निलंबन (रसायन विज्ञान): Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Heterogeneous mixture of solid particles dispersed in a medium}} thumb|[[टिंडल प्रभाव द...")
 
No edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Heterogeneous mixture of solid particles dispersed in a medium}}
{{short description|Heterogeneous mixture of solid particles dispersed in a medium}}
[[File:WaterAndFlourSuspensionLiquid.jpg|thumb|[[टिंडल प्रभाव]] दिखाते हुए, एक गिलास पानी में आटे का घोल मिलाया जाता है]][[रसायन विज्ञान]] में, एक निलंबन [[तरल]] पदार्थ का एक [[मिश्रण]] # सजातीय और विषम मिश्रण होता है जिसमें [[अवसादन]] के लिए पर्याप्त रूप से बड़े [[ठोस]] [[कण]] होते हैं। कण नग्न आंखों के लिए [[ स्थूल ]] हो सकते हैं, आमतौर पर एक [[माइक्रोमीटर]] से बड़ा होना चाहिए, और अंततः व्यवस्थित हो जाएगा, हालांकि मिश्रण को केवल निलंबन के रूप में वर्गीकृत किया जाता है जब कण बाहर नहीं निकलते हैं।
[[File:WaterAndFlourSuspensionLiquid.jpg|thumb|[[टिंडल प्रभाव]] दिखाते हुए, एक गिलास पानी में आटे का घोल मिलाया जाता है]][[रसायन विज्ञान]] में, एक '''निलंबन''' [[तरल]] पदार्थ का एक विषम [[मिश्रण]] होता है जिसमें [[अवसादन]] के लिए पर्याप्त रूप से बड़े [[ठोस]] [[कण]] होते हैं। यह कण नग्न आंखों को [[ स्थूल | दिखाई]] दे सकते हैं, सामान्यतः यह कण एक [[माइक्रोमीटर]] से बड़ा होना चाहिए, और अंततः व्यवस्थित हो जाता है, चूंकि मिश्रण को केवल निलंबन के रूप में वर्गीकृत किया जाता है जब कण बाहर नहीं निकलते हैं।


== गुण ==
== गुण ==
एक निलंबन एक विषम मिश्रण है जिसमें विलेय कण विघटन (रसायन) नहीं करते हैं, लेकिन [[विलायक]] के पूरे थोक में निलंबित हो जाते हैं, माध्यम में स्वतंत्र रूप से तैरते रहते हैं।<ref>Chemistry: Matter and Its Changes, 4th Ed. by Brady, Senese, {{ISBN|0-471-21517-1}}</ref> आंतरिक चरण (ठोस) पूरे बाहरी चरण (द्रव) में यांत्रिक [[आंदोलन (क्रिया)]] के माध्यम से फैलाया जाता है, कुछ सहायक पदार्थों या निलंबित एजेंटों के उपयोग के साथ।
निलंबन एक विषम मिश्रण है जिसमें विलेय के कण विघटित (रसायन) नहीं होते हैं, किन्तु माध्यम में स्वतंत्र रूप से तैरते हुए [[विलायक]] के पूरे थोक में निलंबित हो जाते हैं।<ref>Chemistry: Matter and Its Changes, 4th Ed. by Brady, Senese, {{ISBN|0-471-21517-1}}</ref> आंतरिक चरण (ठोस) को बाहरी चरण (द्रव) में यांत्रिक [[आंदोलन (क्रिया)|गति (क्रिया)]] के माध्यम से प्रसार किया जाता है, जिसमें कुछ सहायक पदार्थों या निलंबित कारकों का उपयोग होता है।


निलंबन का एक उदाहरण पानी में बालू होगा। निलंबित कण एक [[माइक्रोस्कोप]] के नीचे दिखाई दे रहे हैं और अगर उन्हें अबाधित छोड़ दिया जाए तो समय के साथ व्यवस्थित हो जाएंगे। यह एक निलंबन को [[कोलाइड]] से अलग करता है, जिसमें कोलाइड कण छोटे होते हैं और व्यवस्थित नहीं होते हैं।<ref>The Columbia Electronic Encyclopedia, 6th ed.</ref> कोलाइड्स और निलंबन [[समाधान (रसायन विज्ञान)]] से भिन्न होते हैं, जिसमें घुलित पदार्थ (विलेय) ठोस के रूप में मौजूद नहीं होता है, और विलायक और विलेय समान रूप से मिश्रित होते हैं।
निलंबन का एक उदाहरण पानी में बालू होगा। निलंबित कण एक [[माइक्रोस्कोप]] के नीचे दिखाई दे रहे हैं और यदि उन्हें अबाधित छोड़ दिया जाए तो समय के साथ व्यवस्थित हो जाएंगे। यह एक निलंबन को [[कोलाइड]] से अलग करता है, जिसमें कोलाइड कण छोटे होते हैं और व्यवस्थित नहीं होते हैं।<ref>The Columbia Electronic Encyclopedia, 6th ed.</ref> कोलाइड्स और निलंबन [[समाधान (रसायन विज्ञान)]] से भिन्न होते हैं, जिसमें घुलित पदार्थ (विलेय) ठोस के रूप में उपस्थित नहीं होता है, और विलायक और विलेय समान रूप से मिश्रित होते हैं।
   
   
किसी गैस में तरल बूंदों या महीन ठोस कणों के निलंबन को [[एयरोसोल]] कहा जाता है। पृथ्वी के वायुमंडल में, निलंबित कणों को कण कहा जाता है और इसमें महीन धूल और [[कालिख]] के कण, [[समुद्री नमक]], [[बायोजेनिक]] और ज्वालामुखी [[सल्फेट]], [[नाइट्रेट]] और [[बादल]] की बूंदें होती हैं।
किसी गैस में तरल बूंदों या महीन ठोस कणों के निलंबन को [[एयरोसोल]] कहा जाता है। पृथ्वी के वायुमंडल में, निलंबित कणों को कण कहा जाता है और इसमें महीन धूल और [[कालिख]] के कण, [[समुद्री नमक]], [[बायोजेनिक]] और ज्वालामुखी [[सल्फेट]], [[नाइट्रेट]] और [[बादल]] की बूंदें होती हैं।
   
   
फैलाव चरण और [[फैलाव माध्यम]] के आधार पर निलंबन को वर्गीकृत किया जाता है, जहां पूर्व अनिवार्य रूप से ठोस होता है जबकि बाद वाला ठोस, तरल या गैस हो सकता है।
प्रसार चरण और [[फैलाव माध्यम|प्रसार माध्यम]] के आधार पर निलंबन को वर्गीकृत किया जाता है, जहां पूर्व अनिवार्य रूप से ठोस होता है जबकि बाद वाला ठोस, तरल या गैस हो सकता है।
   
   
आधुनिक रासायनिक प्रक्रिया उद्योगों में, [[उच्च कतरनी मिक्सर]] | उच्च कतरनी मिश्रण तकनीक का उपयोग कई उपन्यास निलंबन बनाने के लिए किया गया है।
आधुनिक रासायनिक प्रक्रिया उद्योगों में, [[उच्च कतरनी मिक्सर|उच्च कतरनी मिश्रण]] विधि का उपयोग कई उपन्यास निलंबन बनाने के लिए किया गया है।
   
   
थर्मोडायनामिक दृष्टिकोण से निलंबन अस्थिर होते हैं लेकिन लंबे समय तक गतिशील रूप से स्थिर हो सकते हैं, जो बदले में निलंबन के शेल्फ जीवन को निर्धारित कर सकते हैं। उपभोक्ता को सटीक जानकारी प्रदान करने और सर्वोत्तम उत्पाद गुणवत्ता सुनिश्चित करने के लिए इस समय अवधि को मापने की आवश्यकता है।
ऊष्मागतिक दृष्टिकोण से निलंबन अस्थिर होते हैं किन्तु लंबे समय तक गतिशील रूप से स्थिर हो सकते हैं, जो बदले में निलंबन के शेल्फ जीवन को निर्धारित कर सकते हैं। उपभोक्ता को त्रुटिहीन जानकारी प्रदान करने और सर्वोत्तम उत्पाद गुणवत्ता सुनिश्चित करने के लिए इस समय अवधि को मापने की आवश्यकता है।


  फैलाव स्थिरता समय के साथ अपने गुणों में परिवर्तन का विरोध करने के लिए फैलाव की क्षमता को संदर्भित करती है।<ref>[https://books.google.com/books?id=wTrzBPbf_WQC&dq=emulsion+stability&pg=PA269 “Food emulsions, principles, practices and techniques”] CRC Press 2005.2- M. P. C. Silvestre, E. A. Decker, McClements Food hydrocolloids 13 (1999) 419–424.</ref>
  प्रसार स्थिरता समय के साथ अपने गुणों में परिवर्तन का विरोध करने के लिए प्रसार की क्षमता को संदर्भित करती है।<ref>[https://books.google.com/books?id=wTrzBPbf_WQC&dq=emulsion+stability&pg=PA269 “Food emulsions, principles, practices and techniques”] CRC Press 2005.2- M. P. C. Silvestre, E. A. Decker, McClements Food hydrocolloids 13 (1999) 419–424.</ref>


{{Quote box
{{Quote box
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition
|quote = [[Dispersion (chemistry)|Dispersion]] of solid particles in a liquid.
|quote = [[Dispersion (chemistry)|Dispersion]] of solid particles in a liquid.
Line 24: Line 24:
}}
}}


== भौतिक स्थिरता की निगरानी करने वाली तकनीक ==
== भौतिक स्थिरता की मापकक्रिया करने वाली विधि ==
किसी उत्पाद के फैलाव की स्थिति की निगरानी करने के लिए वर्टिकल स्कैनिंग के साथ मिलकर कई प्रकाश बिखराव सबसे व्यापक रूप से इस्तेमाल की जाने वाली तकनीक है, इसलिए अस्थिरता की घटनाओं की पहचान करना और इसकी मात्रा निर्धारित करना।<ref>I. Roland, G. Piel, L. Delattre, B. Evrard International Journal of Pharmaceutics 263 (2003) 85-94</ref><ref>C. Lemarchand, P. Couvreur, M. Besnard, D. Costantini, R. Gref, Pharmaceutical Research, 20-8 (2003) 1284-1292</ref><ref>O. Mengual, G. Meunier, I. Cayre, K. Puech, P. Snabre, Colloids and Surfaces A: Physicochemical and Engineering Aspects 152 (1999) 111–123</ref><ref>P. Bru, L. Brunel, H. Buron, I. Cayré, X. Ducarre, A. Fraux, O. Mengual, G. Meunier, A. de Sainte Marie and P. Snabre Particle sizing and characterization Ed T. Provder and J. Texter (2004)</ref> यह तनुकरण के बिना केंद्रित फैलाव पर काम करता है। जब प्रकाश को नमूने के माध्यम से भेजा जाता है, तो यह कणों द्वारा वापस बिखर जाता है। पश्च प्रकीर्णन तीव्रता परिक्षिप्त प्रावस्था के आकार और आयतन अंश के सीधे आनुपातिक होती है। इसलिए, एकाग्रता (अवसादन) में स्थानीय परिवर्तन और आकार में वैश्विक परिवर्तन ([[flocculation]], [[कण एकत्रीकरण]]) का पता लगाया जाता है और निगरानी की जाती है। कण निलंबन में स्थिरता के विश्लेषण में प्राथमिक महत्व निलंबित ठोस द्वारा प्रदर्शित जीटा क्षमता का मूल्य है। यह पैरामीटर इंटरपार्टिकल इलेक्ट्रोस्टैटिक प्रतिकर्षण के परिमाण को इंगित करता है और आमतौर पर यह निर्धारित करने के लिए विश्लेषण किया जाता है कि कैसे [[सोखना]] और पीएच संशोधन का उपयोग कण प्रतिकर्षण और निलंबन स्थिरीकरण या अस्थिरता को प्रभावित करता है।
किसी उत्पाद के प्रसार की स्थिति की मापकक्रिया करने के लिए लंबवत स्कैनिंग के साथ मिलकर कई प्रकाश बिखराव सबसे व्यापक रूप से इस्तेमाल की जाने वाली विधि है, इसलिए अस्थिरता की घटनाओं की पहचान करना और इसकी मात्रा निर्धारित करना।<ref>I. Roland, G. Piel, L. Delattre, B. Evrard International Journal of Pharmaceutics 263 (2003) 85-94</ref><ref>C. Lemarchand, P. Couvreur, M. Besnard, D. Costantini, R. Gref, Pharmaceutical Research, 20-8 (2003) 1284-1292</ref><ref>O. Mengual, G. Meunier, I. Cayre, K. Puech, P. Snabre, Colloids and Surfaces A: Physicochemical and Engineering Aspects 152 (1999) 111–123</ref><ref>P. Bru, L. Brunel, H. Buron, I. Cayré, X. Ducarre, A. Fraux, O. Mengual, G. Meunier, A. de Sainte Marie and P. Snabre Particle sizing and characterization Ed T. Provder and J. Texter (2004)</ref> यह तनुकरण के बिना केंद्रित प्रसार पर काम करता है। जब प्रकाश को नमूने के माध्यम से भेजा जाता है, तो यह कणों द्वारा वापस बिखर जाता है। पश्च प्रकीर्णन तीव्रता परिक्षिप्त प्रावस्था के आकार और आयतन अंश के सीधे आनुपातिक होती है। इसलिए, एकाग्रता (अवसादन) में स्थानीय परिवर्तन और आकार में वैश्विक परिवर्तन ([[flocculation|फ्लोक्यूलेशन]], [[कण एकत्रीकरण]]) का पता लगाया जाता है और मापकक्रिया की जाती है। कण निलंबन में स्थिरता के विश्लेषण में प्राथमिक महत्व निलंबित ठोस द्वारा प्रदर्शित जीटा क्षमता का मूल्य है। यह पैरामीटर इंटरपार्टिकल स्थिर वैद्युत विक्षेप प्रतिकर्षण के परिमाण को इंगित करता है और सामान्यतः यह निर्धारित करने के लिए विश्लेषण किया जाता है कि कैसे [[सोखना]] और पीएच संशोधन का उपयोग कण प्रतिकर्षण और निलंबन स्थिरीकरण या अस्थिरता को प्रभावित करता है।


== शेल्फ लाइफ भविष्यवाणी के लिए त्वरित तरीके ==
== शेल्फ लाइफ भविष्यवाणी के लिए त्वरित विधियां ==
अस्थिरता की काइनेटिक प्रक्रिया काफी लंबी हो सकती है (कुछ उत्पादों के लिए कई महीनों या वर्षों तक) और नए उत्पाद डिजाइन के लिए उचित विकास समय तक पहुंचने के लिए फॉर्म्युलेटर को और त्वरित तरीकों का उपयोग करने की आवश्यकता होती है। थर्मल विधियों का सबसे अधिक उपयोग किया जाता है और अस्थिरता में तेजी लाने के लिए तापमान में वृद्धि होती है (चरण और गिरावट के महत्वपूर्ण तापमान के नीचे)। तापमान न केवल चिपचिपाहट को प्रभावित करता है, बल्कि गैर-आयनिक सर्फेक्टेंट या अधिक आम तौर पर सिस्टम के अंदर अंतःक्रियात्मक बलों के मामले में इंटरफेशियल तनाव को भी प्रभावित करता है। उच्च तापमान पर फैलाव को एक उत्पाद के लिए वास्तविक जीवन स्थितियों का अनुकरण करने में सक्षम बनाता है (उदाहरण के लिए गर्मियों में एक कार में सनस्क्रीन क्रीम की ट्यूब), लेकिन कंपन, [[ centrifugation ]] और आंदोलन सहित 200 गुना तक अस्थिरता प्रक्रियाओं को तेज करने के लिए भी कभी-कभी उपयोग किया जाता है। वे उत्पाद को विभिन्न बलों के अधीन करते हैं जो कणों / फिल्म जल निकासी को धक्का देते हैं। हालांकि, कुछ इमल्शन सामान्य गुरुत्व में कभी नहीं जुड़ते हैं, जबकि वे कृत्रिम गुरुत्व के तहत होते हैं।<ref>[https://books.google.com/books?=PA89 J-L Salager, Pharmaceutical emulsions and suspensions Ed Françoise Nielloud,Gilberte Marti-Mestres (2000)]</ref> इसके अलावा, सेंट्रीफ्यूगेशन और कंपन का उपयोग करते समय कणों की विभिन्न आबादी के पृथक्करण पर प्रकाश डाला गया है।<ref>P. Snabre, B. Pouligny Langmuir, 24 (2008) 13338-13347</ref>
अस्थिरता की काइनेटिक प्रक्रिया काफी लंबी हो सकती है (कुछ उत्पादों के लिए कई महीनों या वर्षों तक) और नए उत्पाद डिजाइन के लिए उचित विकास समय तक पहुंचने के लिए फॉर्म्युलेटर को और त्वरित विधियों का उपयोग करने की आवश्यकता होती है। थर्मल विधियों का सबसे अधिक उपयोग किया जाता है और अस्थिरता में तेजी लाने के लिए तापमान में वृद्धि होती है (चरण और गिरावट के महत्वपूर्ण तापमान के नीचे)। तापमान न केवल चिपचिपाहट को प्रभावित करता है, बल्कि गैर-आयनिक सर्फेक्टेंट या अधिक आम तौर पर सिस्टम के अंदर अंतःक्रियात्मक बलों केस्थिति में अंतरापृष्ठीय दबाव को भी प्रभावित करता है। उच्च तापमान पर प्रसार को एक उत्पाद के लिए वास्तविक जीवन स्थितियों का अनुकरण करने में सक्षम (उदाहरण के लिए गर्मियों में एक कार में सनस्क्रीन क्रीम की ट्यूब) बनाता है, किन्तु कंपन, [[ centrifugation | अपकेंद्रीकरण]] और आंदोलन सहित 200 गुना तक अस्थिरता प्रक्रियाओं को तेज करने के लिए भी कभी-कभी उपयोग किया जाता है। वे उत्पाद को विभिन्न बलों के अधीन करते हैं जो कणों / फिल्म जल निकासी को धक्का देते हैं। चूंकि, कुछ इमल्शन सामान्य गुरुत्व में कभी नहीं जुड़ते हैं, जबकि वे कृत्रिम गुरुत्व के अनुसार होते हैं।<ref>[https://books.google.com/books?=PA89 J-L Salager, Pharmaceutical emulsions and suspensions Ed Françoise Nielloud,Gilberte Marti-Mestres (2000)]</ref> इसके अतिरिक्त, अपकेंद्रीकरण और कंपन का उपयोग करते समय कणों की विभिन्न आबादी के पृथक्करण पर प्रकाश डाला गया है।<ref>P. Snabre, B. Pouligny Langmuir, 24 (2008) 13338-13347</ref>




== उदाहरण ==
== उदाहरण ==
निलंबन के सामान्य उदाहरणों में शामिल हैं:
निलंबन के सामान्य उदाहरणों में सम्मिलित हैं:
*[[कीचड़]] या मैला पानी: जहां मिट्टी, मिट्टी या गाद के कण पानी में निलंबित रहते हैं।
*[[कीचड़]] या मैला पानी: जहां मिट्टी, मिट्टी या गाद के कण पानी में निलंबित रहते हैं।
*आटा पानी में डूबा हुआ।
*आटा पानी में डूबा हुआ।
Line 40: Line 40:


== यह भी देखें ==
== यह भी देखें ==
* {{annotated link|sol (colloid)|Sol}}
* {{annotated link|सोल (कोलॉइड)|सोल}}
* {{annotated link|Emulsion}}
* {{annotated link|पायसन}}
* {{annotated link|Zeta potential}}
* {{annotated link|ज़ीटा सामर्थ्य}}
* {{annotated link|Turbidity}}
* {{annotated link|मैलापन}}
* {{annotated link|settling|Settleable solids}}
* {{annotated link|settling|व्यवस्थित ठोस}}
* {{annotated link|Froth flotation}}
* {{annotated link|झाग प्लवनशीलता}}
* {{annotated link|Sediment transport}}
* {{annotated link|तलछट परिवहन}}
* {{annotated link|Tyndall effect}}
* {{annotated link|टिंडल प्रभाव}}
* {{annotated link|Farris effect (rheology)}}
* {{annotated link|फैरिस प्रभाव (रियोलॉजी)}}


==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


{{Dosage forms|state=expanded}}
[[Category:Collapse templates|Suspension (Chemistry)]]
{{Chemical solutions}}
[[Category:Created On 21/03/2023|Suspension (Chemistry)]]
 
[[Category:Lua-based templates]]
{{Authority control}}
[[Category:Machine Translated Page|Suspension (Chemistry)]]
 
[[Category:Navigational boxes| ]]
{{DEFAULTSORT:Suspension (Chemistry)}}[[Category: कोलाइडल रसायन]] [[Category: दवा वितरण उपकरण]] [[Category: खुराक के स्वरूप]] [[Category: विषम रासायनिक मिश्रण]]  
[[Category:Navigational boxes without horizontal lists|Suspension (Chemistry)]]
 
[[Category:Pages with script errors|Suspension (Chemistry)]]
 
[[Category:Short description with empty Wikidata description|Suspension (Chemistry)]]
 
[[Category:Sidebars with styles needing conversion|Suspension (Chemistry)]]
[[Category: Machine Translated Page]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Created On 21/03/2023]]
[[Category:Templates Vigyan Ready|Suspension (Chemistry)]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 18:22, 15 April 2023

टिंडल प्रभाव दिखाते हुए, एक गिलास पानी में आटे का घोल मिलाया जाता है

रसायन विज्ञान में, एक निलंबन तरल पदार्थ का एक विषम मिश्रण होता है जिसमें अवसादन के लिए पर्याप्त रूप से बड़े ठोस कण होते हैं। यह कण नग्न आंखों को दिखाई दे सकते हैं, सामान्यतः यह कण एक माइक्रोमीटर से बड़ा होना चाहिए, और अंततः व्यवस्थित हो जाता है, चूंकि मिश्रण को केवल निलंबन के रूप में वर्गीकृत किया जाता है जब कण बाहर नहीं निकलते हैं।

गुण

निलंबन एक विषम मिश्रण है जिसमें विलेय के कण विघटित (रसायन) नहीं होते हैं, किन्तु माध्यम में स्वतंत्र रूप से तैरते हुए विलायक के पूरे थोक में निलंबित हो जाते हैं।[1] आंतरिक चरण (ठोस) को बाहरी चरण (द्रव) में यांत्रिक गति (क्रिया) के माध्यम से प्रसार किया जाता है, जिसमें कुछ सहायक पदार्थों या निलंबित कारकों का उपयोग होता है।

निलंबन का एक उदाहरण पानी में बालू होगा। निलंबित कण एक माइक्रोस्कोप के नीचे दिखाई दे रहे हैं और यदि उन्हें अबाधित छोड़ दिया जाए तो समय के साथ व्यवस्थित हो जाएंगे। यह एक निलंबन को कोलाइड से अलग करता है, जिसमें कोलाइड कण छोटे होते हैं और व्यवस्थित नहीं होते हैं।[2] कोलाइड्स और निलंबन समाधान (रसायन विज्ञान) से भिन्न होते हैं, जिसमें घुलित पदार्थ (विलेय) ठोस के रूप में उपस्थित नहीं होता है, और विलायक और विलेय समान रूप से मिश्रित होते हैं।

किसी गैस में तरल बूंदों या महीन ठोस कणों के निलंबन को एयरोसोल कहा जाता है। पृथ्वी के वायुमंडल में, निलंबित कणों को कण कहा जाता है और इसमें महीन धूल और कालिख के कण, समुद्री नमक, बायोजेनिक और ज्वालामुखी सल्फेट, नाइट्रेट और बादल की बूंदें होती हैं।

प्रसार चरण और प्रसार माध्यम के आधार पर निलंबन को वर्गीकृत किया जाता है, जहां पूर्व अनिवार्य रूप से ठोस होता है जबकि बाद वाला ठोस, तरल या गैस हो सकता है।

आधुनिक रासायनिक प्रक्रिया उद्योगों में, उच्च कतरनी मिश्रण विधि का उपयोग कई उपन्यास निलंबन बनाने के लिए किया गया है।

ऊष्मागतिक दृष्टिकोण से निलंबन अस्थिर होते हैं किन्तु लंबे समय तक गतिशील रूप से स्थिर हो सकते हैं, जो बदले में निलंबन के शेल्फ जीवन को निर्धारित कर सकते हैं। उपभोक्ता को त्रुटिहीन जानकारी प्रदान करने और सर्वोत्तम उत्पाद गुणवत्ता सुनिश्चित करने के लिए इस समय अवधि को मापने की आवश्यकता है।

प्रसार स्थिरता समय के साथ अपने गुणों में परिवर्तन का विरोध करने के लिए प्रसार की क्षमता को संदर्भित करती है।[3]
IUPAC definition

Dispersion of solid particles in a liquid.

Note: Definition based on that in ref.[4][5]

भौतिक स्थिरता की मापकक्रिया करने वाली विधि

किसी उत्पाद के प्रसार की स्थिति की मापकक्रिया करने के लिए लंबवत स्कैनिंग के साथ मिलकर कई प्रकाश बिखराव सबसे व्यापक रूप से इस्तेमाल की जाने वाली विधि है, इसलिए अस्थिरता की घटनाओं की पहचान करना और इसकी मात्रा निर्धारित करना।[6][7][8][9] यह तनुकरण के बिना केंद्रित प्रसार पर काम करता है। जब प्रकाश को नमूने के माध्यम से भेजा जाता है, तो यह कणों द्वारा वापस बिखर जाता है। पश्च प्रकीर्णन तीव्रता परिक्षिप्त प्रावस्था के आकार और आयतन अंश के सीधे आनुपातिक होती है। इसलिए, एकाग्रता (अवसादन) में स्थानीय परिवर्तन और आकार में वैश्विक परिवर्तन (फ्लोक्यूलेशन, कण एकत्रीकरण) का पता लगाया जाता है और मापकक्रिया की जाती है। कण निलंबन में स्थिरता के विश्लेषण में प्राथमिक महत्व निलंबित ठोस द्वारा प्रदर्शित जीटा क्षमता का मूल्य है। यह पैरामीटर इंटरपार्टिकल स्थिर वैद्युत विक्षेप प्रतिकर्षण के परिमाण को इंगित करता है और सामान्यतः यह निर्धारित करने के लिए विश्लेषण किया जाता है कि कैसे सोखना और पीएच संशोधन का उपयोग कण प्रतिकर्षण और निलंबन स्थिरीकरण या अस्थिरता को प्रभावित करता है।

शेल्फ लाइफ भविष्यवाणी के लिए त्वरित विधियां

अस्थिरता की काइनेटिक प्रक्रिया काफी लंबी हो सकती है (कुछ उत्पादों के लिए कई महीनों या वर्षों तक) और नए उत्पाद डिजाइन के लिए उचित विकास समय तक पहुंचने के लिए फॉर्म्युलेटर को और त्वरित विधियों का उपयोग करने की आवश्यकता होती है। थर्मल विधियों का सबसे अधिक उपयोग किया जाता है और अस्थिरता में तेजी लाने के लिए तापमान में वृद्धि होती है (चरण और गिरावट के महत्वपूर्ण तापमान के नीचे)। तापमान न केवल चिपचिपाहट को प्रभावित करता है, बल्कि गैर-आयनिक सर्फेक्टेंट या अधिक आम तौर पर सिस्टम के अंदर अंतःक्रियात्मक बलों केस्थिति में अंतरापृष्ठीय दबाव को भी प्रभावित करता है। उच्च तापमान पर प्रसार को एक उत्पाद के लिए वास्तविक जीवन स्थितियों का अनुकरण करने में सक्षम (उदाहरण के लिए गर्मियों में एक कार में सनस्क्रीन क्रीम की ट्यूब) बनाता है, किन्तु कंपन, अपकेंद्रीकरण और आंदोलन सहित 200 गुना तक अस्थिरता प्रक्रियाओं को तेज करने के लिए भी कभी-कभी उपयोग किया जाता है। वे उत्पाद को विभिन्न बलों के अधीन करते हैं जो कणों / फिल्म जल निकासी को धक्का देते हैं। चूंकि, कुछ इमल्शन सामान्य गुरुत्व में कभी नहीं जुड़ते हैं, जबकि वे कृत्रिम गुरुत्व के अनुसार होते हैं।[10] इसके अतिरिक्त, अपकेंद्रीकरण और कंपन का उपयोग करते समय कणों की विभिन्न आबादी के पृथक्करण पर प्रकाश डाला गया है।[11]


उदाहरण

निलंबन के सामान्य उदाहरणों में सम्मिलित हैं:

  • कीचड़ या मैला पानी: जहां मिट्टी, मिट्टी या गाद के कण पानी में निलंबित रहते हैं।
  • आटा पानी में डूबा हुआ।
  • किमची सिरका पर निलंबित।
  • पानी में निलंबित चाक
  • रेत पानी में निलंबित।

यह भी देखें

संदर्भ

  1. Chemistry: Matter and Its Changes, 4th Ed. by Brady, Senese, ISBN 0-471-21517-1
  2. The Columbia Electronic Encyclopedia, 6th ed.
  3. “Food emulsions, principles, practices and techniques” CRC Press 2005.2- M. P. C. Silvestre, E. A. Decker, McClements Food hydrocolloids 13 (1999) 419–424.
  4. Alan D. MacNaught, Andrew R. Wilkinson, ed. (1997). Compendium of Chemical Terminology: IUPAC Recommendations (2nd ed.). Blackwell Science. ISBN 978-0865426849.
  5. Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603.
  6. I. Roland, G. Piel, L. Delattre, B. Evrard International Journal of Pharmaceutics 263 (2003) 85-94
  7. C. Lemarchand, P. Couvreur, M. Besnard, D. Costantini, R. Gref, Pharmaceutical Research, 20-8 (2003) 1284-1292
  8. O. Mengual, G. Meunier, I. Cayre, K. Puech, P. Snabre, Colloids and Surfaces A: Physicochemical and Engineering Aspects 152 (1999) 111–123
  9. P. Bru, L. Brunel, H. Buron, I. Cayré, X. Ducarre, A. Fraux, O. Mengual, G. Meunier, A. de Sainte Marie and P. Snabre Particle sizing and characterization Ed T. Provder and J. Texter (2004)
  10. J-L Salager, Pharmaceutical emulsions and suspensions Ed Françoise Nielloud,Gilberte Marti-Mestres (2000)
  11. P. Snabre, B. Pouligny Langmuir, 24 (2008) 13338-13347