विभेदक फलन: Difference between revisions
m (6 revisions imported from alpha:विभेदक_फलन) |
No edit summary |
||
| Line 71: | Line 71: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 17/03/2023]] | [[Category:Created On 17/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अंतर कलन]] | |||
[[Category:चिकना कार्य]] | |||
[[Category:बहुभिन्नरूपी कैलकुलस]] | |||
Latest revision as of 19:30, 19 April 2023
गणित में, वास्तविक चर का अवकलनीय फलन एक ऐसा फलन होता है जिसका अवकलज उसके प्रक्षेत्र के प्रत्येक बिंदु पर सम्मिलित होता है। दूसरे शब्दों में, अवकलनीय फलन के रेखा-चित्र में अपने प्रक्षेत्र में प्रत्येक आंतरिक बिंदु पर एक गैर-ऊर्ध्वाधर स्पर्शरेखा रेखा होती है। अवकलनीय फलन सरल होता है (फलन स्थानीय रूप से प्रत्येक आंतरिक बिंदु पर एक रैखिक फलन के रूप में अनुमानित है) और इसमें कोई वक्र, कोण या शीर्ष (विलक्षणता) नहीं है।
यदि x0 फलन के f प्रक्षेत्र में एक आंतरिक बिंदु है तब अवकलज सम्मिलित होने पर f को x0 पर अवकलनीय कहा जाता है। दूसरे शब्दों में, f के रेखा-चित्र बिन्दु (x0, f(x0)) पर एक गैर-ऊर्ध्वाधर स्पर्श रेखा है। अतः f को U पर अवकलनीय कहा जाता है यदि यह U के प्रत्येक बिंदु पर अवकलनीय है। तब f को सतत अवकलनीय कहा जाता है यदि इसका अवकलज भी फलन के प्रक्षेत्र पर एक सतत फलन है। सामान्य रूप से f को वर्ग का अवकलन कहा जाता है यदि इसका पहला अवकलज सम्मिलित हैं और फलन के प्रक्षेत्र पर सतत हैं।
चर के वास्तविक फलनों की अवकलनीयता
फलन , एक विवृत समुच्चय पर परिभाषित को पर अवकलनीय कहा जाता है। यदि अवकलज
- सम्मिलित है।
- इसका अर्थ है कि फलन सतत फलन a है।
इस फलन f को U पर अवकलनीय कहा जाता है यदि यह U के प्रत्येक बिंदु पर अवकलनीय है। इस स्थिति में, f का अवकल इस प्रकार U से में एक फलन है। सतत फलन अनिवार्य रूप से अवकलनीय नहीं है, लेकिन एक अवकलनीय फलन आवश्यक रूप से (प्रत्येक बिंदु पर जहां यह अवकलनीय होता है) सतत फलन है (अनुभाग अवकलनीयता और सातत्यहीनता में) जैसा कि नीचे दिखाया गया है। फलन को सतत अवकलनीय कहा जाता है यदि इसका अवकलज भी एक सतत फलन है; अतः ऐसा फलन सम्मिलित है जो अवकलनीय है लेकिन सतत अवकलनीय नहीं है (अनुभाग अवकलनीय वर्ग में) जैसा कि नीचे दिखाया जा रहा है।
अवकलनीयता और सातत्यहीनता
यदि f एक बिंदु x0 पर अवकलनीय है, तब f पर भी x0 सतत फलन होना चाहिए। विशेष रूप से, कोई भी अवकलनीय फलन अपने प्रक्षेत्र में प्रत्येक बिंदु पर सतत होना चाहिए। इसका प्रतिलोम मान्य नहीं है: एक सतत फलन को अवकलनीय होने की आवश्यकता नहीं है। उदाहरण के लिए, वक्र, शीर्ष (विलक्षणता), या ऊर्ध्वाधर स्पर्शरेखा वाला एक फलन सतत हो सकता है, लेकिन विसंगति के स्थान पर अवकलन होने में असफल रहता है।
प्रणाली में होने वाले अधिकांश फलनों में सभी बिंदुओं पर या लगभग प्रत्येक बिन्दु पर अवकलज होते हैं। हालांकि, स्टीफन बानाच के परिणाम में कहा गया है कि किसी बिंदु पर अवकलज वाले फलनों का समुच्चय सभी सतत फलनों के स्थान में अपर्याप्त समुच्चय है।[1] अनौपचारिक रूप से, इसका तात्पर्य यह है कि सतत फलनों के बीच अवकलनीय फलन बहुत ही असामान्य हैं। फलन का पहला ज्ञात उदाहरण जो प्रत्येक स्थान पर सतत है लेकिन वीयरस्ट्रैस फलन कहीं भी अवकलन नहीं किया जा सकता है।
अवकलनीय वर्ग
फलन को निरंतर अवकलनीय कहा जाता है यदि अवकलज पर सम्मिलित है और स्वयं एक सतत फलन है। हालांकि अवकलनीय फलन के अवकल में कभी भी प्लुति असांतत्य नहीं होता है, लेकिन अवकलज के लिए एक अनिवार्य असांतत्य होना संभव है। उदाहरण के लिए, फलन
इसी प्रकार सतत फलनों का class कहा जाता है। सतत अवकलनीय फलन को कभी-कभी class का फलन class कहा जाता है। यदि फलन का पहला और दूसरा अवकल दोनों सम्मिलित हैं और सतत हैं। अधिकतम सामान्य रूप से, फलन class का अवकलन कहा जाता है यदि पहले अवकलज सभी सम्मिलित हैं और सतत भी हैं। यदि अवकलज सभी धनात्मक पूर्णांकों के लिए सम्मिलित हैं तब फलन class सरल फलन या समतुल्य होता है।
उच्च आयामों में अवकलनीयता
कई वास्तविक चरों का एक फलन f: Rm → Rn को एक बिंदु x0 पर अवकलनीय कहा जाता है यदि कोई रेखीय मानचित्र J: Rm → Rn सम्मिलित है जैसे कि
यदि कोई फलन x0 पर अवकलनीय है, तब सभी आंशिक अवकलज x0 सम्मिलित हैं, और रैखिक मानचित्र J जैकबियन आव्यूह द्वारा दिया गया है, इस स्थिति में एक n × m आव्यूह है। उच्च-आयामी अवकलज का एक समान सूत्रीकरण एकल-चर कलन में पाए जाने वाले अत्यन्त महत्वपूर्ण वृद्धि लेम्मा द्वारा प्रदान किया जाता है।
यदि किसी बिंदु के प्रतिवेश (गणित) में फलन के सभी आंशिक अवकलज x0 सम्मिलित हैं और बिंदु x0 पर सतत हैं, तब उस बिंदु x0 पर फलन अवकलनीय होता है।
हालांकि, आंशिक अवकलज (या यहां तक कि सभी दिक्-अवकलज) की स्थिति प्रत्याभूति नहीं देती है कि एक बिंदु पर फलन अवकलन होता है। उदाहरण के लिए, फलन f: R2 → R द्वारा परिभाषित
पर (0, 0) अवकलनीय नहीं है, लेकिन इस बिंदु पर सभी आंशिक अवकलज और दिक्-अवकलज सम्मिलित हैं। सतत उदाहरण के लिए, फलन
पर (0, 0)अवकलनीय नहीं है, लेकिन पुनः सभी आंशिक अवकलज और दिक्-अवकलज सम्मिलित हैं।
सम्मिश्र विश्लेषण में अवकलनीयता
सम्मिश्र विश्लेषण में, एकल-चर वास्तविक फलनों के समान परिभाषा का उपयोग करके सम्मिश्र-भिन्नता को परिभाषित किया जाता है। यह सम्मिश्र संख्याओं को विभाजित करने की संभावना से स्वीकृत है। तब, फलन पर अवकलनीय कहा जाता है जब
यद्यपि यह परिभाषा एकल-चर वास्तविक फलनों की अवकलनीयता के समान दिखती है, हालांकि यह अधिक प्रतिबंधात्मक स्थिति है। फलन , जो एक बिंदु पर सम्मिश्र-अवलकनीय है। फलन के रूप में दर्शाये जाने पर उस बिंदु पर स्वचालित रूप से अवकलनीय होता है। ऐसा इसलिए है क्योंकि सम्मिश्र-अवकलन का तात्पर्य है
हालाँकि, फलन बहु-चर फलन के रूप में अवकलनीय किया जा सकता है, जबकि सम्मिश्र-अवकलनीय नहीं किया जा सकता है। उदाहरण के लिए, प्रत्येक बिंदु पर अवकलनीय है, जिसे 2-चर वास्तविक फलन के रूप में देखा जाता है लेकिन यह किसी भी बिंदु पर सम्मिश्र-अवकलन नहीं है।
कोई भी फलन जो किसी बिंदु के प्रतिवेश (गणित) में सम्मिश्र-अवकलज होता है, उस बिंदु पर होलोमॉर्फिक फलन कहलाता है। ऐसा फलन आवश्यक रूप से अधिकतम अवकलन होता है, और वास्तव में विश्लेषणात्मक फलन होता है।
प्रसमष्टि पर अवकलनीय फलन
यदि M अवकलनीय प्रसमष्टि है, M पर वास्तविक या सम्मिश्र-मान फलन F को एक बिंदु p पर अवकलनीय कहा जाता है यदि यह p के प्रतिवेश मे परिभाषित कुछ (या किसी भी) निर्देशांक रेखाचित्र के संबंध में अवकलनीय है। यदि M और N अवकलनीय प्रसमष्टि हैं, तब एक फलन f: M → N को बिंदु p पर अवकलनीय कहा जाता है यदि यह p और f(p) के प्रतिवेश (गणित) मे परिभाषित कुछ (या किसी भी) निर्देशांक रेखाचित्र के संबंध में अवकलनीय है।
यह भी देखें
संदर्भ
- ↑ Banach, S. (1931). "Über die Baire'sche Kategorie gewisser Funktionenmengen". Studia Math. 3 (1): 174–179. doi:10.4064/sm-3-1-174-179.. Cited by Hewitt, E; Stromberg, K (1963). Real and abstract analysis. Springer-Verlag. Theorem 17.8.