और कण भौतिकी में [[कमजोर अंतःक्रिया|दुर्बल अंतःक्रियाओं]] के अध्ययन में महत्वपूर्ण भूमिका निभाते है। | ||
== | == संक्षिप्त विवरण == | ||
1950 के दशक तक, समता संरक्षण को मौलिक ज्यामितीय [[संरक्षण कानून]] | 1950 के दशक तक, समता संरक्षण को मौलिक ज्यामितीय [[संरक्षण कानून|संरक्षण नियमों]] (ऊर्जा के संरक्षण और संवेग के संरक्षण के साथ) में से एक माना जाता था। 1956 में समता उल्लंघन की खोज के पश्चात, व्यवस्था को पुन: स्थापित करने के लिए सीपी-समरूपता प्रस्तावित की गई थी। हालांकि, जबकि [[मजबूत बातचीत|प्रबल अन्योन्यक्रिया]] और [[विद्युत चुम्बकीय बातचीत|विद्युत् चुम्बकीय अन्योन्यक्रिया]] संयुक्त सीपी परिवर्तन क्रिया के अंतर्गत अपरिवर्तनीय प्रतीत होते है, आगे के प्रयोगों से पता चला है कि कुछ प्रकार के [[कमजोर क्षय|दुर्बल पतन]] के पर्यंत इस समरूपता का थोड़ा उल्लंघन होता है। | ||
समरूपता का केवल एक | समरूपता का केवल एक दुर्बल संस्करण भौतिक घटनाओं द्वारा संरक्षित किया जा सकता है, जो कि सीपीटी समरूपता थी। सी और पी के अतिरिक्त, एक तृतीय क्रिया है, कालोत्क्रमण टी, जो गति के उत्क्रमण के अनुरूप है। कालोत्क्रमण के अंतर्गत अपरिवर्तनीयता का तात्पर्य है कि जब भी भौतिकी के नियमों द्वारा गति की अनुमति दी जाती है, तो उत्क्रमित गति भी एक अनुमत होती है और अग्र और पश्च में समान दर से होती है। | ||
माना जाता है कि सीपीटी के संयोजन से सभी प्रकार की मूलभूत अंतःक्रियाओं की एक सटीक समरूपता बनती है। | माना जाता है कि सीपीटी के संयोजन से सभी प्रकार की मूलभूत अंतःक्रियाओं की एक सटीक समरूपता बनती है। दीर्घकालीन से चली आ रही सीपीटी समरूपता प्रमेय के कारण, बशर्ते कि यह मान्य हो, सीपी-समरूपता का उल्लंघन टी-समरूपता के उल्लंघन के समान है। इस प्रमेय में, जिसे [[क्वांटम क्षेत्र सिद्धांत|परिमाण क्षेत्र सिद्धांत]] के मूल सिद्धांतों में से एक माना जाता है, आवेश संयुग्मन, समता और समय उत्क्रमण एक साथ अनुप्रयुक्त होते हैं। सीपीटी प्रमेय की किसी धारणा के बिना टी-समरूपता उल्लंघन का प्रत्यक्ष अवलोकन 1998 में [[CERN|सीईआरएन]] और [[Fermilab|फर्मिलैब]] में क्रमशः दो समूहों, सीपीएलएआर प्रयोग और केटीईवी सहयोग द्वारा किया गया था।<ref> | ||
{{cite journal | {{cite journal | ||
|last1=Schwarzschild |first1=Bertram | |last1=Schwarzschild |first1=Bertram | ||
| Line 38: | Line 38: | ||
=== पी-समरूपता === | === पी-समरूपता === | ||
समता | समता समरूपता के पीछे विचार यह था कि दर्पण व्युत्क्रम के अंतर्गत कण भौतिकी के समीकरण अपरिवर्तनीय हैं। इसने भविष्यवाणी की कि प्रतिक्रिया की दर्पण छवि (जैसे [[रासायनिक प्रतिक्रिया]] या [[रेडियोधर्मी क्षय|रेडियोधर्मी पतन]]) मूल प्रतिक्रिया के समान दर पर होती है। हालांकि, 1956 में सैद्धांतिक भौतिकविदों [[त्सुंग-दाओ ली]] और [[ चेन-नी वो यांग |चेन-निंग यांग]] द्वारा उपस्थित प्रयोगात्मक आंकड़ों की एक सावधानीपूर्वक आलोचनात्मक समीक्षा से पता चला कि समता संरक्षण को प्रबल या विद्युत चुम्बकीय अन्योन्यक्रिया द्वारा पतन में सत्यापित किया गया था, परन्तु दुर्बल अन्योन्यक्रिया में इसका परीक्षण नहीं किया गया था।<ref> | ||
{{cite journal | {{cite journal | ||
|last1=Lee |first1=T. D. | |last1=Lee |first1=T. D. | ||
| Line 48: | Line 48: | ||
|bibcode=1956PhRv..104..254L | |bibcode=1956PhRv..104..254L | ||
|doi=10.1103/PhysRev.104.254 |doi-access=free | |doi=10.1103/PhysRev.104.254 |doi-access=free | ||
}}</ref> उन्होंने कई संभावित प्रत्यक्ष प्रयोगात्मक परीक्षण प्रस्तावित | }}</ref> उन्होंने कई संभावित प्रत्यक्ष प्रयोगात्मक परीक्षण प्रस्तावित किए थे। | ||
[[कोबाल्ट-60]] नाभिक के [[बीटा क्षय]] पर आधारित | [[कोबाल्ट-60]] नाभिक के [[बीटा क्षय|बीटा पतन]] पर आधारित प्रथम परीक्षण 1956 में [[ χ en-shi UN GW U |चिएन-शिउंग वू]] के नेतृत्व वाले एक समूह द्वारा किया गया था और निर्णायक रूप से प्रदर्शित किया गया था कि दुर्बल अंतःक्रियाएं पी-समरूपता का उल्लंघन करती हैं।<ref> | ||
{{cite journal | {{cite journal | ||
|last1=Wu |first1=C. S. | |last1=Wu |first1=C. S. | ||
| Line 63: | Line 63: | ||
|bibcode=1957PhRv..105.1413W | |bibcode=1957PhRv..105.1413W | ||
|doi=10.1103/PhysRev.105.1413 |doi-access=free | |doi=10.1103/PhysRev.105.1413 |doi-access=free | ||
}}</ref> हालाँकि, | }}</ref> हालाँकि, [[विद्युत]] चुंबकत्व और प्रबल अंतःक्रियाओं से जुड़े सभी प्रतिक्रियाओं के लिए समता समरूपता अभी भी मान्य प्रतीत होती है। | ||
=== सीपी-समरूपता === | === सीपी-समरूपता === | ||
कुल मिलाकर, एक [[क्वांटम यांत्रिकी]] प्रणाली की समरूपता को | कुल मिलाकर, एक [[क्वांटम यांत्रिकी|परिमाण यांत्रिकी]] प्रणाली की समरूपता को पुनःस्थापित किया जा सकता है यदि एक और अनुमानित समरूपता एस को इस प्रकार पाया जा सकता है कि संयुक्त समरूपता पीएस अखंड रहता है। पी उल्लंघन की खोज के तुरंत बाद [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्पेस]] की संरचना के विषय में यह सूक्ष्म बिंदु संपादित किया गया था और यह प्रस्तावित किया गया था कि आवेश संयुग्मन, सी, जो एक [[कण]] को अपने प्रतिकण में परिवर्तित कर देता है, क्रम को पुनःस्थापित करने के लिए उपयुक्त समरूपता थी। | ||
1956 में [[रेइनहार्ड ओह्मे]] ने चेन-निंग यांग को लिखे एक पत्र में और कुछ ही समय | 1956 में [[रेइनहार्ड ओह्मे]] ने चेन-निंग यांग को लिखे एक पत्र में और कुछ ही समय पश्चात, इओफे, [[लेव ओकुन|ओकुन]] और रुडिक ने दर्शाया कि समता उल्लंघन का अर्थ है कि दुर्बल पतन में आवेश संयुग्मन व्युत्क्रमण का भी उल्लंघन किया जाना चाहिए।<ref name="Ioffe">{{cite journal | ||
|last1=Ioffe | |last1=Ioffe | ||
|first1=B. L. | |first1=B. L. | ||
| Line 81: | Line 81: | ||
|volume=32 | |volume=32 | ||
|pages=328–330 | |pages=328–330 | ||
}}{{Dead link|date=July 2022 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> | }}{{Dead link|date=July 2022 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> [[वू प्रयोग]] में और [[वैलेंटाइन टेलीगडी]] और [[जेरोम इसाक फ्रीडमैन]] और [[रिचर्ड गारविन]] और लेडरमैन द्वारा किए गए प्रयोगों में आवेश उल्लंघन की पुष्टि की गई, जिन्होंने पाइऑन और म्यूऑन पतन में समता गैर-संरक्षण देखा और पाया कि सी का भी उल्लंघन किया गया है। [[लिवरपूल विश्वविद्यालय]] में [[जॉन रिले होल्ट]] द्वारा किए गए प्रयोगों में आवेश उल्लंघन अधिक स्पष्ट रूप से दर्शाया गया था।<ref> | ||
[[वू प्रयोग]] में और [[वैलेंटाइन टेलीगडी]] और [[जेरोम इसाक फ्रीडमैन]] और [[रिचर्ड गारविन]] और | |||
{{Cite journal | {{Cite journal | ||
|last1=Friedman |first1=J. I. | |last1=Friedman |first1=J. I. | ||
| Line 115: | Line 114: | ||
|bibcode=1959PPS....73..169C | |bibcode=1959PPS....73..169C | ||
|doi=10.1088/0370-1328/73/2/303 | |doi=10.1088/0370-1328/73/2/303 | ||
}}</ref> ओह्मे ने फिर | }}</ref> | ||
ओह्मे ने फिर ली और [[ सी हेनिंग यांग |यांग]] के साथ एक पत्र लिखा जिसमें उन्होंने पी, सी और टी के अंतर्गत गैर-अपरिवर्तनीयता के परस्पर क्रिया पर आलोचना की। वही परिणाम स्वतंत्र रूप से बी.एल. इओफे, लेव ओकुन और ए.पी. रुडिक द्वारा भी प्राप्त किया गया था। दोनों समूहों ने अनावेशी कैऑन पतन में संभावित सीपी उल्लंघनों पर भी आलोचना की।<ref name="Ioffe" /><ref> | |||
{{cite journal | {{cite journal | ||
|title=Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation | |title=Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation | ||
| Line 130: | Line 131: | ||
|doi=10.1103/PhysRev.106.340 | |doi=10.1103/PhysRev.106.340 | ||
}}</ref> | }}</ref> | ||
1957 में सीपी-समरूपता में प्रस्तावित | |||
[[लेव लैंडौ]] ने 1957 में सीपी-समरूपता में प्रस्तावित किया,<ref> | |||
{{Cite journal | {{Cite journal | ||
|last1=Landau |first1=L. | |last1=Landau |first1=L. | ||
| Line 139: | Line 141: | ||
|bibcode=1957NucPh...3..127L | |bibcode=1957NucPh...3..127L | ||
|doi=10.1016/0029-5582(57)90061-5 | |doi=10.1016/0029-5582(57)90061-5 | ||
}}</ref> | }}</ref>जिसे प्रायः पदार्थ और प्रतिद्रव्य के मध्य वास्तविक समरूपता के रूप में केवल सीपी कहा जाता है। सीपी-समरूपता दो परिवर्तनों का उत्पाद: आवेश संयुग्मन के लिए सी और समता के लिए पी है। दूसरे शब्दों में, एक प्रक्रिया जिसमें सभी कणों का उनके प्रतिकणों के साथ आदान-प्रदान किया जाता है, उनको मूल प्रक्रिया की दर्पण छवि के समान माना जाता था और इसलिए संयुक्त सीपी-समरूपता को दुर्बल अन्योन्यक्रिया में संरक्षित किया जाएगा। | ||
1962 में, डबना में प्रयोगवादियों के एक समूह ने, ओकुन के आग्रह पर, | 1962 में, डबना में प्रयोगवादियों के एक समूह ने, ओकुन के आग्रह पर, सीपी-उल्लंघन करने वाले कैऑन पतन की असफल खोज की।<ref>{{cite journal | ||
|last1=Anikina | |last1=Anikina | ||
|first1=M. Kh. | |first1=M. Kh. | ||
| Line 165: | Line 167: | ||
|url-status=dead | |url-status=dead | ||
}}</ref> | }}</ref> | ||
| Line 170: | Line 174: | ||
=== अप्रत्यक्ष सीपी उल्लंघन === | === अप्रत्यक्ष सीपी उल्लंघन === | ||
1964 में, जेम्स क्रोनिन, वैल फिच और सहकर्मियों ने | 1964 में, जेम्स क्रोनिन, वैल फिच और सहकर्मियों ने कैऑन पतन से स्पष्ट प्रमाण प्रदान किया कि सीपी-समरूपता को खंडित किया जा सकता है।<ref name=FCE>[http://large.stanford.edu/courses/2008/ph204/coleman1/ The Fitch-Cronin Experiment]</ref>इस कार्य<ref name=FC1964>{{cite journal |title=Evidence for the 2π Decay of the K{{su|b=2|p=0}} Meson System |journal=[[Physical Review Letters]] |year=1964|volume=13|issue=4 |pages=138 |doi=10.1103/PhysRevLett.13.138|bibcode = 1964PhRvL..13..138C |last1=Christenson |first1=J. H. |last2=Cronin |first2=J. W. |last3=Fitch |first3=V. L. |last4=Turlay |first4=R.|doi-access=free }}</ref>ने उन्हें 1980 का नोबेल पुरस्कार जिताया। इस खोज से पता चला है कि दुर्बल अन्योन्यक्रिया न केवल कणों और प्रतिकणों और पी या समता के मध्य आवेश-संयुग्मन समरूपता सी का उल्लंघन करते हैं, बल्कि उनके संयोजन का भी उल्लंघन करते हैं। इस खोज ने कण भौतिकी को स्तंभित कर दिया और आज भी कण भौतिकी और ब्रह्माण्ड विज्ञान के मूल में प्रश्नों के द्वार खोल दिए हैं। एक सटीक सीपी-समरूपता की कमी, परन्तु यह तथ्य भी कि यह एक समरूपता के इतने निकट है, जिसने एक बड़ी गुत्थी प्रस्तुत की। | ||
1964 में खोजे गए सीपी उल्लंघन | 1964 में खोजे गए सीपी उल्लंघन के प्रकार इस तथ्य से जुड़े थे कि अनावेशी कैऑन अपने प्रतिकण में परिवर्तित हो सकते हैं (जिसमें प्रत्येक [[क्वार्क]] को दूसरे के प्रतिक्वार्क से परिवर्तित हो दिया जाता है) और इसके विपरीत, परन्तु ऐसे परिवर्तन दोनों में समान संभावना के साथ नहीं होते है। निर्देश; इसे अप्रत्यक्ष सीपी उल्लंघन कहा जाता है। | ||
=== प्रत्यक्ष सीपी उल्लंघन === | === प्रत्यक्ष सीपी उल्लंघन === | ||
[[File:Kaon-box-diagram.svg|thumb|right| | [[File:Kaon-box-diagram.svg|thumb|right|कैऑन दोलन बॉक्स आरेख]] | ||
[[File:Kaon-box-diagram-alt.svg|thumb|right|उपरोक्त दो बॉक्स आरेख [[फेनमैन आरेख]] हैं जो आयाम | [[File:Kaon-box-diagram-alt.svg|thumb|right|उपरोक्त दो बॉक्स आरेख [[फेनमैन आरेख]] हैं जो आयाम {{Subatomic particle|link=yes|Kaon0}}-{{Subatomic particle|link=yes|Antikaon0}} दोलन में अग्रणी योगदान प्रदान करते हैं।]]कई खोजों के बावजूद, 1990 के दशक तक सीपी उल्लंघन का कोई अन्य प्रकटीकरण नहीं खोजा गया था, जब सीईआरएन में [[NA31 प्रयोग|एनए31 प्रयोग]] ने बहुत ही अनावेशी कैऑन (प्रत्यक्ष सीपी उल्लंघन) की पतन प्रक्रिया में सीपी उल्लंघन के साक्ष्य का सुझाव दिया था। अवलोकन कुछ सीमा तक विवादास्पद था और इसके लिए अंतिम प्रमाण 1999 में फर्मिलैब में केटीईवी प्रयोग और सीईआरएन में [[NA48 प्रयोग]] से आया था।<ref>{{cite journal|last=Alavi-Harati |first=A. |display-authors=etal |collaboration=KTeV Collaboration|title=Observation of Direct CP Violation in K<sub>S,L</sub>→ππ Decays|journal=[[Physical Review Letters]]|year=1999|volume=83|issue=1 |pages=22–27|doi=10.1103/PhysRevLett.83.22|arxiv = hep-ex/9905060 |bibcode = 1999PhRvL..83...22A |s2cid=119333352 }}</ref> <ref name="NA48"> | ||
{{Cite journal | {{Cite journal | ||
|last=Fanti |first=V. | |last=Fanti |first=V. | ||
| Line 190: | Line 194: | ||
|s2cid=15277360 | |s2cid=15277360 | ||
}}</ref> | }}</ref> | ||
2001 में | 2001 के प्रारम्भ में, जापान में स्टैनफोर्ड रैखिक त्वरक केंद्र ([[SLAC]]) में [[बाबर प्रयोग]] और उच्च ऊर्जा त्वरक अनुसंधान संगठन (KEK) में [[बेले प्रयोग]] सहित प्रयोगों की एक नई पीढ़ी ने<ref>{{cite journal|title=Measurement of CP-Violating Asymmetries in B<sup>0</sup> Decays to CP Eigenstates|journal=[[Physical Review Letters]]|year=2001|volume=86|issue=12|pages=2515–22|doi=10.1103/PhysRevLett.86.2515|arxiv = hep-ex/0102030 |bibcode = 2001PhRvL..86.2515A|pmid=11289970 | last1 = Aubert | first1 = B |s2cid=24606837|display-authors=et al }}</ref> <ref>{{cite journal|title=तटस्थ बी मेसन सिस्टम में बड़े सीपी उल्लंघन का अवलोकन|journal=[[Physical Review Letters]]|year=2001|volume=87|issue=9|doi=10.1103/PhysRevLett.87.091802|arxiv = hep-ex/0107061 |bibcode = 2001PhRvL..87i1802A|pmid=11531561|page=091802 | author = Abe K|s2cid=3197654|display-authors=et al}}</ref> एक भिन्न प्रणाली में अर्थात् [[बी मेसन]] के पतन में प्रत्यक्ष सीपी उल्लंघन देखा गया।<ref> | ||
{{Cite web | {{Cite web | ||
|first=Peter | |first=Peter | ||
| Line 199: | Line 203: | ||
|date=August 2001 | |date=August 2001 | ||
|work=[[Physics World]] | |work=[[Physics World]] | ||
}}</ref> बी मेसन | }}</ref> बी मेसन पतन में बड़ी संख्या में सीपी उल्लंघन प्रक्रियाएं अब खोजी गई हैं। इन [[बी-कारखाना|बी-निर्माणी]] प्रयोगों से पूर्व, एक तार्किक संभावना थी कि सभी सीपी उल्लंघन कैऑन भौतिकी तक ही सीमित थे। हालांकि, इसने यह प्रश्न उठाया कि सीपी उल्लंघन प्रबल बल तक क्यों नहीं बढ़ा और इसके अतिरिक्त, सामान्य घटनाओं के लिए प्रतिरूप की सटीकता के बावजूद, अविस्तारित [[मानक मॉडल|मानक प्रतिरूप]] द्वारा इसकी भविष्यवाणी क्यों नहीं की गई। | ||
2011 में, सीईआरएन में [[LHCb|एलएचसीबी]] प्रयोग द्वारा रन 1 आंकड़ों के 0.6 fb<sup>−1</sup> का उपयोग करके अनावेशी [[डी मेसन]] के पतन में सीपी उल्लंघन का संकेत दिया गया था।<ref>{{cite arXiv|last=Carbone |first=A. |title=A search for time-integrated CP violation in D<sup>0</sup>→h<sup>−</sup>h<sup>+</sup> decays|year=2012|eprint=1210.8257|class=hep-ex }}</ref> हालांकि, पूर्ण 3.0 fb<sup>−1</sup> रन 1 प्रतिरूप का उपयोग करने वाला वही माप सीपी-समरूपता के अनुरूप था।<ref>{{cite journal|author1=LHCb Collaboration|title=Measurement of CP asymmetry in D<sup>0</sup>→K<sup>+</sup>K<sup>−</sup> and D<sup>0</sup>→π<sup>+</sup>π<sup>−</sup> decays|journal= [[Journal of High Energy Physics]]|date=2014|volume=2014|issue=7|page=41|doi=10.1007/JHEP07(2014)041|arxiv = 1405.2797 |bibcode = 2014JHEP...07..041A |s2cid=118510475}}</ref> | |||
2013 में एलएचसीबी ने [[अजीब बी मेसन|असामान्य बी मेसन]] पतन में सीपी उल्लंघन की खोज की घोषणा की थी।<ref>{{cite journal|last1=Aaij|first1=R.|display-authors=etal|collaboration=LHCb Collaboration|title=First Observation of CP Violation in the Decays of B<sup>0</sup><sub>s</sub> Mesons|journal=[[Physical Review Letters]]|date=30 May 2013|volume=110|issue=22|pages=221601|doi=10.1103/PhysRevLett.110.221601|pmid=23767711|bibcode=2013PhRvL.110v1601A|arxiv=1304.6173|s2cid=20486226}}</ref> | |||
मार्च 2019 में, एलएचसीबी ने चार्मित <math>D^{0}</math> में सीपी उल्लंघन की खोज की घोषणा की। 5.3 मानक विचलन के शून्य से विचलन के साथ पतन होता है।<ref>{{cite journal|author=R. Aaij|display-authors=etal|collaboration=LHCb Collaboration|title=आकर्षण क्षय में सीपी उल्लंघन का अवलोकन|journal=[[Physical Review Letters]]|date=2019|volume=122|issue=21|pages=211803|doi=10.1103/PhysRevLett.122.211803| arxiv=1903.08726|pmid=31283320|bibcode=2019PhRvL.122u1803A|s2cid=84842008|url=https://iris.unica.it/bitstream/11584/270374/2/PhysRevLett.122.211803.pdf}}</ref>2020 में, [[T2K प्रयोग]] ने पहली बार लेप्टॉनों में सीपी उल्लंघन के कुछ संकेतों की सूचना दी।<ref>{{cite journal | |||
2020 में, [[T2K प्रयोग]] ने पहली बार | |||
|last1=Abe | |last1=Abe | ||
|first1=K. | |first1=K. | ||
| Line 218: | Line 223: | ||
|arxiv=1910.03887|bibcode=2020Natur.580..339T | |arxiv=1910.03887|bibcode=2020Natur.580..339T | ||
|s2cid=203951445 | |s2cid=203951445 | ||
}}</ref> | }}</ref>इस प्रयोग में, म्यूऑन न्यूट्रिनो की किरणें ({{SubatomicParticle|Muon neutrino}}) और म्यूऑन प्रतिन्यूट्रीनो ({{SubatomicParticle|Muon Antineutrino}}) एक त्वरक न्यूट्रिनो द्वारा वैकल्पिक रूप से उत्पादित की गयी थी। जब तक वे संसूचक तक पहुंचे, इलेक्ट्रॉन न्यूट्रिनो ({{SubatomicParticle|Electron neutrino}}) का काफी अधिक अनुपात {{SubatomicParticle|Muon neutrino}} किरणों से पता चला था, इलेक्ट्रॉन प्रतिन्यूट्रीनो ({{SubatomicParticle|Electron Antineutrino}}) की तुलना {{SubatomicParticle|Muon Antineutrino}} किरणों से थी। क्वार्क में देखे गए के सापेक्ष सीपी उल्लंघन के आकार को निर्धारित करने के लिए परिणाम अभी तक सटीक नहीं थे। इसके अतिरिक्त, इसी प्रकार का एक और प्रयोग, [[ नया |नोवा]] न्यूट्रिनो दोलनों में सीपी उल्लंघन का कोई प्रमाण नहीं देखता है<ref> | ||
इस प्रयोग में, म्यूऑन न्यूट्रिनो | |||
{{cite conference | {{cite conference | ||
|last=Himmel | |last=Himmel | ||
| Line 229: | Line 233: | ||
|url=https://indico.fnal.gov/event/43209/timetable/#194-new-oscillation-results-fr | |url=https://indico.fnal.gov/event/43209/timetable/#194-new-oscillation-results-fr | ||
|doi=10.5281/zenodo.3959581 | |doi=10.5281/zenodo.3959581 | ||
}}</ref> और | }}</ref> और टी2के के साथ साधारण विभव में है।<ref> | ||
{{cite journal | {{cite journal | ||
|first1=Kevin J. | |first1=Kevin J. | ||
| Line 272: | Line 276: | ||
}}</ref> | }}</ref> | ||
=== मानक प्रतिरूप में सीपी उल्लंघन === | |||
मानक प्रतिरूप में "प्रत्यक्ष" सीपी उल्लंघन की अनुमति है यदि क्वार्क मिश्रण का वर्णन करने वाले [[सीकेएम मैट्रिक्स|सीकेएम आव्यूह]] में एक जटिल चरण प्रकट होता है या [[पीएमएनएस मैट्रिक्स|पीएमएनएस आव्यूह]] [[ न्युट्रीनो |न्युट्रीनो]] मिश्रण का वर्णन करता है। जटिल चरण की उपस्थिति के लिए एक आवश्यक स्थिति फर्मिऑन की कम से कम तीन पीढ़ियों की उपस्थिति है। यदि कम पीढ़ियां उपस्थित हैं, तो जटिल चरण मापदण्ड को फर्मिऑन क्षेत्र की पुनर्परिभाषाओं में अवशोषित किया जा सकता है। | |||
एक प्रमुख पुनर्रचना अचर जिसके लुप्त होने का संकेत सीपी उल्लंघन की अनुपस्थिति है और अधिकांश सीपी उल्लंघन आयामों में होते है, जार्लस्कॉग अचर है: | |||
:<math>\ J = c_{12}\ c_{13}^2\ c_{23}\ s_{12}\ s_{13}\ s_{23}\ \sin \delta\ \approx\ 0.00003 \ </math> | |||
क्वार्क के लिए,<math>\ J_{\max} = \tfrac{1}{6} \sqrt{ 3\ }\ \approx\ 0.1\ </math>के अधिकतम मान का 0.0003 गुना है। लेप्टान के लिए, केवल एक ऊपरी सीमा<math>\ |J| < 0.03\ </math>उपस्थित है। | |||
इस प्रकार के एक जटिल चरण के कारण सीपी उल्लंघन का कारण तुरंत स्पष्ट नहीं है, परन्तु इसे निम्नानुसार देखा जा सकता है। किसी दिए गए कण (या कणों के समुच्चय)<math>\ a\ </math>और<math>\ b\ </math>और उनके प्रतिकण<math>\ \bar{a}\ </math>और <math>\ \bar{b}\ </math>पर विचार करें। अब प्रक्रियाओं<math>\ a \rightarrow b\ </math> पर विचार करें और संबंधित प्रतिकण प्रक्रिया <math>\ \bar{a} \rightarrow \bar{b}\ </math> और उनके आयामों<math>\ M\ </math>और <math>\ \bar{M}\ </math>को क्रमशः निरूपित करें। सीपी उल्लंघन से पूर्व, ये शब्द एक ही जटिल संख्या होनी चाहिए। हम परिमाण और चरण<math>\ M = |M|\ e^{i\theta}\ </math>को लिखकर अलग कर सकते हैं। यदि सीकेएम आव्यूह से एक चरण शब्द प्रस्तुत किया जाता है, तो<math>\ e^{i\phi}\ </math>को निरूपित करें। ध्यान दें कि<math>\ \bar{M}\ </math> संयुग्म आव्यूह<math>\ M\ </math>सम्मिलित है इसलिए यह एक चरण पद<math>\ e^{-i\phi}\ </math>का चयन करता है। | |||
अब सूत्र बन जाता है: | |||
इस | |||
: <math>\ M = |M|\ e^{i\theta}\ e^{+i\phi}\ </math> | : <math>\ M = |M|\ e^{i\theta}\ e^{+i\phi}\ </math> | ||
: <math>\ \bar{M} = |M|\ e^{i\theta}\ e^{-i\phi}\ </math> | : <math>\ \bar{M} = |M|\ e^{i\theta}\ e^{-i\phi}\ </math> | ||
शारीरिक रूप से मापने योग्य प्रतिक्रिया दर | शारीरिक रूप से मापने योग्य प्रतिक्रिया दर<math>\ |M|^{2}\ </math>आनुपातिक हैं, इस प्रकार अब तक कुछ भी भिन्न नहीं है। हालाँकि, विचार करें कि दो अलग-अलग:<math>\ a \overset{1}{\longrightarrow} b\ </math> और <math>\ a \overset{2}{\longrightarrow} b\ </math>अवस्थाएँ हैं या समतुल्य रूप से, दो असंबंधित मध्यवर्ती अवस्थाएँ:<math>\ a \rightarrow 1\rightarrow b\ </math> और <math>\ a \rightarrow 2\rightarrow b\ </math>है। अब हमारे पास है: | ||
: <math>\ M = |M_{1}|\ e^{i\theta_{1}}\ e^{i\phi_{1}} + |M_{2}|\ e^{i\theta_{2}}\ e^{i\phi_{2}}\ </math> | : <math>\ M = |M_{1}|\ e^{i\theta_{1}}\ e^{i\phi_{1}} + |M_{2}|\ e^{i\theta_{2}}\ e^{i\phi_{2}}\ </math> | ||
: <math>\ \bar{M} = |M_{1}|\ e^{i\theta_{1}}\ e^{-i\phi_{1}} + |M_{2}|\ e^{i\theta_{2}}\ e^{-i\phi_{2}}\ | : <math>\ \bar{M} = |M_{1}|\ e^{i\theta_{1}}\ e^{-i\phi_{1}} + |M_{2}|\ e^{i\theta_{2}}\ e^{-i\phi_{2}}\ </math> | ||
कुछ और गणना देता है: | कुछ और गणना देता है: | ||
: <math>\ |M|^{2} - |\bar{M}|^{2} = -4\ |M_{1}|\ |M_{2}|\ \sin(\theta_{1} - \theta_{2})\ \sin(\phi_{1} - \phi_{2})\ | : <math>\ |M|^{2} - |\bar{M}|^{2} = -4\ |M_{1}|\ |M_{2}|\ \sin(\theta_{1} - \theta_{2})\ \sin(\phi_{1} - \phi_{2})\ </math> | ||
इस प्रकार, हम देखते हैं कि एक जटिल चरण प्रक्रियाओं | इस प्रकार, हम देखते हैं कि एक जटिल चरण प्रक्रियाओं की उत्पत्ति करता है जो कणों और प्रतिकणों के लिए अलग-अलग दरों पर आगे बढ़ता है और सीपी का उल्लंघन होता है। | ||
सैद्धांतिक अंत से, | सैद्धांतिक अंत से, सीकेएम आव्यूह<math>\ \mathrm{V}_\mathsf{CKM} = \mathrm{U}_\mathsf{u}\ \mathrm{U}_\mathsf{d}^\dagger\ </math>को इस रूप में परिभाषित किया गया है, जहां <math>\ \mathrm{U}_\mathsf{u}\ </math>और <math>\ \mathrm{U}_\mathsf{d}\ </math>एकात्मक रूपांतरण आव्यूह हैं जो फ़र्मियन द्रव्यमान आव्यूह<math>\ M_\mathsf{u}\ </math>और <math>\ M_\mathsf{d}\ </math>को क्रमशः विकर्णित करते हैं। | ||
इस प्रकार, जटिल सीकेएम | इस प्रकार, जटिल सीकेएम आव्यूह प्राप्त करने के लिए दो आवश्यक प्रतिबन्ध हैं: | ||
# | # {{math|U}}{{sub|u}} और {{math|U}}{{sub|d}} में से कम से कम एक जटिल है, या सीकेएम आव्यूह विशुद्ध रूप से वास्तविक होगा। | ||
# यदि वे दोनों जटिल हैं, {{math|U}}{{sub|u}} और {{math|U}}{{sub|d}} समान नहीं होना चाहिए, अर्थात, {{math|U{{sub|u}} ≠ U{{sub|d}}}} | # यदि वे दोनों जटिल हैं, {{math|U}}{{sub|u}} और {{math|U}}{{sub|d}} समान नहीं होना चाहिए, अर्थात, {{math|U{{sub|u}} ≠ U{{sub|d}}}} या सीकेएम आव्यूह एक पहचान आव्यूह होगा, जो विशुद्ध रूप से वास्तविक भी है। | ||
== | == प्रबल सीपी समस्या == | ||
{{main| | {{main|प्रबल सीपी समस्या}} | ||
{{unsolved| | {{unsolved|भौतिक विज्ञान|प्रबल परमाणु संपर्क बल सीपी-अचल क्यों है?}} | ||
[[क्वांटम क्रोमोडायनामिक्स]] में सीपी-समरूपता का कोई प्रायोगिक रूप से ज्ञात उल्लंघन नहीं है। क्यूसीडी में विशेष रूप से संरक्षित होने का कोई ज्ञात कारण नहीं है, यह एक | [[क्वांटम क्रोमोडायनामिक्स|परिमाण क्रोमोडायनामिक]] में सीपी-समरूपता का कोई प्रायोगिक रूप से ज्ञात उल्लंघन नहीं है। क्यूसीडी में विशेष रूप से संरक्षित होने का कोई ज्ञात कारण नहीं है, यह एक सूक्ष्म समस्वरण समस्या है जिसे [[मजबूत सीपी समस्या|प्रबल सीपी समस्या]] के रूप में जाना जाता है। | ||
क्यूसीडी सीपी-समरूपता का इतनी | क्यूसीडी सीपी-समरूपता का इतनी सरलता से उल्लंघन नहीं करता जितनी सरलता से विद्युत् दुर्बल सिद्धांत करता है; विद्युत् दुर्बल सिद्धांत के विपरीत, जिसमें गेज क्षेत्र युग्म को फर्मीओनिक क्षेत्रों से निर्मित चिरल धाराओं से जोड़ा जाता है, ग्लूऑन युग्म को सदिश धाराओं से जोड़ा जाता है। प्रयोग क्यूसीडी क्षेत्र में किसी भी सीपी उल्लंघन का संकेत नहीं देते हैं। उदाहरण के लिए, अत्यधिक परस्पर क्रिया करने वाले क्षेत्र में एक सामान्य सीपी उल्लंघन [[न्यूट्रॉन]] के [[विद्युत द्विध्रुवीय क्षण|विद्युत द्विध्रुव आघूर्ण]] का निर्माण करेगा जो 10<sup>−18</sup> e के समान होगा, जबकि m प्रयोगात्मक ऊपरी सीमा लगभग एक खरबवां आकार है। | ||
यह एक समस्या है क्योंकि अंत में, | यह एक समस्या है क्योंकि अंत में, क्यूसीडी [[Lagrangian (क्षेत्र सिद्धांत)|लग्रांजी]] में प्राकृतिक शब्द हैं जो सीपी-समरूपता को विभाजित करने में सक्षम हैं। | ||
:<math>{\mathcal L} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu}-\frac{n_f g^2\theta}{32\pi^2} | :<math>{\mathcal L} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu}-\frac{n_f g^2\theta}{32\pi^2} | ||
F_{\mu\nu}\tilde F^{\mu\nu}+\bar \psi(i\gamma^\mu D_\mu - m | F_{\mu\nu}\tilde F^{\mu\nu}+\bar \psi(i\gamma^\mu D_\mu - m | ||
e^{i\theta'\gamma_5})\psi</math> | e^{i\theta'\gamma_5})\psi</math> | ||
क्वार्क द्रव्यमान θ′ के θ कोण और चिरल चरण के एक गैर-शून्य विकल्प के लिए सीपी-समरूपता का उल्लंघन होने की | क्वार्क द्रव्यमान θ′ के θ कोण और चिरल चरण के एक गैर-शून्य विकल्प के लिए सीपी-समरूपता का उल्लंघन होने की आशा है। सामान्यतः यह माना जाता है कि चिराल क्वार्क द्रव्यमान चरण को कुल प्रभावी <math>\scriptstyle{\tilde\theta}</math> कोण में परिवर्तित किया जा सकता है, परन्तु यह समझाया जाना अवशेष है कि यह कोण एक क्रम के होने के स्थान पर अत्यंत लघु क्यों है; θ कोण का विशेष मान जो शून्य के बहुत निकट होना चाहिए (इस स्थिति में) भौतिक में सूक्ष्म समस्वरण समस्या का एक उदाहरण है और सामान्यतः [[मानक मॉडल से परे भौतिकी|मानक प्रतिरूप के अतिरिक्त भौतिकी]] द्वारा हल किया जाता है। | ||
प्रबल सीपी समस्या को हल करने के लिए कई प्रस्तावित समाधान हैं। सबसे प्रसिद्ध पेसेई-क्विन सिद्धांत है, जिसमें एक्सियन नामक नए [[अदिश कण]] सम्मिलित हैं। [[ axion |एक्सियन]] की आवश्यकता नहीं रखने वाला एक नया, अधिक मौलिक दृष्टिकोण एक सिद्धांत है जिसमें बार्स, डेलिडुमन और एंड्रीव द्वारा पहली बार 1998 में प्रस्तावित कई आयाम सम्मिलित हैं।<ref> | |||
{{cite journal | {{cite journal | ||
|author1=I. Bars |author2=C. Deliduman |author3=O. Andreev | title = Gauged Duality, Conformal Symmetry, and Spacetime with Two Times | |author1=I. Bars |author2=C. Deliduman |author3=O. Andreev | title = Gauged Duality, Conformal Symmetry, and Spacetime with Two Times | ||
| Line 320: | Line 326: | ||
== | == द्रव्य-प्रतिद्रव्य असंतुलन == | ||
{{main| | {{main|बैरियोजेनेसिस}} | ||
{{See also| | {{See also|टी - समरूपता|समय का शर|लोरेन्ट्स रूपांतरण}} | ||
{{unsolved| | {{unsolved|भौतिक विज्ञान|ब्रह्मांड में प्रतिद्रव्य की तुलना में इतना अधिक द्रव्य क्यों है?}} | ||
{{citation needed section|date= | {{citation needed section|date=नवंबर 2020}} | ||
गैर-[[ गहरे द्रव्य ]] ब्रह्मांड मुख्य रूप से | गैर-[[ गहरे द्रव्य | अदीप्त द्रव्य]] ब्रह्मांड मुख्य रूप से द्रव्य से बना है, न कि द्रव्य और प्रतिद्रव्य के समान भागों से मिलकर बना है, जैसे कि आशा की जा सकती है। यह प्रदर्शित किया जा सकता है कि संतुलन की प्रारंभिक स्थिति से पदार्थ और प्रतिपदार्थ में असंतुलन उत्पन्न करने के लिए, सखारोव स्थितियों को पूर्ण करना होगा, जिनमें से एक [[महा विस्फोट|बिग बैंग]] के पश्चात पहले सेकंड की चरम स्थितियों के पर्यंत सीपी उल्लंघन का अस्तित्व है। जिन स्पष्टीकरणों में सीपी उल्लंघन सम्मिलित नहीं है, वे कम प्रशंसनीय हैं क्योंकि वे इस धारणा पर विश्वास करते हैं कि पदार्थ-प्रतिपदार्थ असंतुलन प्रारंभ में उपस्थित था या अन्य स्वीकार्य रूप से विदेशी धारणाओं पर उपस्थित था। | ||
यदि सीपी-समरूपता को संरक्षित किया गया होता तो बिग बैंग को समान मात्रा में पदार्थ और | यदि सीपी-समरूपता को संरक्षित किया गया होता तो बिग बैंग को समान मात्रा में पदार्थ और प्रतिद्रव्य का उत्पादन करना चाहिए था; इस प्रकार, दोनों का पूर्ण निरस्तीकरण होना चाहिए—प्रोटोन को [[उपाध्यक्ष|प्रतिप्रोटॉन]] के साथ, [[इलेक्ट्रॉनों]] को पॉज़िट्रॉन के साथ, [[न्यूट्रॉन]] को [[ प्रतिन्यूट्रॉन |प्रतिन्यूट्रॉन]] के साथ और इसी प्रकार से निरसित करना चाहिए था। इसका परिणाम ब्रह्मांड में बिना किसी पदार्थ के विकिरण के समुद्र के रूप में हुआ होगा। चूँकि ऐसा नहीं है, बिग बैंग के पश्चात, भौतिक नियमों ने पदार्थ और प्रतिपदार्थ के लिए अलग-अलग कार्य किया होगा, अर्थात सीपी-समरूपता का उल्लंघन किया होगा। | ||
मानक | मानक प्रतिरूप में सीपी उल्लंघन के कम से कम तीन स्रोत सम्मिलित हैं। इनमें से प्रथम, क्वार्क क्षेत्र में कैबिबो-कोबायाशी-मास्कवा आव्यूह को सम्मिलित करते हुए, प्रयोगात्मक रूप से देखा गया है और केवल द्रव्य-प्रतिद्रव्य विषमता को समझाने के लिए आवश्यक सीपी उल्लंघन के एक छोटे से भाग के लिए उत्तरदायी हो सकता है। सैद्धान्तिक रूप से, प्रबल अंतःक्रिया को भी सीपी का उल्लंघन करना चाहिए, परन्तु [[प्रोटान|प्रयोगों]] में न्यूट्रॉन विद्युत द्विध्रुव क्षण का निरीक्षण करने में विफलता से पता चलता है कि प्रारंभिक ब्रह्मांड में आवश्यक सीपी उल्लंघन के लिए प्रबल क्षेत्र में कोई भी सीपी उल्लंघन भी बहुत छोटा है। सीपी उल्लंघन का तृतीय स्रोत [[ लेपटोन |लेप्टॉन]] क्षेत्र में पोंटेकोरवो-माकी-नाकागावा-सकाता आव्यूह है। वर्तमान दीर्घ आधार रेखा न्यूट्रिनो दोलन प्रयोग, टी2के प्रयोग और [[ नया |नोवा]], सीपी उल्लंघन के प्रमाण खोजने में सक्षम हो सकते हैं, जो कि डिरैक चरण का उल्लंघन करने वाले सीपी के संभावित मानो के एक छोटे से अंश पर हो सकता है, जबकि प्रस्तावित अगली पीढ़ी के प्रयोग, [[हाइपर-कामीकांडे|हाइपर-कमियोकांडे]] और [[LBNE|ड्यून]] करेंगे। डिरैक चरण के संभावित मानो के अपेक्षाकृत बड़े अंश पर निश्चित रूप से सीपी उल्लंघन का निरीक्षण करने के लिए पर्याप्त संवेदनशील रहें। आगे भविष्य में, एक [[ न्यूट्रिनो का कारखाना |न्यूट्रिनो निर्माणी]] सीपी के लगभग सभी संभावित मानो के प्रति संवेदनशील हो सकते है जो डिरैक चरण का उल्लंघन करते है। यदि न्यूट्रिनो [[मेजराना फर्मियन|मायोराना फर्मियन]] हैं, तो पीएमएनएस आव्यूह में मायोराना चरणों का उल्लंघन करने वाले दो अतिरिक्त सीपी हो सकते हैं, जिससे मानक प्रतिरूप के भीतर सीपी उल्लंघन का चौथा स्रोत हो सकता है। मायोराना न्यूट्रिनो के लिए प्रायोगिक साक्ष्य न्यूट्रिनोलेस दुगुने बीटा पतन का अवलोकन होगा। सर्वोत्तम सीमाएँ [[जर्मेनियम डिटेक्टर सरणी|जीईआरडीए]] प्रयोग से आती हैं। [[ लेपटोन |लेप्टॉन]] क्षेत्र में सीपी का उल्लंघन [[लेप्टोजेनेसिस (भौतिकी)|लेप्टोजेनेसिस]] नामक प्रक्रिया के माध्यम से पदार्थ-प्रतिपदार्थ विषमता उत्पन्न करता है। यह ब्रह्माण्ड के पदार्थ-प्रतिपदार्थ विषमता के लिए मानक प्रतिरूप में अधिमानित स्पष्टीकरण बन सकता है यदि [[ लेपटोन |लेप्टॉन]] क्षेत्र में सीपी उल्लंघन की प्रयोगात्मक रूप से पुष्टि की जाती है। | ||
यदि | यदि लेप्टॉन क्षेत्र में सीपी उल्लंघन प्रयोगात्मक रूप से पदार्थ-प्रतिद्रव्य विषमता के लिए कणकु में बहुत छोटा होने के लिए निर्धारित किया जाता है, तो मानक प्रतिरूप से परे कुछ नए भौतिकी को सीपी उल्लंघन के अतिरिक्त स्रोतों की व्याख्या करने की आवश्यकता होगी। मानक प्रतिरूप में नए कणों और/या अंतःक्रियाओं को जोड़ने से सामान्यतः सीपी उल्लंघन के नए स्रोत सामने आते हैं क्योंकि सीपी प्रकृति की समरूपता नहीं है। | ||
सखारोव ने टी-समरूपता का उपयोग करके सीपी-समरूपता को | सखारोव ने टी-समरूपता का उपयोग करके सीपी-समरूपता को पुनःस्थापित करने की एक प्रणाली प्रस्तावित की, बिग बैंग से पूर्व स्पेसटाइम का विस्तार किया। उन्होंने प्रारंभिक विलक्षणता कहे जाने वाले प्रत्येक सिरे पर घटनाओं के पूर्ण सीपीटी प्रतिबिंबों का वर्णन किया। इसके कारण, टी <0 पर समय के विपरीत शर वाली घटनाएं एक विपरीत सीपी उल्लंघन से गुजरती हैं, इसलिए सीपी-समरूपता पूर्णतया से संरक्षित रहेगी। ऑर्थोक्रोनस (या धनात्मक) क्षेत्र में बिग बैंग के पश्चात प्रतिद्रव्य पर पदार्थ की असामान्य अधिकता, बिग बैंग (एंटीक्रोनस या ऋणात्मक क्षेत्र) से पूर्व प्रतिद्रव्य की अधिकता बन जाती है, क्योंकि सीपीटी के कारण आवेश संयुग्मन, समता और समय के शर दोनों उत्क्रमित हो जाते हैं। प्रारंभिक विलक्षणता पर होने वाली सभी घटनाओं का प्रतिबिंब है: | ||
{{quote | {{quote | ||
|text= | |text=हम कल्पना कर सकते हैं कि अनावेशी घुमाव रहित मैक्सिमम (या फोटॉन) "t'' <0 पर उत्पन्न होते हैं, जो प्रतिक्वार्क की अधिकता वाले अनुबंधित पदार्थ से उत्पन्न होते हैं। वे घनत्व अनंत होने पर तत्काल ''t'' = 0 पर "एक के माध्यम से" गुजरते हैं और जब ''t'' > 0, पतन के साथ क्वार्क की अधिकता ब्रह्मांड की कुल सीपीटी समरूपता को साकार करती है। इस परिकल्पना में ''t'' <0 पर सभी परिघटनाओं को ''t''> 0 पर परिघटना का सीपीटी प्रतिबिंब माना जाता है। | ||
|author= | |author=आंद्रेई सखारोव | ||
|source= | |source=(1982) में ''एकत्रित वैज्ञानिक कार्य'' है। <ref name="Sakharov book"> | ||
{{cite book | {{cite book | ||
|last1=Sakharov |first1= A. D. | |last1=Sakharov |first1= A. D. | ||
| Line 350: | Line 356: | ||
== यह भी देखें == | == यह भी देखें == | ||
*बी- | *बी-निर्माणी | ||
*{{slink| | *{{slink|समता (भौतिकी)|समता का उल्लंघन}} | ||
*सी-समरूपता | *सी-समरूपता | ||
*टी-समरूपता | *टी-समरूपता | ||
* सीपीटी समरूपता | * सीपीटी समरूपता | ||
* बीटीईवी प्रयोग | * बीटीईवी प्रयोग | ||
* कैबिबो-कोबायाशी-मस्कावा | * कैबिबो-कोबायाशी-मस्कावा आव्यूह | ||
* [[एलएचसीबी प्रयोग]] | * [[एलएचसीबी प्रयोग]] | ||
* [[पेंगुइन आरेख]] | * [[पेंगुइन आरेख]] | ||
* [[तटस्थ कण दोलन]] | * [[तटस्थ कण दोलन|अनावेशी कण दोलन]] | ||
*इलेक्ट्रॉन विद्युत द्विध्रुव आघूर्ण | *इलेक्ट्रॉन विद्युत द्विध्रुव आघूर्ण | ||
| Line 388: | Line 394: | ||
{{Standard model of physics}} | {{Standard model of physics}} | ||
{{DEFAULTSORT:Cp Violation}} | {{DEFAULTSORT:Cp Violation}} | ||
[[Category: | [[Category:All articles needing additional references|Cp Violation]] | ||
[[Category:Created On 31/03/2023]] | [[Category:All articles with dead external links]] | ||
[[Category:Articles needing additional references from नवंबर 2020|Cp Violation]] | |||
[[Category:Articles with dead external links from July 2022]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Cp Violation]] | |||
[[Category:Articles with invalid date parameter in template|Cp Violation]] | |||
[[Category:Articles with permanently dead external links]] | |||
[[Category:Collapse templates|Cp Violation]] | |||
[[Category:Created On 31/03/2023|Cp Violation]] | |||
[[Category:Lua-based templates|Cp Violation]] | |||
[[Category:Machine Translated Page|Cp Violation]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Cp Violation]] | |||
[[Category:Pages with script errors|Cp Violation]] | |||
[[Category:Sidebars with styles needing conversion|Cp Violation]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi|Cp Violation]] | |||
[[Category:Templates Vigyan Ready|Cp Violation]] | |||
[[Category:Templates generating microformats|Cp Violation]] | |||
[[Category:Templates that add a tracking category|Cp Violation]] | |||
[[Category:Templates that are not mobile friendly|Cp Violation]] | |||
[[Category:Templates that generate short descriptions|Cp Violation]] | |||
[[Category:Templates using TemplateData|Cp Violation]] | |||
[[Category:Use dmy dates from January 2016|Cp Violation]] | |||
[[Category:Wikipedia metatemplates|Cp Violation]] | |||
[[Category:कण भौतिकी|Cp Violation]] | |||
[[Category:क्वांटम क्षेत्र सिद्धांत|Cp Violation]] | |||
[[Category:मानक मॉडल से परे भौतिकी|Cp Violation]] | |||
[[Category:विषमता|Cp Violation]] | |||
[[Category:संरक्षण कानून|Cp Violation]] | |||
Latest revision as of 09:30, 21 April 2023
| Beyond the Standard Model |
|---|
| Standard Model |
कण भौतिकी में, सीपी उल्लंघन सीपी-समरूपता (या आवेश संयुग्मन समानता समरूपता) का उल्लंघन है: सी-समरूपता (आवेश समरूपता) और पी-समरूपता (समता समरूपता) का संयोजन है। सीपी-समरूपता में कहा गया है कि भौतिकी के नियम समान होने चाहिए यदि कोई कण अपने प्रतिकण (सी-समरूपता) के साथ परिवर्तित कर दिया जाता है, जबकि इसके स्थानिक निर्देशांक व्युत्क्रमित (दर्पण या पी-समरूपता) होते हैं। 1964 में अनावेशी कैऑन के पतन में सीपी उल्लंघन की खोज के परिणामस्वरूप 1980 में इसके खोजकर्ता जेम्स क्रोनिन और वैल फिच को भौतिकी का नोबेल पुरस्कार दिया गया था।
यह ब्रह्मांड विज्ञान के वर्तमान ब्रह्मांड में प्रतिद्रव्य पर पदार्थ के प्रभुत्व की व्याख्या करने के प्रयासों और कण भौतिकी में दुर्बल अंतःक्रियाओं के अध्ययन में महत्वपूर्ण भूमिका निभाते है।
संक्षिप्त विवरण
1950 के दशक तक, समता संरक्षण को मौलिक ज्यामितीय संरक्षण नियमों (ऊर्जा के संरक्षण और संवेग के संरक्षण के साथ) में से एक माना जाता था। 1956 में समता उल्लंघन की खोज के पश्चात, व्यवस्था को पुन: स्थापित करने के लिए सीपी-समरूपता प्रस्तावित की गई थी। हालांकि, जबकि प्रबल अन्योन्यक्रिया और विद्युत् चुम्बकीय अन्योन्यक्रिया संयुक्त सीपी परिवर्तन क्रिया के अंतर्गत अपरिवर्तनीय प्रतीत होते है, आगे के प्रयोगों से पता चला है कि कुछ प्रकार के दुर्बल पतन के पर्यंत इस समरूपता का थोड़ा उल्लंघन होता है।
समरूपता का केवल एक दुर्बल संस्करण भौतिक घटनाओं द्वारा संरक्षित किया जा सकता है, जो कि सीपीटी समरूपता थी। सी और पी के अतिरिक्त, एक तृतीय क्रिया है, कालोत्क्रमण टी, जो गति के उत्क्रमण के अनुरूप है। कालोत्क्रमण के अंतर्गत अपरिवर्तनीयता का तात्पर्य है कि जब भी भौतिकी के नियमों द्वारा गति की अनुमति दी जाती है, तो उत्क्रमित गति भी एक अनुमत होती है और अग्र और पश्च में समान दर से होती है।
माना जाता है कि सीपीटी के संयोजन से सभी प्रकार की मूलभूत अंतःक्रियाओं की एक सटीक समरूपता बनती है। दीर्घकालीन से चली आ रही सीपीटी समरूपता प्रमेय के कारण, बशर्ते कि यह मान्य हो, सीपी-समरूपता का उल्लंघन टी-समरूपता के उल्लंघन के समान है। इस प्रमेय में, जिसे परिमाण क्षेत्र सिद्धांत के मूल सिद्धांतों में से एक माना जाता है, आवेश संयुग्मन, समता और समय उत्क्रमण एक साथ अनुप्रयुक्त होते हैं। सीपीटी प्रमेय की किसी धारणा के बिना टी-समरूपता उल्लंघन का प्रत्यक्ष अवलोकन 1998 में सीईआरएन और फर्मिलैब में क्रमशः दो समूहों, सीपीएलएआर प्रयोग और केटीईवी सहयोग द्वारा किया गया था।[1] पहले से ही 1970 में क्लाउस शूबर्ट ने बेल-स्टाइनबर्गर एकता संबंध का उपयोग करके सीपीटी समरूपता मानने से स्वतंत्र टी उल्लंघन देखा।[2]
इतिहास
पी-समरूपता
समता समरूपता के पीछे विचार यह था कि दर्पण व्युत्क्रम के अंतर्गत कण भौतिकी के समीकरण अपरिवर्तनीय हैं। इसने भविष्यवाणी की कि प्रतिक्रिया की दर्पण छवि (जैसे रासायनिक प्रतिक्रिया या रेडियोधर्मी पतन) मूल प्रतिक्रिया के समान दर पर होती है। हालांकि, 1956 में सैद्धांतिक भौतिकविदों त्सुंग-दाओ ली और चेन-निंग यांग द्वारा उपस्थित प्रयोगात्मक आंकड़ों की एक सावधानीपूर्वक आलोचनात्मक समीक्षा से पता चला कि समता संरक्षण को प्रबल या विद्युत चुम्बकीय अन्योन्यक्रिया द्वारा पतन में सत्यापित किया गया था, परन्तु दुर्बल अन्योन्यक्रिया में इसका परीक्षण नहीं किया गया था।[3] उन्होंने कई संभावित प्रत्यक्ष प्रयोगात्मक परीक्षण प्रस्तावित किए थे।
कोबाल्ट-60 नाभिक के बीटा पतन पर आधारित प्रथम परीक्षण 1956 में चिएन-शिउंग वू के नेतृत्व वाले एक समूह द्वारा किया गया था और निर्णायक रूप से प्रदर्शित किया गया था कि दुर्बल अंतःक्रियाएं पी-समरूपता का उल्लंघन करती हैं।[4] हालाँकि, विद्युत चुंबकत्व और प्रबल अंतःक्रियाओं से जुड़े सभी प्रतिक्रियाओं के लिए समता समरूपता अभी भी मान्य प्रतीत होती है।
सीपी-समरूपता
कुल मिलाकर, एक परिमाण यांत्रिकी प्रणाली की समरूपता को पुनःस्थापित किया जा सकता है यदि एक और अनुमानित समरूपता एस को इस प्रकार पाया जा सकता है कि संयुक्त समरूपता पीएस अखंड रहता है। पी उल्लंघन की खोज के तुरंत बाद हिल्बर्ट स्पेस की संरचना के विषय में यह सूक्ष्म बिंदु संपादित किया गया था और यह प्रस्तावित किया गया था कि आवेश संयुग्मन, सी, जो एक कण को अपने प्रतिकण में परिवर्तित कर देता है, क्रम को पुनःस्थापित करने के लिए उपयुक्त समरूपता थी।
1956 में रेइनहार्ड ओह्मे ने चेन-निंग यांग को लिखे एक पत्र में और कुछ ही समय पश्चात, इओफे, ओकुन और रुडिक ने दर्शाया कि समता उल्लंघन का अर्थ है कि दुर्बल पतन में आवेश संयुग्मन व्युत्क्रमण का भी उल्लंघन किया जाना चाहिए।[5] वू प्रयोग में और वैलेंटाइन टेलीगडी और जेरोम इसाक फ्रीडमैन और रिचर्ड गारविन और लेडरमैन द्वारा किए गए प्रयोगों में आवेश उल्लंघन की पुष्टि की गई, जिन्होंने पाइऑन और म्यूऑन पतन में समता गैर-संरक्षण देखा और पाया कि सी का भी उल्लंघन किया गया है। लिवरपूल विश्वविद्यालय में जॉन रिले होल्ट द्वारा किए गए प्रयोगों में आवेश उल्लंघन अधिक स्पष्ट रूप से दर्शाया गया था।[6][7][8]
ओह्मे ने फिर ली और यांग के साथ एक पत्र लिखा जिसमें उन्होंने पी, सी और टी के अंतर्गत गैर-अपरिवर्तनीयता के परस्पर क्रिया पर आलोचना की। वही परिणाम स्वतंत्र रूप से बी.एल. इओफे, लेव ओकुन और ए.पी. रुडिक द्वारा भी प्राप्त किया गया था। दोनों समूहों ने अनावेशी कैऑन पतन में संभावित सीपी उल्लंघनों पर भी आलोचना की।[5][9]
लेव लैंडौ ने 1957 में सीपी-समरूपता में प्रस्तावित किया,[10]जिसे प्रायः पदार्थ और प्रतिद्रव्य के मध्य वास्तविक समरूपता के रूप में केवल सीपी कहा जाता है। सीपी-समरूपता दो परिवर्तनों का उत्पाद: आवेश संयुग्मन के लिए सी और समता के लिए पी है। दूसरे शब्दों में, एक प्रक्रिया जिसमें सभी कणों का उनके प्रतिकणों के साथ आदान-प्रदान किया जाता है, उनको मूल प्रक्रिया की दर्पण छवि के समान माना जाता था और इसलिए संयुक्त सीपी-समरूपता को दुर्बल अन्योन्यक्रिया में संरक्षित किया जाएगा।
1962 में, डबना में प्रयोगवादियों के एक समूह ने, ओकुन के आग्रह पर, सीपी-उल्लंघन करने वाले कैऑन पतन की असफल खोज की।[11]
प्रायोगिक स्थिति
अप्रत्यक्ष सीपी उल्लंघन
1964 में, जेम्स क्रोनिन, वैल फिच और सहकर्मियों ने कैऑन पतन से स्पष्ट प्रमाण प्रदान किया कि सीपी-समरूपता को खंडित किया जा सकता है।[12]इस कार्य[13]ने उन्हें 1980 का नोबेल पुरस्कार जिताया। इस खोज से पता चला है कि दुर्बल अन्योन्यक्रिया न केवल कणों और प्रतिकणों और पी या समता के मध्य आवेश-संयुग्मन समरूपता सी का उल्लंघन करते हैं, बल्कि उनके संयोजन का भी उल्लंघन करते हैं। इस खोज ने कण भौतिकी को स्तंभित कर दिया और आज भी कण भौतिकी और ब्रह्माण्ड विज्ञान के मूल में प्रश्नों के द्वार खोल दिए हैं। एक सटीक सीपी-समरूपता की कमी, परन्तु यह तथ्य भी कि यह एक समरूपता के इतने निकट है, जिसने एक बड़ी गुत्थी प्रस्तुत की।
1964 में खोजे गए सीपी उल्लंघन के प्रकार इस तथ्य से जुड़े थे कि अनावेशी कैऑन अपने प्रतिकण में परिवर्तित हो सकते हैं (जिसमें प्रत्येक क्वार्क को दूसरे के प्रतिक्वार्क से परिवर्तित हो दिया जाता है) और इसके विपरीत, परन्तु ऐसे परिवर्तन दोनों में समान संभावना के साथ नहीं होते है। निर्देश; इसे अप्रत्यक्ष सीपी उल्लंघन कहा जाता है।
प्रत्यक्ष सीपी उल्लंघन
कई खोजों के बावजूद, 1990 के दशक तक सीपी उल्लंघन का कोई अन्य प्रकटीकरण नहीं खोजा गया था, जब सीईआरएन में एनए31 प्रयोग ने बहुत ही अनावेशी कैऑन (प्रत्यक्ष सीपी उल्लंघन) की पतन प्रक्रिया में सीपी उल्लंघन के साक्ष्य का सुझाव दिया था। अवलोकन कुछ सीमा तक विवादास्पद था और इसके लिए अंतिम प्रमाण 1999 में फर्मिलैब में केटीईवी प्रयोग और सीईआरएन में NA48 प्रयोग से आया था।[14] [15]
2001 के प्रारम्भ में, जापान में स्टैनफोर्ड रैखिक त्वरक केंद्र (SLAC) में बाबर प्रयोग और उच्च ऊर्जा त्वरक अनुसंधान संगठन (KEK) में बेले प्रयोग सहित प्रयोगों की एक नई पीढ़ी ने[16] [17] एक भिन्न प्रणाली में अर्थात् बी मेसन के पतन में प्रत्यक्ष सीपी उल्लंघन देखा गया।[18] बी मेसन पतन में बड़ी संख्या में सीपी उल्लंघन प्रक्रियाएं अब खोजी गई हैं। इन बी-निर्माणी प्रयोगों से पूर्व, एक तार्किक संभावना थी कि सभी सीपी उल्लंघन कैऑन भौतिकी तक ही सीमित थे। हालांकि, इसने यह प्रश्न उठाया कि सीपी उल्लंघन प्रबल बल तक क्यों नहीं बढ़ा और इसके अतिरिक्त, सामान्य घटनाओं के लिए प्रतिरूप की सटीकता के बावजूद, अविस्तारित मानक प्रतिरूप द्वारा इसकी भविष्यवाणी क्यों नहीं की गई।
2011 में, सीईआरएन में एलएचसीबी प्रयोग द्वारा रन 1 आंकड़ों के 0.6 fb−1 का उपयोग करके अनावेशी डी मेसन के पतन में सीपी उल्लंघन का संकेत दिया गया था।[19] हालांकि, पूर्ण 3.0 fb−1 रन 1 प्रतिरूप का उपयोग करने वाला वही माप सीपी-समरूपता के अनुरूप था।[20]
2013 में एलएचसीबी ने असामान्य बी मेसन पतन में सीपी उल्लंघन की खोज की घोषणा की थी।[21]
मार्च 2019 में, एलएचसीबी ने चार्मित में सीपी उल्लंघन की खोज की घोषणा की। 5.3 मानक विचलन के शून्य से विचलन के साथ पतन होता है।[22]2020 में, T2K प्रयोग ने पहली बार लेप्टॉनों में सीपी उल्लंघन के कुछ संकेतों की सूचना दी।[23]इस प्रयोग में, म्यूऑन न्यूट्रिनो की किरणें (
ν
μ) और म्यूऑन प्रतिन्यूट्रीनो (
ν
μ) एक त्वरक न्यूट्रिनो द्वारा वैकल्पिक रूप से उत्पादित की गयी थी। जब तक वे संसूचक तक पहुंचे, इलेक्ट्रॉन न्यूट्रिनो (
ν
e) का काफी अधिक अनुपात
ν
μ किरणों से पता चला था, इलेक्ट्रॉन प्रतिन्यूट्रीनो (
ν
e) की तुलना
ν
μ किरणों से थी। क्वार्क में देखे गए के सापेक्ष सीपी उल्लंघन के आकार को निर्धारित करने के लिए परिणाम अभी तक सटीक नहीं थे। इसके अतिरिक्त, इसी प्रकार का एक और प्रयोग, नोवा न्यूट्रिनो दोलनों में सीपी उल्लंघन का कोई प्रमाण नहीं देखता है[24] और टी2के के साथ साधारण विभव में है।[25][26]
मानक प्रतिरूप में सीपी उल्लंघन
मानक प्रतिरूप में "प्रत्यक्ष" सीपी उल्लंघन की अनुमति है यदि क्वार्क मिश्रण का वर्णन करने वाले सीकेएम आव्यूह में एक जटिल चरण प्रकट होता है या पीएमएनएस आव्यूह न्युट्रीनो मिश्रण का वर्णन करता है। जटिल चरण की उपस्थिति के लिए एक आवश्यक स्थिति फर्मिऑन की कम से कम तीन पीढ़ियों की उपस्थिति है। यदि कम पीढ़ियां उपस्थित हैं, तो जटिल चरण मापदण्ड को फर्मिऑन क्षेत्र की पुनर्परिभाषाओं में अवशोषित किया जा सकता है।
एक प्रमुख पुनर्रचना अचर जिसके लुप्त होने का संकेत सीपी उल्लंघन की अनुपस्थिति है और अधिकांश सीपी उल्लंघन आयामों में होते है, जार्लस्कॉग अचर है:
क्वार्क के लिए,के अधिकतम मान का 0.0003 गुना है। लेप्टान के लिए, केवल एक ऊपरी सीमाउपस्थित है।
इस प्रकार के एक जटिल चरण के कारण सीपी उल्लंघन का कारण तुरंत स्पष्ट नहीं है, परन्तु इसे निम्नानुसार देखा जा सकता है। किसी दिए गए कण (या कणों के समुच्चय)औरऔर उनके प्रतिकणऔर पर विचार करें। अब प्रक्रियाओं पर विचार करें और संबंधित प्रतिकण प्रक्रिया और उनके आयामोंऔर को क्रमशः निरूपित करें। सीपी उल्लंघन से पूर्व, ये शब्द एक ही जटिल संख्या होनी चाहिए। हम परिमाण और चरणको लिखकर अलग कर सकते हैं। यदि सीकेएम आव्यूह से एक चरण शब्द प्रस्तुत किया जाता है, तोको निरूपित करें। ध्यान दें कि संयुग्म आव्यूहसम्मिलित है इसलिए यह एक चरण पदका चयन करता है।
अब सूत्र बन जाता है:
शारीरिक रूप से मापने योग्य प्रतिक्रिया दरआनुपातिक हैं, इस प्रकार अब तक कुछ भी भिन्न नहीं है। हालाँकि, विचार करें कि दो अलग-अलग: और अवस्थाएँ हैं या समतुल्य रूप से, दो असंबंधित मध्यवर्ती अवस्थाएँ: और है। अब हमारे पास है:
कुछ और गणना देता है:
इस प्रकार, हम देखते हैं कि एक जटिल चरण प्रक्रियाओं की उत्पत्ति करता है जो कणों और प्रतिकणों के लिए अलग-अलग दरों पर आगे बढ़ता है और सीपी का उल्लंघन होता है।
सैद्धांतिक अंत से, सीकेएम आव्यूहको इस रूप में परिभाषित किया गया है, जहां और एकात्मक रूपांतरण आव्यूह हैं जो फ़र्मियन द्रव्यमान आव्यूहऔर को क्रमशः विकर्णित करते हैं।
इस प्रकार, जटिल सीकेएम आव्यूह प्राप्त करने के लिए दो आवश्यक प्रतिबन्ध हैं:
- Uu और Ud में से कम से कम एक जटिल है, या सीकेएम आव्यूह विशुद्ध रूप से वास्तविक होगा।
- यदि वे दोनों जटिल हैं, Uu और Ud समान नहीं होना चाहिए, अर्थात, Uu ≠ Ud या सीकेएम आव्यूह एक पहचान आव्यूह होगा, जो विशुद्ध रूप से वास्तविक भी है।
प्रबल सीपी समस्या
प्रबल परमाणु संपर्क बल सीपी-अचल क्यों है?
परिमाण क्रोमोडायनामिक में सीपी-समरूपता का कोई प्रायोगिक रूप से ज्ञात उल्लंघन नहीं है। क्यूसीडी में विशेष रूप से संरक्षित होने का कोई ज्ञात कारण नहीं है, यह एक सूक्ष्म समस्वरण समस्या है जिसे प्रबल सीपी समस्या के रूप में जाना जाता है।
क्यूसीडी सीपी-समरूपता का इतनी सरलता से उल्लंघन नहीं करता जितनी सरलता से विद्युत् दुर्बल सिद्धांत करता है; विद्युत् दुर्बल सिद्धांत के विपरीत, जिसमें गेज क्षेत्र युग्म को फर्मीओनिक क्षेत्रों से निर्मित चिरल धाराओं से जोड़ा जाता है, ग्लूऑन युग्म को सदिश धाराओं से जोड़ा जाता है। प्रयोग क्यूसीडी क्षेत्र में किसी भी सीपी उल्लंघन का संकेत नहीं देते हैं। उदाहरण के लिए, अत्यधिक परस्पर क्रिया करने वाले क्षेत्र में एक सामान्य सीपी उल्लंघन न्यूट्रॉन के विद्युत द्विध्रुव आघूर्ण का निर्माण करेगा जो 10−18 e के समान होगा, जबकि m प्रयोगात्मक ऊपरी सीमा लगभग एक खरबवां आकार है।
यह एक समस्या है क्योंकि अंत में, क्यूसीडी लग्रांजी में प्राकृतिक शब्द हैं जो सीपी-समरूपता को विभाजित करने में सक्षम हैं।
क्वार्क द्रव्यमान θ′ के θ कोण और चिरल चरण के एक गैर-शून्य विकल्प के लिए सीपी-समरूपता का उल्लंघन होने की आशा है। सामान्यतः यह माना जाता है कि चिराल क्वार्क द्रव्यमान चरण को कुल प्रभावी कोण में परिवर्तित किया जा सकता है, परन्तु यह समझाया जाना अवशेष है कि यह कोण एक क्रम के होने के स्थान पर अत्यंत लघु क्यों है; θ कोण का विशेष मान जो शून्य के बहुत निकट होना चाहिए (इस स्थिति में) भौतिक में सूक्ष्म समस्वरण समस्या का एक उदाहरण है और सामान्यतः मानक प्रतिरूप के अतिरिक्त भौतिकी द्वारा हल किया जाता है।
प्रबल सीपी समस्या को हल करने के लिए कई प्रस्तावित समाधान हैं। सबसे प्रसिद्ध पेसेई-क्विन सिद्धांत है, जिसमें एक्सियन नामक नए अदिश कण सम्मिलित हैं। एक्सियन की आवश्यकता नहीं रखने वाला एक नया, अधिक मौलिक दृष्टिकोण एक सिद्धांत है जिसमें बार्स, डेलिडुमन और एंड्रीव द्वारा पहली बार 1998 में प्रस्तावित कई आयाम सम्मिलित हैं।[27]
द्रव्य-प्रतिद्रव्य असंतुलन
ब्रह्मांड में प्रतिद्रव्य की तुलना में इतना अधिक द्रव्य क्यों है?
This section does not cite any sources. (नवंबर 2020) (Learn how and when to remove this template message) |
गैर- अदीप्त द्रव्य ब्रह्मांड मुख्य रूप से द्रव्य से बना है, न कि द्रव्य और प्रतिद्रव्य के समान भागों से मिलकर बना है, जैसे कि आशा की जा सकती है। यह प्रदर्शित किया जा सकता है कि संतुलन की प्रारंभिक स्थिति से पदार्थ और प्रतिपदार्थ में असंतुलन उत्पन्न करने के लिए, सखारोव स्थितियों को पूर्ण करना होगा, जिनमें से एक बिग बैंग के पश्चात पहले सेकंड की चरम स्थितियों के पर्यंत सीपी उल्लंघन का अस्तित्व है। जिन स्पष्टीकरणों में सीपी उल्लंघन सम्मिलित नहीं है, वे कम प्रशंसनीय हैं क्योंकि वे इस धारणा पर विश्वास करते हैं कि पदार्थ-प्रतिपदार्थ असंतुलन प्रारंभ में उपस्थित था या अन्य स्वीकार्य रूप से विदेशी धारणाओं पर उपस्थित था।
यदि सीपी-समरूपता को संरक्षित किया गया होता तो बिग बैंग को समान मात्रा में पदार्थ और प्रतिद्रव्य का उत्पादन करना चाहिए था; इस प्रकार, दोनों का पूर्ण निरस्तीकरण होना चाहिए—प्रोटोन को प्रतिप्रोटॉन के साथ, इलेक्ट्रॉनों को पॉज़िट्रॉन के साथ, न्यूट्रॉन को प्रतिन्यूट्रॉन के साथ और इसी प्रकार से निरसित करना चाहिए था। इसका परिणाम ब्रह्मांड में बिना किसी पदार्थ के विकिरण के समुद्र के रूप में हुआ होगा। चूँकि ऐसा नहीं है, बिग बैंग के पश्चात, भौतिक नियमों ने पदार्थ और प्रतिपदार्थ के लिए अलग-अलग कार्य किया होगा, अर्थात सीपी-समरूपता का उल्लंघन किया होगा।
मानक प्रतिरूप में सीपी उल्लंघन के कम से कम तीन स्रोत सम्मिलित हैं। इनमें से प्रथम, क्वार्क क्षेत्र में कैबिबो-कोबायाशी-मास्कवा आव्यूह को सम्मिलित करते हुए, प्रयोगात्मक रूप से देखा गया है और केवल द्रव्य-प्रतिद्रव्य विषमता को समझाने के लिए आवश्यक सीपी उल्लंघन के एक छोटे से भाग के लिए उत्तरदायी हो सकता है। सैद्धान्तिक रूप से, प्रबल अंतःक्रिया को भी सीपी का उल्लंघन करना चाहिए, परन्तु प्रयोगों में न्यूट्रॉन विद्युत द्विध्रुव क्षण का निरीक्षण करने में विफलता से पता चलता है कि प्रारंभिक ब्रह्मांड में आवश्यक सीपी उल्लंघन के लिए प्रबल क्षेत्र में कोई भी सीपी उल्लंघन भी बहुत छोटा है। सीपी उल्लंघन का तृतीय स्रोत लेप्टॉन क्षेत्र में पोंटेकोरवो-माकी-नाकागावा-सकाता आव्यूह है। वर्तमान दीर्घ आधार रेखा न्यूट्रिनो दोलन प्रयोग, टी2के प्रयोग और नोवा, सीपी उल्लंघन के प्रमाण खोजने में सक्षम हो सकते हैं, जो कि डिरैक चरण का उल्लंघन करने वाले सीपी के संभावित मानो के एक छोटे से अंश पर हो सकता है, जबकि प्रस्तावित अगली पीढ़ी के प्रयोग, हाइपर-कमियोकांडे और ड्यून करेंगे। डिरैक चरण के संभावित मानो के अपेक्षाकृत बड़े अंश पर निश्चित रूप से सीपी उल्लंघन का निरीक्षण करने के लिए पर्याप्त संवेदनशील रहें। आगे भविष्य में, एक न्यूट्रिनो निर्माणी सीपी के लगभग सभी संभावित मानो के प्रति संवेदनशील हो सकते है जो डिरैक चरण का उल्लंघन करते है। यदि न्यूट्रिनो मायोराना फर्मियन हैं, तो पीएमएनएस आव्यूह में मायोराना चरणों का उल्लंघन करने वाले दो अतिरिक्त सीपी हो सकते हैं, जिससे मानक प्रतिरूप के भीतर सीपी उल्लंघन का चौथा स्रोत हो सकता है। मायोराना न्यूट्रिनो के लिए प्रायोगिक साक्ष्य न्यूट्रिनोलेस दुगुने बीटा पतन का अवलोकन होगा। सर्वोत्तम सीमाएँ जीईआरडीए प्रयोग से आती हैं। लेप्टॉन क्षेत्र में सीपी का उल्लंघन लेप्टोजेनेसिस नामक प्रक्रिया के माध्यम से पदार्थ-प्रतिपदार्थ विषमता उत्पन्न करता है। यह ब्रह्माण्ड के पदार्थ-प्रतिपदार्थ विषमता के लिए मानक प्रतिरूप में अधिमानित स्पष्टीकरण बन सकता है यदि लेप्टॉन क्षेत्र में सीपी उल्लंघन की प्रयोगात्मक रूप से पुष्टि की जाती है।
यदि लेप्टॉन क्षेत्र में सीपी उल्लंघन प्रयोगात्मक रूप से पदार्थ-प्रतिद्रव्य विषमता के लिए कणकु में बहुत छोटा होने के लिए निर्धारित किया जाता है, तो मानक प्रतिरूप से परे कुछ नए भौतिकी को सीपी उल्लंघन के अतिरिक्त स्रोतों की व्याख्या करने की आवश्यकता होगी। मानक प्रतिरूप में नए कणों और/या अंतःक्रियाओं को जोड़ने से सामान्यतः सीपी उल्लंघन के नए स्रोत सामने आते हैं क्योंकि सीपी प्रकृति की समरूपता नहीं है।
सखारोव ने टी-समरूपता का उपयोग करके सीपी-समरूपता को पुनःस्थापित करने की एक प्रणाली प्रस्तावित की, बिग बैंग से पूर्व स्पेसटाइम का विस्तार किया। उन्होंने प्रारंभिक विलक्षणता कहे जाने वाले प्रत्येक सिरे पर घटनाओं के पूर्ण सीपीटी प्रतिबिंबों का वर्णन किया। इसके कारण, टी <0 पर समय के विपरीत शर वाली घटनाएं एक विपरीत सीपी उल्लंघन से गुजरती हैं, इसलिए सीपी-समरूपता पूर्णतया से संरक्षित रहेगी। ऑर्थोक्रोनस (या धनात्मक) क्षेत्र में बिग बैंग के पश्चात प्रतिद्रव्य पर पदार्थ की असामान्य अधिकता, बिग बैंग (एंटीक्रोनस या ऋणात्मक क्षेत्र) से पूर्व प्रतिद्रव्य की अधिकता बन जाती है, क्योंकि सीपीटी के कारण आवेश संयुग्मन, समता और समय के शर दोनों उत्क्रमित हो जाते हैं। प्रारंभिक विलक्षणता पर होने वाली सभी घटनाओं का प्रतिबिंब है:
हम कल्पना कर सकते हैं कि अनावेशी घुमाव रहित मैक्सिमम (या फोटॉन) "t <0 पर उत्पन्न होते हैं, जो प्रतिक्वार्क की अधिकता वाले अनुबंधित पदार्थ से उत्पन्न होते हैं। वे घनत्व अनंत होने पर तत्काल t = 0 पर "एक के माध्यम से" गुजरते हैं और जब t > 0, पतन के साथ क्वार्क की अधिकता ब्रह्मांड की कुल सीपीटी समरूपता को साकार करती है। इस परिकल्पना में t <0 पर सभी परिघटनाओं को t> 0 पर परिघटना का सीपीटी प्रतिबिंब माना जाता है।
— आंद्रेई सखारोव, (1982) में एकत्रित वैज्ञानिक कार्य है। [28]
यह भी देखें
- बी-निर्माणी
- समता (भौतिकी) § समता का उल्लंघन
- सी-समरूपता
- टी-समरूपता
- सीपीटी समरूपता
- बीटीईवी प्रयोग
- कैबिबो-कोबायाशी-मस्कावा आव्यूह
- एलएचसीबी प्रयोग
- पेंगुइन आरेख
- अनावेशी कण दोलन
- इलेक्ट्रॉन विद्युत द्विध्रुव आघूर्ण
संदर्भ
- ↑ Schwarzschild, Bertram (1999). "Two Experiments Observe Explicit Violation of Time‐Reversal Symmetry". Physics Today. 52 (2): 19–20. Bibcode:1999PhT....52b..19S. doi:10.1063/1.882519.
- ↑ Schubert, K.R. (2015). "T violation and CPT tests in neutral-meson systems". Progress in Particle and Nuclear Physics. 81: 1–38. arXiv:1409.5998. Bibcode:2015PrPNP..81....1S. doi:10.1016/j.ppnp.2014.12.001. S2CID 117740717.
- ↑ Lee, T. D.; Yang, C. N. (1956). "Question of Parity Conservation in Weak Interactions". Physical Review. 104 (1): 254–258. Bibcode:1956PhRv..104..254L. doi:10.1103/PhysRev.104.254.
- ↑ Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. (1957). "Experimental Test of Parity Conservation in Beta Decay". Physical Review. 105 (4): 1413–1415. Bibcode:1957PhRv..105.1413W. doi:10.1103/PhysRev.105.1413.
- ↑ 5.0 5.1 Ioffe, B. L.; Okun, L. B.; Rudik, A. P. (1957). "The Problem of Parity Non-conservation in Weak Interactions" (PDF). Journal of Experimental and Theoretical Physics. 32: 328–330.[permanent dead link]
- ↑ Friedman, J. I.; Telegdi, V. L. (1957). "Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+→μ+→e+". Physical Review. 106 (6): 1290–1293. Bibcode:1957PhRv..106.1290F. doi:10.1103/PhysRev.106.1290.
- ↑ Garwin, R. L.; Lederman, L. M.; Weinrich, M. (1957). "Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon". Physical Review. 105 (4): 1415–1417. Bibcode:1957PhRv..105.1415G. doi:10.1103/PhysRev.105.1415.
- ↑ Culligan, G.; Frank, S. G. F.; Holt, J. R. (1959). "Longitudinal polarization of the electrons from the decay of unpolarized Positive and Negative Muons". Proceedings of the Physical Society. 73 (2): 169. Bibcode:1959PPS....73..169C. doi:10.1088/0370-1328/73/2/303.
- ↑ Lee, T. D.; Oehme, R.; Yang, C. N. (1957). "Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation". Physical Review. 106 (2): 340–345. Bibcode:1957PhRv..106..340L. doi:10.1103/PhysRev.106.340. Archived from the original on 5 August 2012.
- ↑ Landau, L. (1957). "On the conservation laws for weak interactions". Nuclear Physics. 3 (1): 127–131. Bibcode:1957NucPh...3..127L. doi:10.1016/0029-5582(57)90061-5.
- ↑ Anikina, M. Kh.; Neagu, D. V.; Okonov, E. O.; Petrov, N. I.; Rozanova, A. M.; Rusakov, V. A. "An experimental investigation of some consequences of CP-invariance in K0
2 meson decays" (PDF). Soviet Physics JETP. 15 (1): 93–96. Archived from the original (PDF) on 27 January 2021. Retrieved 3 April 2021. - ↑ The Fitch-Cronin Experiment
- ↑ Christenson, J. H.; Cronin, J. W.; Fitch, V. L.; Turlay, R. (1964). "Evidence for the 2π Decay of the K0
2 Meson System". Physical Review Letters. 13 (4): 138. Bibcode:1964PhRvL..13..138C. doi:10.1103/PhysRevLett.13.138. - ↑ Alavi-Harati, A.; et al. (KTeV Collaboration) (1999). "Observation of Direct CP Violation in KS,L→ππ Decays". Physical Review Letters. 83 (1): 22–27. arXiv:hep-ex/9905060. Bibcode:1999PhRvL..83...22A. doi:10.1103/PhysRevLett.83.22. S2CID 119333352.
- ↑ Fanti, V.; et al. (NA48 Collaboration) (1999). "A new measurement of direct CP violation in two pion decays of the neutral kaon". Physics Letters B. 465 (1–4): 335–348. arXiv:hep-ex/9909022. Bibcode:1999PhLB..465..335F. doi:10.1016/S0370-2693(99)01030-8. S2CID 15277360.
- ↑ Aubert, B; et al. (2001). "Measurement of CP-Violating Asymmetries in B0 Decays to CP Eigenstates". Physical Review Letters. 86 (12): 2515–22. arXiv:hep-ex/0102030. Bibcode:2001PhRvL..86.2515A. doi:10.1103/PhysRevLett.86.2515. PMID 11289970. S2CID 24606837.
- ↑ Abe K; et al. (2001). "तटस्थ बी मेसन सिस्टम में बड़े सीपी उल्लंघन का अवलोकन". Physical Review Letters. 87 (9): 091802. arXiv:hep-ex/0107061. Bibcode:2001PhRvL..87i1802A. doi:10.1103/PhysRevLett.87.091802. PMID 11531561. S2CID 3197654.
- ↑ Rodgers, Peter (August 2001). "Where did all the antimatter go?". Physics World. p. 11.
- ↑ Carbone, A. (2012). "A search for time-integrated CP violation in D0→h−h+ decays". arXiv:1210.8257 [hep-ex].
- ↑ LHCb Collaboration (2014). "Measurement of CP asymmetry in D0→K+K− and D0→π+π− decays". Journal of High Energy Physics. 2014 (7): 41. arXiv:1405.2797. Bibcode:2014JHEP...07..041A. doi:10.1007/JHEP07(2014)041. S2CID 118510475.
- ↑ Aaij, R.; et al. (LHCb Collaboration) (30 May 2013). "First Observation of CP Violation in the Decays of B0s Mesons". Physical Review Letters. 110 (22): 221601. arXiv:1304.6173. Bibcode:2013PhRvL.110v1601A. doi:10.1103/PhysRevLett.110.221601. PMID 23767711. S2CID 20486226.
- ↑ R. Aaij; et al. (LHCb Collaboration) (2019). "आकर्षण क्षय में सीपी उल्लंघन का अवलोकन" (PDF). Physical Review Letters. 122 (21): 211803. arXiv:1903.08726. Bibcode:2019PhRvL.122u1803A. doi:10.1103/PhysRevLett.122.211803. PMID 31283320. S2CID 84842008.
- ↑ Abe, K.; Akutsu, R.; et al. (T2K Collaboration) (16 April 2020). "Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations". Nature. 580 (7803): 339–344. arXiv:1910.03887. Bibcode:2020Natur.580..339T. doi:10.1038/s41586-020-2177-0. PMID 32296192. S2CID 203951445.
- ↑ Himmel, Alex; et al. (NOvA Collaboration) (2 July 2020). "New Oscillation Results from the NOvA Experiment". Neutrino2020. doi:10.5281/zenodo.3959581.
- ↑ Kelly, Kevin J.; Machado, Pedro A.N.; Parke, Stephen J.; Perez-Gonzalez, Yuber F.; Funchal, Renata Zukanovich (2021). "Neutrino mass ordering in light of recent data". Physical Review D. 103 (1): 013004. arXiv:2007.08526. Bibcode:2021PhRvD.103a3004K. doi:10.1103/PhysRevD.103.013004. S2CID 220633488.
- ↑ Denton, Peter B.; Gehrlein, Julia; Pestes, Rebekah (2021). "CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data". Physical Review Letters. 126 (5): 051801. arXiv:2008.01110. Bibcode:2021PhRvL.126e1801D. doi:10.1103/PhysRevLett.126.051801. PMID 33605742. S2CID 220961778.
- ↑ I. Bars; C. Deliduman; O. Andreev (1998). "Gauged Duality, Conformal Symmetry, and Spacetime with Two Times". Physical Review D. 58 (6): 066004. arXiv:hep-th/9803188. Bibcode:1998PhRvD..58f6004B. doi:10.1103/PhysRevD.58.066004. S2CID 8314164.
- ↑ Sakharov, A. D. (7 December 1982). Collected Scientific Works. Marcel Dekker. ISBN 978-0824717148.
अग्रिम पठन
- Sozzi, M.S. (2008). Discrete symmetries and CP violation. Oxford University Press. ISBN 978-0-19-929666-8.
- G. C. Branco; L. Lavoura; J. P. Silva (1999). CP violation. Clarendon Press. ISBN 978-0-19-850399-6.
- I. Bigi; A. Sanda (1999). CP violation. Cambridge University Press. ISBN 978-0-521-44349-4.
- Michael Beyer, ed. (2002). CP Violation in Particle, Nuclear and Astrophysics. Springer. ISBN 978-3-540-43705-5. (A collection of essays introducing the subject, with an emphasis on experimental results.)
- L. Wolfenstein (1989). CP violation. North–Holland Publishing. ISBN 978-0-444-88081-9. (A compilation of reprints of numerous important papers on the topic, including papers by T.D. Lee, Cronin, Fitch, Kobayashi and Maskawa, and many others.)
- David J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. ISBN 978-0-471-60386-3.
- Bigi, I. (1998). "CP Violation – An Essential Mystery in Nature's Grand Design". Surveys of High Energy Physics. 12 (1–4): 269–336. arXiv:hep-ph/9712475. Bibcode:1998SHEP...12..269B. doi:10.1080/01422419808228861.
- Mark Trodden (1999). "Electroweak Baryogenesis". Reviews of Modern Physics. 71 (5): 1463–1500. arXiv:hep-ph/9803479. Bibcode:1999RvMP...71.1463T. doi:10.1103/RevModPhys.71.1463. S2CID 17275359.
- Davide Castelvecchi. "What is direct CP-violation?". SLAC. Archived from the original on 3 May 2014. Retrieved 1 July 2009.
- An elementary discussion of parity violation and CP violation is given in chapter 15 of this student level textbook [1]