भंगुरता: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
[[Image:Glass fracture.jpg|thumb|200px|कांच में भंगुर फ्रैक्चर]] | [[Image:Glass fracture.jpg|thumb|200px|कांच में भंगुर फ्रैक्चर]] | ||
[[Image:Cast iron tensile test.JPG|thumb|200px|[[कच्चा लोहा]] टेन्साइल टेस्टपीस में भंगुर फ्रैक्चर]]सामग्री [[भंग]]ुर होती है, जब [[तनाव (भौतिकी)]] के अधीन होती है, तो यह थोड़ा | [[Image:Cast iron tensile test.JPG|thumb|200px|[[कच्चा लोहा]] टेन्साइल टेस्टपीस में भंगुर फ्रैक्चर]]सामग्री [[भंग]]ुर होती है, जब [[तनाव (भौतिकी)]] के अधीन होती है, तो यह थोड़ा कोमल विरूपण और महत्वपूर्ण प्लास्टिक विरूपण के बिना भंग हो जाती है। भंगुर सामग्री फ्रैक्चर से पूर्व अपेक्षाकृत अल्प [[ऊर्जा]] को अवशोषित करती है, यहां तक कि सामग्री की उच्च शक्ति भी अवशोषित करती है। ब्रेकिंग प्रायः तीव्र आवाज के साथ होती है।{{Citation needed|date=March 2021|reason=This claim indicates any time a brittle material breaks, the break will be accompanied by a sharp snapping sound, but remains unverified and without a reliable source to back it up.}} | ||
जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर | जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर प्रस्तावित होता है जो विफल होने से पूर्व अधिक अल्प या कोई [[प्लास्टिसिटी (भौतिकी)|प्लास्टिक विरूपण]] नहीं होने पर विफल हो जाते हैं। प्रमाण खंडित हुए भागों का मिलान करना है, जो सही फिट होना चाहिए क्योंकि कोई प्लास्टिक विरूपण नहीं हुआ है। | ||
== विभिन्न सामग्रियों में भंगुरता == | == विभिन्न सामग्रियों में भंगुरता == | ||
Revision as of 10:32, 27 March 2023
सामग्री भंगुर होती है, जब तनाव (भौतिकी) के अधीन होती है, तो यह थोड़ा कोमल विरूपण और महत्वपूर्ण प्लास्टिक विरूपण के बिना भंग हो जाती है। भंगुर सामग्री फ्रैक्चर से पूर्व अपेक्षाकृत अल्प ऊर्जा को अवशोषित करती है, यहां तक कि सामग्री की उच्च शक्ति भी अवशोषित करती है। ब्रेकिंग प्रायः तीव्र आवाज के साथ होती है।[citation needed]
जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर प्रस्तावित होता है जो विफल होने से पूर्व अधिक अल्प या कोई प्लास्टिक विरूपण नहीं होने पर विफल हो जाते हैं। प्रमाण खंडित हुए भागों का मिलान करना है, जो सही फिट होना चाहिए क्योंकि कोई प्लास्टिक विरूपण नहीं हुआ है।
विभिन्न सामग्रियों में भंगुरता
पॉलीमर
पॉलिमर की यांत्रिक विशेषताएं कमरे के तापमान के पास तापमान परिवर्तन के प्रति संवेदनशील हो सकती हैं। उदाहरण के लिए, पॉली (पॉलिमिथाइल मेथाक्रायलेट)) तापमान 4˚C पर बेहद भंगुर है,[1] लेकिन बढ़े हुए तापमान के साथ बढ़ी हुई तन्यता का अनुभव करता है।
अक्रिस्टलीय बहुलक वे बहुलक होते हैं जो विभिन्न तापमानों पर भिन्न-भिन्न व्यवहार कर सकते हैं। वे अल्प तापमान (ग्लासी क्षेत्र) पर कांच की प्रकार व्यवहार कर सकते हैं, मध्यवर्ती तापमान (चमड़े या कांच संक्रमण क्षेत्र) पर रबड़ की प्रकार ठोस, और उच्च तापमान पर चिपचिपा तरल (रबड़ जैसा प्रवाह और चिपचिपा प्रवाह क्षेत्र)। इस व्यवहार को viscoelasticity के रूप में जाना जाता है। बेजान क्षेत्र में, अनाकार बहुलक कठोर और भंगुर होगा। बढ़ते तापमान के साथ, बहुलक अल्प भंगुर हो जाएगा।
धातु
कुछ धातुएं अपने स्लिप (पदार्थ विज्ञान) प्रणालियों के कारण भंगुर गुण प्रदर्शित करती हैं। किसी धातु में जितनी अधिक स्लिप प्रणालियाँ होती हैं, वह उतनी ही अल्प भंगुर होती है, क्योंकि इनमें से कई स्लिप प्रणालियों के साथ प्लास्टिक विरूपण हो सकता है। इसके विपरीत, अल्प स्लिप प्रणाली के साथ, अल्प प्लास्टिक विरूपण हो सकता है, और धातु अधिक भंगुर होगी। उदाहरण के लिए, एचसीपी (हेक्सागोनल समान गोलों की निविड संकुलन) धातुओं में कुछ सक्रिय स्लिप प्रणाली होते हैं, और सामान्यतः भंगुर होते हैं।
चीनी मिट्टी
अव्यवस्था गति, या पर्ची की कठिनाई के कारण सिरेमिक सामान्यतः भंगुर होते हैं। क्रिस्टलीय सिरेमिक में कुछ पर्ची प्रणालियां होती हैं जो अव्यवस्था के साथ आगे बढ़ने में सक्षम होती हैं, जिससे विरूपण कठिन हो जाता है और सिरेमिक अधिक भंगुर हो जाता है।
सिरेमिक सामग्री सामान्यतः आयनिक बंधन प्रदर्शित करती है। आयनों के विद्युत आवेश और उनके समान आवेशित आयनों के प्रतिकर्षण के कारण, स्लिप आगे प्रतिबंधित है।
भंगुर सामग्री बदलना
सामग्री को अधिक भंगुर या अल्प भंगुर बनने के लिए बदला जा सकता है।
कठोर
जब कोई सामग्री अपनी ताकत की सीमा तक पहुंच जाती है, तो उसके पास सामान्यतः विरूपण या फ्रैक्चर का विकल्प होता है। स्वाभाविक रूप से निंदनीय धातु को प्लास्टिक विरूपण (अनाज के आकार को अल्प करना, वर्षा को कठोर करना, कड़ी मेहनत करना, आदि) के तंत्र को बाधित करके मजबूत बनाया जा सकता है, लेकिन अगर इसे चरम पर ले जाया जाता है, तो फ्रैक्चर अधिक संभावित परिणाम बन जाता है, और सामग्री कर सकती है भंगुर हो जाना। इसलिए भौतिक मजबूती में सुधार करना संतुलित कार्य है।
स्वाभाविक रूप से भंगुर सामग्री, जैसे कांच, को प्रभावी ढंग से कठोर करना कठिन नहीं है। इस प्रकार की अधिकांश तकनीकों में दो फ्रैक्चर कठोर तंत्रों में से सम्मिलित होता है: फैलने वाली दरार की नोक को विक्षेपित करना या अवशोषित करना या सावधानीपूर्वक नियंत्रित तनाव (भौतिकी) अवशिष्ट तनाव बनाना जिससे कि कुछ अनुमानित स्रोतों से दरारें बंद हो जाएं। पूर्वसिद्धांत का उपयोग लेमिनेट किया हुआ कांच में किया जाता है जहां ग्लास की दो शीट्स को पॉलीविनाइल ब्यूटिरल की इंटरलेयर द्वारा भिन्न किया जाता है। पॉलीविनाइल ब्यूटिरल, viscoelastic पॉलीमर के रूप में, बढ़ती दरार को अवशोषित करता है। दूसरी विधि का उपयोग कठोर कांच और पूर्व-प्रतिबलित कंक्रीट में किया जाता है। प्रिंस रूपर्ट ड्रॉप द्वारा कांच के कठोर होने का प्रदर्शन प्रदान किया गया है। भंगुर पॉलिमर को धातु के कणों का उपयोग करके कठोर किया जा सकता है, जब नमूने पर जोर दिया जाता है, तो अच्छा उदाहरण उच्च प्रभाव पॉलीस्टाइनिन | उच्च प्रभाव पॉलीस्टाइनिन या एचआईपीएस होता है। सबसे अल्प भंगुर संरचनात्मक सिरेमिक सिलिकन कार्बाइड (मुख्य रूप से इसकी उच्च शक्ति के आधार पर) और परिवर्तन-कठोर zirconia हैं।
समग्र सामग्री में भिन्न दर्शन का उपयोग किया जाता है, जहां भंगुर ग्लास फाइबर, उदाहरण के लिए, पॉलिएस्टर राल जैसे नमनीय मैट्रिक्स में एम्बेडेड होते हैं। तनाव देने पर, ग्लास-मैट्रिक्स इंटरफ़ेस में दरारें बन जाती हैं, लेकिन इतनी अधिक दरारें बन जाती हैं कि बहुत अधिक ऊर्जा अवशोषित हो जाती है और सामग्री कठोर हो जाती है। धातु मैट्रिक्स समग्र बनाने में उसी सिद्धांत का उपयोग किया जाता है।
दबाव का प्रभाव
सामान्यतः, किसी सामग्री की भंगुर शक्ति को दबाव से बढ़ाया जा सकता है। यह लगभग अनुमानित गहराई पर भंगुर-तन्य संक्रमण क्षेत्र में उदाहरण के रूप में होता है 10 kilometres (6.2 mi) भूपर्पटी में (भूविज्ञान)|पृथ्वी की पपड़ी, जिस पर चट्टान के टूटने की संभावना अल्प हो जाती है, और नमनीयता के विकृत होने की संभावना अधिक हो जाती है (रीड देखें)।
क्रैक ग्रोथ
सुपरसोनिक फ्रैक्चर भंगुर सामग्री में ध्वनि की गति से तीव्रदरार गति है। यह घटना पहली बार खोजी गई थी[citation needed] स्टटगर्ट में मैक्स प्लैंक इंस्टीट्यूट फॉर मेटल्स रिसर्च (मार्कस जे. ब्यूहलर और हू ए जियांग एओ) और सैन जोस, कैलिफोर्निया, कैलिफोर्निया में आईबीएम अल्माडेन रिसर्च सेंटर (फरीद एफ. अब्राहम) के वैज्ञानिकों द्वारा।
यह भी देखें
- चरपी प्रभाव परीक्षण
- लचीलापन
- फोरेंसिक इंजीनियरिंग
- फ्रैक्टोग्राफी
- इज़ोड प्रभाव शक्ति परीक्षण
- सामग्री के तंत्र को मजबूत बनाना
- कठोरता
संदर्भ
- ↑ Callister Jr., William D.; Rethwisch, David G. (2015). सामग्री विज्ञान और इंजीनियरिंग की बुनियादी बातों (5 ed.). Wiley. ISBN 978-1-119-17548-3.
- Lewis, Peter Rhys; Reynolds, K; Gagg, C (2004). Forensic Materials Engineering: Case studies. CRC Press. ISBN 978-0-8493-1182-6.
- Rösler, Joachim; Harders, Harald; Bäker, Martin (2007). Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites. Springer. ISBN 978-3-642-09252-7.
- Callister, William D.; Rethwisch, David G. (2015). Fundamentals of Materials Science and Engineering. Wiley. ISBN 978-1-119-17548-3.