बिजलीघर: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
[[File:Greater Cape Town 12.02.2007 16-41-31.2007 16-41-33.JPG|thumb|upright=1.2|केप टाउन, दक्षिण अफ्रीका में एथलॉन पावर स्टेशन]] | [[File:Greater Cape Town 12.02.2007 16-41-31.2007 16-41-33.JPG|thumb|upright=1.2|केप टाउन, दक्षिण अफ्रीका में एथलॉन पावर स्टेशन]] | ||
[[File:DSCN1028.JPG|right|thumb|upright=1.2|स्लोवाकिया के गेबिसिकोवो डैम में हाइड्रोइलेक्ट्रिक पावर स्टेशन]] [[File:Glen_Canyon_Dam_and_Bridge.JPG|thumb|upright=1.2|ग्लेन कैन्यन बांध, पेज, एरिजोना में हाइड्रोइलेक्ट्रिक पावर स्टेशन]]पावर स्टेशन, जिसे पावर प्लांट और कभी-कभी जनरेटिंग स्टेशन या जनरेटिंग प्लांट के रूप में भी जाना जाता है, बिजली के बिजली उत्पादन के लिए | [[File:DSCN1028.JPG|right|thumb|upright=1.2|स्लोवाकिया के गेबिसिकोवो डैम में हाइड्रोइलेक्ट्रिक पावर स्टेशन]] [[File:Glen_Canyon_Dam_and_Bridge.JPG|thumb|upright=1.2|ग्लेन कैन्यन बांध, पेज, एरिजोना में हाइड्रोइलेक्ट्रिक पावर स्टेशन]]पावर स्टेशन, जिसे पावर प्लांट और कभी-कभी जनरेटिंग स्टेशन या जनरेटिंग प्लांट के रूप में भी जाना जाता है, बिजली के बिजली उत्पादन के लिए औद्योगिक सुविधा है। पावर स्टेशन आमतौर पर इलेक्ट्रिकल ग्रिड से जुड़े होते हैं। | ||
कई पावर स्टेशनों में | कई पावर स्टेशनों में या से अधिक विद्युत जनरेटर होते हैं, घूर्णन मशीन जो यांत्रिक शक्ति को तीन-चरण विद्युत शक्ति में परिवर्तित करती है। चुंबकीय क्षेत्र और विद्युत कंडक्टर के बीच सापेक्ष गति विद्युत प्रवाह बनाती है। | ||
जनरेटर को चालू करने के लिए ऊर्जा स्रोत का उपयोग व्यापक रूप से भिन्न होता है। दुनिया के अधिकांश पावर स्टेशन बिजली पैदा करने के लिए कोयला, पेट्रोलियम और प्राकृतिक गैस जैसे जीवाश्म ईंधन जलाते हैं। निम्न-कार्बन ऊर्जा स्रोतों में परमाणु ऊर्जा और नवीकरणीय ऊर्जा जैसे सौर ऊर्जा, पवन ऊर्जा, भू-तापीय ऊर्जा और जलविद्युत का उपयोग शामिल है। | जनरेटर को चालू करने के लिए ऊर्जा स्रोत का उपयोग व्यापक रूप से भिन्न होता है। दुनिया के अधिकांश पावर स्टेशन बिजली पैदा करने के लिए कोयला, पेट्रोलियम और प्राकृतिक गैस जैसे जीवाश्म ईंधन जलाते हैं। निम्न-कार्बन ऊर्जा स्रोतों में परमाणु ऊर्जा और नवीकरणीय ऊर्जा जैसे सौर ऊर्जा, पवन ऊर्जा, भू-तापीय ऊर्जा और जलविद्युत का उपयोग शामिल है। | ||
| Line 10: | Line 10: | ||
== इतिहास == | == इतिहास == | ||
1871 की शुरुआत में बेल्जियम के आविष्कारक जेनोबे ग्राम ने उद्योग के लिए व्यावसायिक पैमाने पर बिजली उत्पादन के लिए पर्याप्त शक्तिशाली जनरेटर का आविष्कार किया।<ref>{{Cite book |last=Thompson |first=Silvanus Phillips |url=https://archive.org/details/dynamoelectricm01thomgoog |title=Dynamo-electric Machinery: A Manual for Students of Electrotechnics |publisher=E. & F. N. Spon |year=1888 |location=London |page=[https://archive.org/details/dynamoelectricm01thomgoog/page/n158 140]}}</ref> | 1871 की शुरुआत में बेल्जियम के आविष्कारक जेनोबे ग्राम ने उद्योग के लिए व्यावसायिक पैमाने पर बिजली उत्पादन के लिए पर्याप्त शक्तिशाली जनरेटर का आविष्कार किया।<ref>{{Cite book |last=Thompson |first=Silvanus Phillips |url=https://archive.org/details/dynamoelectricm01thomgoog |title=Dynamo-electric Machinery: A Manual for Students of Electrotechnics |publisher=E. & F. N. Spon |year=1888 |location=London |page=[https://archive.org/details/dynamoelectricm01thomgoog/page/n158 140]}}</ref> | ||
1878 में, इंग्लैंड के क्रैगसाइड में विलियम आर्मस्ट्रांग, प्रथम बैरन आर्मस्ट्रांग | विलियम, लॉर्ड आर्मस्ट्रांग द्वारा | 1878 में, इंग्लैंड के क्रैगसाइड में विलियम आर्मस्ट्रांग, प्रथम बैरन आर्मस्ट्रांग | विलियम, लॉर्ड आर्मस्ट्रांग द्वारा हाइड्रोइलेक्ट्रिक पावर स्टेशन का डिजाइन और निर्माण किया गया था। यह सीमेंस एजी डायनेमोस को बिजली देने के लिए अपनी संपत्ति पर झीलों के पानी का इस्तेमाल करता था। बिजली ने रोशनी, हीटिंग, गर्म पानी का उत्पादन करने, लिफ्ट चलाने के साथ-साथ श्रम-बचत उपकरणों और खेत की इमारतों को बिजली की आपूर्ति की।<ref>{{Cite news |title=Hydro-electricity restored to historic Northumberland home |work=BBC News |date=27 February 2013 |url=https://www.bbc.co.uk/news/uk-england-tyne-21586177 }}</ref> | ||
जनवरी 1882 में दुनिया का पहला सार्वजनिक कोयला आधारित बिजली स्टेशन, एडिसन इलेक्ट्रिक लाइट स्टेशन, एडवर्ड हिबर्ड जॉनसन द्वारा आयोजित थॉमस एडिसन की | जनवरी 1882 में दुनिया का पहला सार्वजनिक कोयला आधारित बिजली स्टेशन, एडिसन इलेक्ट्रिक लाइट स्टेशन, एडवर्ड हिबर्ड जॉनसन द्वारा आयोजित थॉमस एडिसन की परियोजना, लंदन में बनाया गया था। बैबकॉक और विलकॉक्स बॉयलर संचालित a {{convert|125|hp|order=flip|abbr=in}} भाप का इंजन जो चला रहा था a {{convert|27|long ton|tonne|order=flip|adj=on}} जनरेटर। इसने उस क्षेत्र में परिसर में बिजली की आपूर्ति की जो सड़क को खोदे बिना वायडक्ट की पुलियों के माध्यम से पहुंचा जा सकता था, जिस पर गैस कंपनियों का एकाधिकार था। ग्राहकों में सिटी टेम्पल (लंदन) और ओल्ड बेली शामिल थे। अन्य महत्वपूर्ण ग्राहक जनरल पोस्ट ऑफिस # मुख्यालय का टेलीग्राफ कार्यालय था, लेकिन यह पुलियों के माध्यम से नहीं पहुँचा जा सकता था। जॉनसन ने होलबोर्न टैवर्न और न्यूगेट के माध्यम से आपूर्ति केबल को ओवरहेड चलाने की व्यवस्था की।<ref>{{Citation |last=Jack Harris |title=The electricity of Holborn |date=14 January 1982 |url=https://books.google.com/books?id=bfVKt7UzjnEC&pg=PA89 |work=[[New Scientist]]}}</ref> | ||
न्यूयॉर्क में सितंबर 1882 में, निचले मैनहट्टन द्वीप क्षेत्र में विद्युत प्रकाश व्यवस्था प्रदान करने के लिए एडिसन द्वारा पर्ल स्ट्रीट स्टेशन की स्थापना की गई थी। स्टेशन 1890 में आग से नष्ट होने तक चलता रहा। स्टेशन ने प्रत्यक्ष-वर्तमान जनरेटर को चालू करने के लिए भाप के इंजनों का इस्तेमाल किया। डीसी वितरण के कारण, सेवा क्षेत्र छोटा था, फीडरों में वोल्टेज ड्रॉप द्वारा सीमित। 1886 में जॉर्ज वेस्टिंगहाउस ने | न्यूयॉर्क में सितंबर 1882 में, निचले मैनहट्टन द्वीप क्षेत्र में विद्युत प्रकाश व्यवस्था प्रदान करने के लिए एडिसन द्वारा पर्ल स्ट्रीट स्टेशन की स्थापना की गई थी। स्टेशन 1890 में आग से नष्ट होने तक चलता रहा। स्टेशन ने प्रत्यक्ष-वर्तमान जनरेटर को चालू करने के लिए भाप के इंजनों का इस्तेमाल किया। डीसी वितरण के कारण, सेवा क्षेत्र छोटा था, फीडरों में वोल्टेज ड्रॉप द्वारा सीमित। 1886 में जॉर्ज वेस्टिंगहाउस ने वैकल्पिक चालू प्रणाली का निर्माण शुरू किया जिसने लंबी दूरी के संचरण के लिए वोल्टेज बढ़ाने के लिए ट्रांसफॉर्मर का इस्तेमाल किया और फिर इसे इनडोर प्रकाश व्यवस्था के लिए वापस ले लिया, अधिक कुशल और कम महंगी प्रणाली जो आधुनिक प्रणालियों के समान है। धाराओं का युद्ध अंततः एसी वितरण और उपयोग के पक्ष में हल हो गया, हालांकि कुछ डीसी सिस्टम 20 वीं शताब्दी के अंत तक बने रहे। मील (किलोमीटर) या उससे अधिक के सेवा त्रिज्या वाले डीसी सिस्टम आवश्यक रूप से छोटे, ईंधन की खपत के कम कुशल और बहुत बड़े केंद्रीय एसी उत्पादन स्टेशनों की तुलना में अधिक श्रम-गहन थे। | ||
[[File:Edison Central Station Dynamos and Engine.jpg|thumb|एडिसन जनरल इलेक्ट्रिक कंपनी, न्यूयॉर्क 1895 में डायनेमो और इंजन स्थापित]]एसी सिस्टम ने लोड के प्रकार के आधार पर उपयोगिता आवृत्ति की | [[File:Edison Central Station Dynamos and Engine.jpg|thumb|एडिसन जनरल इलेक्ट्रिक कंपनी, न्यूयॉर्क 1895 में डायनेमो और इंजन स्थापित]]एसी सिस्टम ने लोड के प्रकार के आधार पर उपयोगिता आवृत्ति की विस्तृत श्रृंखला का उपयोग किया; उच्च आवृत्तियों, और कर्षण प्रणालियों और भारी मोटर लोड प्रणालियों का उपयोग करते हुए प्रकाश भार कम आवृत्तियों को प्राथमिकता देते हैं। केंद्रीय स्टेशन उत्पादन के अर्थशास्त्र में बहुत सुधार हुआ जब समान आवृत्ति पर संचालित एकीकृत प्रकाश और बिजली प्रणालियों को विकसित किया गया। वही जनरेटिंग प्लांट जो दिन के दौरान बड़े औद्योगिक भार को संचालित करता था, व्यस्त समय के दौरान कम्यूटर रेलवे सिस्टम को फीड कर सकता था और फिर शाम को लाइटिंग लोड की सेवा करता था, इस प्रकार सिस्टम लोड फैक्टर (इलेक्ट्रिकल) में सुधार होता था और कुल मिलाकर विद्युत ऊर्जा की लागत कम हो जाती थी। कई अपवाद मौजूद थे, उत्पादन स्टेशन आवृत्ति की पसंद से बिजली या प्रकाश के लिए समर्पित थे, और आवृत्ति परिवर्तक घूर्णन और घूर्णन कन्वर्टर्स सामान्य प्रकाश व्यवस्था और बिजली नेटवर्क से इलेक्ट्रिक रेलवे सिस्टम को खिलाने के लिए विशेष रूप से आम थे। | ||
20वीं शताब्दी के पहले कुछ दशकों के दौरान केंद्रीय स्टेशन बड़े हो गए, अधिक दक्षता प्रदान करने के लिए उच्च भाप के दबावों का उपयोग करते हुए, और विश्वसनीयता और लागत में सुधार के लिए कई जनरेटिंग स्टेशनों के इंटरकनेक्शन पर निर्भर रहे। हाई-वोल्टेज एसी ट्रांसमिशन ने पनबिजली को दूर के झरनों से शहर के बाजारों तक आसानी से ले जाने की अनुमति दी। 1906 के आसपास केंद्रीय स्टेशन सेवा में भाप टरबाइन के आगमन ने उत्पादन क्षमता के बड़े विस्तार की अनुमति दी। जेनरेटर अब बेल्ट के पावर ट्रांसमिशन या पारस्परिक इंजनों की अपेक्षाकृत धीमी गति से सीमित नहीं थे, और बड़े आकार में बढ़ सकते थे। उदाहरण के लिए, सेबस्टियन जियानी डे फेरेंटी ने प्रस्तावित नए केंद्रीय स्टेशन के लिए कभी भी बनाए गए पारस्परिक भाप इंजन की योजना बनाई, लेकिन आवश्यक आकार में टर्बाइन उपलब्ध होने पर योजनाओं को खत्म कर दिया। केंद्रीय स्टेशनों के बाहर बिजली प्रणालियों का निर्माण करने के लिए समान मात्रा में इंजीनियरिंग कौशल और वित्तीय कौशल के संयोजन की आवश्यकता होती है। केंद्रीय स्टेशन निर्माण के अग्रदूतों में संयुक्त राज्य अमेरिका में जॉर्ज वेस्टिंगहाउस और सैमुअल इंसुल, यूके में फेरेंटी और चार्ल्स हेस्टरमैन मेर्ज़ और कई अन्य शामिल हैं। | 20वीं शताब्दी के पहले कुछ दशकों के दौरान केंद्रीय स्टेशन बड़े हो गए, अधिक दक्षता प्रदान करने के लिए उच्च भाप के दबावों का उपयोग करते हुए, और विश्वसनीयता और लागत में सुधार के लिए कई जनरेटिंग स्टेशनों के इंटरकनेक्शन पर निर्भर रहे। हाई-वोल्टेज एसी ट्रांसमिशन ने पनबिजली को दूर के झरनों से शहर के बाजारों तक आसानी से ले जाने की अनुमति दी। 1906 के आसपास केंद्रीय स्टेशन सेवा में भाप टरबाइन के आगमन ने उत्पादन क्षमता के बड़े विस्तार की अनुमति दी। जेनरेटर अब बेल्ट के पावर ट्रांसमिशन या पारस्परिक इंजनों की अपेक्षाकृत धीमी गति से सीमित नहीं थे, और बड़े आकार में बढ़ सकते थे। उदाहरण के लिए, सेबस्टियन जियानी डे फेरेंटी ने प्रस्तावित नए केंद्रीय स्टेशन के लिए कभी भी बनाए गए पारस्परिक भाप इंजन की योजना बनाई, लेकिन आवश्यक आकार में टर्बाइन उपलब्ध होने पर योजनाओं को खत्म कर दिया। केंद्रीय स्टेशनों के बाहर बिजली प्रणालियों का निर्माण करने के लिए समान मात्रा में इंजीनियरिंग कौशल और वित्तीय कौशल के संयोजन की आवश्यकता होती है। केंद्रीय स्टेशन निर्माण के अग्रदूतों में संयुक्त राज्य अमेरिका में जॉर्ज वेस्टिंगहाउस और सैमुअल इंसुल, यूके में फेरेंटी और चार्ल्स हेस्टरमैन मेर्ज़ और कई अन्य शामिल हैं। | ||
| Line 23: | Line 23: | ||
== थर्मल पावर स्टेशन == | == थर्मल पावर स्टेशन == | ||
{{Main|Thermal power station}} | {{Main|Thermal power station}} | ||
[[File:Dampfturbine Laeufer01.jpg|thumb|upright|पावर स्टेशन में उपयोग किए जाने वाले आधुनिक भाप टर्बाइन का रोटर]]थर्मल पावर स्टेशनों में, यांत्रिक शक्ति | [[File:Dampfturbine Laeufer01.jpg|thumb|upright|पावर स्टेशन में उपयोग किए जाने वाले आधुनिक भाप टर्बाइन का रोटर]]थर्मल पावर स्टेशनों में, यांत्रिक शक्ति ताप इंजन द्वारा उत्पादित की जाती है जो तापीय ऊर्जा को अक्सर ईंधन के दहन से घूर्णी ऊर्जा में परिवर्तित करती है। अधिकांश थर्मल पावर स्टेशन भाप का उत्पादन करते हैं, इसलिए उन्हें कभी-कभी स्टीम पावर स्टेशन भी कहा जाता है। ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार, सभी तापीय ऊर्जा को यांत्रिक शक्ति में परिवर्तित नहीं किया जा सकता है; इसलिए, पर्यावरण में हमेशा गर्मी खो जाती है। यदि इस नुकसान को औद्योगिक प्रक्रियाओं या जिला तापन के लिए उपयोगी गर्मी के रूप में नियोजित किया जाता है, तो बिजली संयंत्र को कोजेनरेशन पावर प्लांट या सीएचपी (संयुक्त ताप और बिजली) संयंत्र के रूप में जाना जाता है। जिन देशों में जिला तापन सामान्य है, वहाँ समर्पित ताप संयंत्र हैं जिन्हें ताप-केवल बॉयलर स्टेशन कहा जाता है। मध्य पूर्व में बिजली स्टेशनों का महत्वपूर्ण वर्ग पानी के अलवणीकरण के लिए सह-उत्पाद गर्मी का उपयोग करता है। | ||
थर्मल पावर चक्र की दक्षता उत्पादित अधिकतम कार्यशील द्रव तापमान द्वारा सीमित होती है। दक्षता सीधे इस्तेमाल किए गए ईंधन का कार्य नहीं है। समान भाप की स्थिति के लिए, कोयला-, परमाणु- और गैस बिजली संयंत्रों में सभी की सैद्धांतिक दक्षता समान होती है। कुल मिलाकर, यदि कोई सिस्टम लगातार (बेस लोड) पर है तो यह रुक-रुक कर उपयोग किए जाने वाले (पीक लोड) की तुलना में अधिक कुशल होगा। स्टीम टर्बाइन आमतौर पर पूर्ण क्षमता पर संचालित होने पर उच्च दक्षता पर काम करते हैं। | थर्मल पावर चक्र की दक्षता उत्पादित अधिकतम कार्यशील द्रव तापमान द्वारा सीमित होती है। दक्षता सीधे इस्तेमाल किए गए ईंधन का कार्य नहीं है। समान भाप की स्थिति के लिए, कोयला-, परमाणु- और गैस बिजली संयंत्रों में सभी की सैद्धांतिक दक्षता समान होती है। कुल मिलाकर, यदि कोई सिस्टम लगातार (बेस लोड) पर है तो यह रुक-रुक कर उपयोग किए जाने वाले (पीक लोड) की तुलना में अधिक कुशल होगा। स्टीम टर्बाइन आमतौर पर पूर्ण क्षमता पर संचालित होने पर उच्च दक्षता पर काम करते हैं। | ||
प्रक्रिया या जिला तापन के लिए रिजेक्ट हीट के उपयोग के अलावा, | प्रक्रिया या जिला तापन के लिए रिजेक्ट हीट के उपयोग के अलावा, बिजली संयंत्र की समग्र दक्षता में सुधार करने का तरीका संयुक्त चक्र संयंत्र में दो अलग-अलग थर्मोडायनामिक चक्रों को जोड़ना है। आमतौर पर, गैस टर्बाइन से निकलने वाली गैसों का उपयोग बॉयलर और स्टीम टर्बाइन के लिए भाप उत्पन्न करने के लिए किया जाता है। शीर्ष चक्र और निचला चक्र का संयोजन अकेले चक्र की तुलना में उच्च समग्र दक्षता पैदा करता है। | ||
2018 में, इंटर राव यूईएस और [https://g.esgcc.com.cn/ स्टेट ग्रिड] {{Webarchive|url=https://web.archive.org/web/20211221190902/https://g.esgcc.com.cn/ |date=21 December 2021 }} 8-GW थर्मल पावर प्लांट बनाने की योजना है, <ref>{{cite news|url=http://www.mofcom.gov.cn/article/i/jyjl/e/201807/20180702769118.shtml|title=China and Russia accelerate pace of power cooperation|date=2018-07-24|publisher=[[Ministry of Commerce (China)|Ministry of Commerce]]}}</ref> जो रूस में सबसे बड़ी कोयला आधारित बिजली संयंत्र निर्माण परियोजना है।<ref>{{cite news|url=http://www.cankaoxiaoxi.com/finance/20180604/2276134.shtml|title= Inter RAO UES cooperates with State Grid Corporation of China|date=2018-06-04|publisher=[[Reference News]]}}</ref> | 2018 में, इंटर राव यूईएस और [https://g.esgcc.com.cn/ स्टेट ग्रिड] {{Webarchive|url=https://web.archive.org/web/20211221190902/https://g.esgcc.com.cn/ |date=21 December 2021 }} 8-GW थर्मल पावर प्लांट बनाने की योजना है, <ref>{{cite news|url=http://www.mofcom.gov.cn/article/i/jyjl/e/201807/20180702769118.shtml|title=China and Russia accelerate pace of power cooperation|date=2018-07-24|publisher=[[Ministry of Commerce (China)|Ministry of Commerce]]}}</ref> जो रूस में सबसे बड़ी कोयला आधारित बिजली संयंत्र निर्माण परियोजना है।<ref>{{cite news|url=http://www.cankaoxiaoxi.com/finance/20180604/2276134.shtml|title= Inter RAO UES cooperates with State Grid Corporation of China|date=2018-06-04|publisher=[[Reference News]]}}</ref> | ||
| Line 34: | Line 34: | ||
=== वर्गीकरण === | === वर्गीकरण === | ||
[[File:Power station in blocks.jpg|upright=2.35|thumb|पावर स्टेशन का मॉड्यूलर ब्लॉक ओवरव्यू। धराशायी लाइनें संयुक्त चक्र और सह-उत्पादन या वैकल्पिक भंडारण जैसे विशेष जोड़ दिखाती हैं।]] | [[File:Power station in blocks.jpg|upright=2.35|thumb|पावर स्टेशन का मॉड्यूलर ब्लॉक ओवरव्यू। धराशायी लाइनें संयुक्त चक्र और सह-उत्पादन या वैकल्पिक भंडारण जैसे विशेष जोड़ दिखाती हैं।]] | ||
[[File:DTE St Clair.jpg|thumb|right|सेंट क्लेयर पावर प्लांट, मिशिगन, संयुक्त राज्य अमेरिका में कोयले से चलने वाला | [[File:DTE St Clair.jpg|thumb|right|सेंट क्लेयर पावर प्लांट, मिशिगन, संयुक्त राज्य अमेरिका में कोयले से चलने वाला बड़ा उत्पादन केंद्र]] | ||
[[File:Ikata Nuclear Powerplant.JPG|thumb|इकता परमाणु ऊर्जा संयंत्र, जापान]] | [[File:Ikata Nuclear Powerplant.JPG|thumb|इकता परमाणु ऊर्जा संयंत्र, जापान]] | ||
[[File:Martinlaakson voimalaitos.JPG|thumb|मार्टिनलाकोसो, वंता, फ़िनलैंड में | [[File:Martinlaakson voimalaitos.JPG|thumb|मार्टिनलाकोसो, वंता, फ़िनलैंड में बड़ा गैस और कोयला बिजली संयंत्र]] | ||
[[File:NesjavellirPowerPlant edit2.jpg|thumb|Nesjavellir भूतापीय विद्युत स्टेशन, आइसलैंड]] | [[File:NesjavellirPowerPlant edit2.jpg|thumb|Nesjavellir भूतापीय विद्युत स्टेशन, आइसलैंड]] | ||
====ऊष्मा स्रोत द्वारा==== | ====ऊष्मा स्रोत द्वारा==== | ||
* जीवाश्म-ईंधन पावर स्टेशन भाप टरबाइन जनरेटर का भी उपयोग कर सकते हैं या प्राकृतिक गैस से चलने वाले बिजली संयंत्रों के मामले में गैस टरबाइन का उपयोग कर सकते हैं। कोयले से चलने वाला पावर स्टेशन स्टीम बॉयलर में कोयले को जलाकर गर्मी पैदा करता है। भाप भाप टर्बाइन और बिजली जनरेटर चलाती है जो तब बिजली पैदा करती है। दहन के अपशिष्ट उत्पादों में राख, सल्फर डाइऑक्साइड, नाइट्रोजन ऑक्साइड और कार्बन डाइऑक्साइड शामिल हैं। प्रदूषण को कम करने के लिए कुछ गैसों को अपशिष्ट धारा से हटाया जा सकता है। | * जीवाश्म-ईंधन पावर स्टेशन भाप टरबाइन जनरेटर का भी उपयोग कर सकते हैं या प्राकृतिक गैस से चलने वाले बिजली संयंत्रों के मामले में गैस टरबाइन का उपयोग कर सकते हैं। कोयले से चलने वाला पावर स्टेशन स्टीम बॉयलर में कोयले को जलाकर गर्मी पैदा करता है। भाप भाप टर्बाइन और बिजली जनरेटर चलाती है जो तब बिजली पैदा करती है। दहन के अपशिष्ट उत्पादों में राख, सल्फर डाइऑक्साइड, नाइट्रोजन ऑक्साइड और कार्बन डाइऑक्साइड शामिल हैं। प्रदूषण को कम करने के लिए कुछ गैसों को अपशिष्ट धारा से हटाया जा सकता है। | ||
* परमाणु ऊर्जा संयंत्र<ref>[http://www.iaea.org/cgi-bin/db.page.pl/pris.oprconst.htm Nuclear Power Plants Information], by [[International Atomic Energy Agency]]</ref> भाप बनाने के लिए | * परमाणु ऊर्जा संयंत्र<ref>[http://www.iaea.org/cgi-bin/db.page.pl/pris.oprconst.htm Nuclear Power Plants Information], by [[International Atomic Energy Agency]]</ref> भाप बनाने के लिए परमाणु रिएक्टर के कोर (परमाणु विखंडन प्रक्रिया द्वारा) में उत्पन्न गर्मी का उपयोग करें जो तब भाप टरबाइन और जनरेटर को संचालित करता है। संयुक्त राज्य अमेरिका में लगभग 20 प्रतिशत बिजली उत्पादन परमाणु ऊर्जा संयंत्रों द्वारा किया जाता है। | ||
* भूतापीय विद्युत संयंत्र गर्म भूमिगत चट्टानों से निकाली गई भाप का उपयोग करते हैं। ये चट्टानें पृथ्वी के कोर में रेडियोधर्मी पदार्थ के क्षय से गर्म होती हैं।<ref>{{Cite web |last=Roberts |first=David |date=2020-10-21 |title=Geothermal energy is poised for a big breakout |url=https://www.vox.com/energy-and-environment/2020/10/21/21515461/renewable-energy-geothermal-egs-ags-supercritical |access-date=2022-04-13 |website=Vox |language=en}}</ref> | * भूतापीय विद्युत संयंत्र गर्म भूमिगत चट्टानों से निकाली गई भाप का उपयोग करते हैं। ये चट्टानें पृथ्वी के कोर में रेडियोधर्मी पदार्थ के क्षय से गर्म होती हैं।<ref>{{Cite web |last=Roberts |first=David |date=2020-10-21 |title=Geothermal energy is poised for a big breakout |url=https://www.vox.com/energy-and-environment/2020/10/21/21515461/renewable-energy-geothermal-egs-ags-supercritical |access-date=2022-04-13 |website=Vox |language=en}}</ref> | ||
* बायोमास # बायोमास रूपांतरण प्रक्रिया को उपयोगी ऊर्जा में | बायोमास-ईंधन वाले बिजली संयंत्रों को खोई, भस्मीकरण, लैंडफिल मीथेन, या बायोमास के अन्य रूपों से ईंधन दिया जा सकता है। | * बायोमास # बायोमास रूपांतरण प्रक्रिया को उपयोगी ऊर्जा में | बायोमास-ईंधन वाले बिजली संयंत्रों को खोई, भस्मीकरण, लैंडफिल मीथेन, या बायोमास के अन्य रूपों से ईंधन दिया जा सकता है। | ||
| Line 49: | Line 49: | ||
==== प्राइम मूवर द्वारा ==== | ==== प्राइम मूवर द्वारा ==== | ||
प्राइम मूवर | प्राइम मूवर मशीन है जो विभिन्न रूपों की ऊर्जा को गति की ऊर्जा में परिवर्तित करती है। | ||
* भाप टरबाइन संयंत्र टरबाइन के ब्लेड को घुमाने के लिए भाप के विस्तार से उत्पन्न गतिशील दबाव का उपयोग करते हैं। लगभग सभी बड़े गैर-जल संयंत्र इस प्रणाली का उपयोग करते हैं। दुनिया में उत्पादित कुल बिजली का लगभग 90 प्रतिशत भाप टर्बाइनों के उपयोग के माध्यम से होता है।<ref name="Wiser">{{Cite book |last=Wiser |first=Wendell H. |url=https://books.google.com/books?id=UmMx9ixu90kC&pg=PA190 |title=Energy resources: occurrence, production, conversion, use |publisher=Birkhäuser |year=2000 |isbn=978-0-387-98744-6 |page=190}}</ref> | * भाप टरबाइन संयंत्र टरबाइन के ब्लेड को घुमाने के लिए भाप के विस्तार से उत्पन्न गतिशील दबाव का उपयोग करते हैं। लगभग सभी बड़े गैर-जल संयंत्र इस प्रणाली का उपयोग करते हैं। दुनिया में उत्पादित कुल बिजली का लगभग 90 प्रतिशत भाप टर्बाइनों के उपयोग के माध्यम से होता है।<ref name="Wiser">{{Cite book |last=Wiser |first=Wendell H. |url=https://books.google.com/books?id=UmMx9ixu90kC&pg=PA190 |title=Energy resources: occurrence, production, conversion, use |publisher=Birkhäuser |year=2000 |isbn=978-0-387-98744-6 |page=190}}</ref> | ||
* गैस टरबाइन संयंत्र टर्बाइन को सीधे संचालित करने के लिए बहने वाली गैसों (वायु और दहन उत्पादों) से गतिशील दबाव का उपयोग करते हैं। प्राकृतिक-गैस ईंधन (और तेल ईंधन) दहन टरबाइन संयंत्र तेजी से शुरू हो सकते हैं और इसलिए उच्च मांग की अवधि के दौरान चरम ऊर्जा की आपूर्ति के लिए उपयोग किया जाता है, हालांकि बेस-लोडेड संयंत्रों की तुलना में अधिक लागत पर। ये तुलनात्मक रूप से छोटी इकाइयाँ हो सकती हैं, और कभी-कभी पूरी तरह से मानव रहित, दूरस्थ रूप से संचालित होती हैं। इस प्रकार का नेतृत्व यूके, पॉकेट पावर स्टेशनों द्वारा किया गया था<ref>[http://www.swehs.co.uk/docs/news13su.html SWEB's Pocket Power Stations<!-- Bot generated title -->] {{webarchive|url=https://web.archive.org/web/20060504055822/http://www.swehs.co.uk/docs/news13su.html |date=4 May 2006 }}</ref> दुनिया का पहला होने के नाते, 1959 में कमीशन किया गया। | * गैस टरबाइन संयंत्र टर्बाइन को सीधे संचालित करने के लिए बहने वाली गैसों (वायु और दहन उत्पादों) से गतिशील दबाव का उपयोग करते हैं। प्राकृतिक-गैस ईंधन (और तेल ईंधन) दहन टरबाइन संयंत्र तेजी से शुरू हो सकते हैं और इसलिए उच्च मांग की अवधि के दौरान चरम ऊर्जा की आपूर्ति के लिए उपयोग किया जाता है, हालांकि बेस-लोडेड संयंत्रों की तुलना में अधिक लागत पर। ये तुलनात्मक रूप से छोटी इकाइयाँ हो सकती हैं, और कभी-कभी पूरी तरह से मानव रहित, दूरस्थ रूप से संचालित होती हैं। इस प्रकार का नेतृत्व यूके, पॉकेट पावर स्टेशनों द्वारा किया गया था<ref>[http://www.swehs.co.uk/docs/news13su.html SWEB's Pocket Power Stations<!-- Bot generated title -->] {{webarchive|url=https://web.archive.org/web/20060504055822/http://www.swehs.co.uk/docs/news13su.html |date=4 May 2006 }}</ref> दुनिया का पहला होने के नाते, 1959 में कमीशन किया गया। | ||
| Line 59: | Line 59: | ||
==== कर्तव्य से ==== | ==== कर्तव्य से ==== | ||
सिस्टम को ऊर्जा प्रदान करने के लिए प्रेषित (अनुसूचित) किए जा सकने वाले बिजली संयंत्रों में शामिल हैं: | सिस्टम को ऊर्जा प्रदान करने के लिए प्रेषित (अनुसूचित) किए जा सकने वाले बिजली संयंत्रों में शामिल हैं: | ||
* बेस लोड पावर प्लांट सिस्टम लोड के उस घटक को प्रदान करने के लिए लगभग लगातार चलते हैं जो | * बेस लोड पावर प्लांट सिस्टम लोड के उस घटक को प्रदान करने के लिए लगभग लगातार चलते हैं जो दिन या सप्ताह के दौरान भिन्न नहीं होता है। कम ईंधन लागत के लिए बेसलोड संयंत्रों को अत्यधिक अनुकूलित किया जा सकता है, लेकिन सिस्टम लोड में बदलाव के दौरान जल्दी से शुरू या बंद नहीं हो सकता है। बेस-लोड संयंत्रों के उदाहरणों में बड़े आधुनिक कोयले से चलने वाले और परमाणु उत्पादन केंद्र, या पानी की अनुमानित आपूर्ति वाले हाइड्रो प्लांट शामिल होंगे। | ||
* पीकिंग पावर प्लांट दैनिक पीक लोड को पूरा करते हैं, जो प्रत्येक दिन केवल | * पीकिंग पावर प्लांट दैनिक पीक लोड को पूरा करते हैं, जो प्रत्येक दिन केवल या दो घंटे के लिए हो सकता है। जबकि उनकी वृद्धिशील परिचालन लागत बेस लोड संयंत्रों की तुलना में हमेशा अधिक होती है, उन्हें लोड पीक के दौरान सिस्टम की सुरक्षा सुनिश्चित करने की आवश्यकता होती है। पीकिंग संयंत्रों में सरल चक्र गैस टर्बाइन और पारस्परिक आंतरिक दहन इंजन शामिल हैं, जिन्हें सिस्टम चोटियों की भविष्यवाणी होने पर तेजी से शुरू किया जा सकता है। जलविद्युत संयंत्रों को पीकिंग उपयोग के लिए भी डिज़ाइन किया जा सकता है। | ||
* लोड निम्नलिखित बिजली संयंत्र आर्थिक रूप से दैनिक और साप्ताहिक लोड में भिन्नता का पालन कर सकते हैं, पीकिंग प्लांट्स की तुलना में कम लागत पर और बेसलोड प्लांट्स की तुलना में अधिक लचीलेपन के साथ। | * लोड निम्नलिखित बिजली संयंत्र आर्थिक रूप से दैनिक और साप्ताहिक लोड में भिन्नता का पालन कर सकते हैं, पीकिंग प्लांट्स की तुलना में कम लागत पर और बेसलोड प्लांट्स की तुलना में अधिक लचीलेपन के साथ। | ||
गैर-प्रेषणीय संयंत्रों में पवन और सौर ऊर्जा जैसे स्रोत शामिल हैं; जबकि सिस्टम ऊर्जा आपूर्ति में उनके दीर्घकालिक योगदान का अनुमान लगाया जा सकता है, | गैर-प्रेषणीय संयंत्रों में पवन और सौर ऊर्जा जैसे स्रोत शामिल हैं; जबकि सिस्टम ऊर्जा आपूर्ति में उनके दीर्घकालिक योगदान का अनुमान लगाया जा सकता है, अल्पकालिक (दैनिक या प्रति घंटा) आधार पर उनकी ऊर्जा का उपयोग उपलब्ध के रूप में किया जाना चाहिए क्योंकि पीढ़ी को स्थगित नहीं किया जा सकता है। स्वतंत्र बिजली उत्पादकों के साथ संविदात्मक व्यवस्था (लेना या भुगतान करना) या अन्य नेटवर्क के लिए सिस्टम इंटरकनेक्शन प्रभावी रूप से गैर-प्रेषणीय हो सकते हैं। | ||
| Line 72: | Line 72: | ||
[[File:Cooling tower power station Dresden.jpg|thumb|छलावरण प्राकृतिक मसौदा गीला कूलिंग टॉवर]]सभी थर्मल पावर प्लांट उत्पादित उपयोगी विद्युत ऊर्जा के उपोत्पाद के रूप में अपशिष्ट ऊष्मा ऊर्जा का उत्पादन करते हैं। अपशिष्ट ऊष्मा ऊर्जा की मात्रा उपयोगी बिजली में परिवर्तित ऊर्जा की मात्रा के बराबर या उससे अधिक है. गैस से चलने वाले बिजली संयंत्र 65% रूपांतरण दक्षता प्राप्त कर सकते हैं, जबकि कोयला और तेल संयंत्र लगभग 30-49% प्राप्त कर सकते हैं। अपशिष्ट गर्मी वातावरण में तापमान वृद्धि पैदा करती है, जो उसी बिजली संयंत्र से ग्रीनहाउस-गैस उत्सर्जन द्वारा उत्पादित की तुलना में कम है। कई परमाणु ऊर्जा संयंत्रों में प्राकृतिक ड्राफ्ट वेट कूलिंग टावर और बड़े जीवाश्म-ईंधन से चलने वाले बिजली संयंत्र बड़े हाइपरबोलॉइड संरचना चिमनी जैसी संरचनाओं का उपयोग करते हैं (जैसा कि दाईं ओर की छवि में देखा गया है) जो वाष्पीकरण द्वारा परिवेशी वातावरण में अपशिष्ट गर्मी को छोड़ते हैं। पानी। | [[File:Cooling tower power station Dresden.jpg|thumb|छलावरण प्राकृतिक मसौदा गीला कूलिंग टॉवर]]सभी थर्मल पावर प्लांट उत्पादित उपयोगी विद्युत ऊर्जा के उपोत्पाद के रूप में अपशिष्ट ऊष्मा ऊर्जा का उत्पादन करते हैं। अपशिष्ट ऊष्मा ऊर्जा की मात्रा उपयोगी बिजली में परिवर्तित ऊर्जा की मात्रा के बराबर या उससे अधिक है. गैस से चलने वाले बिजली संयंत्र 65% रूपांतरण दक्षता प्राप्त कर सकते हैं, जबकि कोयला और तेल संयंत्र लगभग 30-49% प्राप्त कर सकते हैं। अपशिष्ट गर्मी वातावरण में तापमान वृद्धि पैदा करती है, जो उसी बिजली संयंत्र से ग्रीनहाउस-गैस उत्सर्जन द्वारा उत्पादित की तुलना में कम है। कई परमाणु ऊर्जा संयंत्रों में प्राकृतिक ड्राफ्ट वेट कूलिंग टावर और बड़े जीवाश्म-ईंधन से चलने वाले बिजली संयंत्र बड़े हाइपरबोलॉइड संरचना चिमनी जैसी संरचनाओं का उपयोग करते हैं (जैसा कि दाईं ओर की छवि में देखा गया है) जो वाष्पीकरण द्वारा परिवेशी वातावरण में अपशिष्ट गर्मी को छोड़ते हैं। पानी। | ||
हालांकि, कई बड़े थर्मल पावर प्लांट्स, न्यूक्लियर पावर प्लांट्स, फॉसिल-फायर्ड पावर प्लांट्स, ऑयल रिफाइनरी, पेट्रोकेमिकल, जियोथर्मल पावर, बायोमास और ट्रैश-टू-एनर्जी प्लांट में मैकेनिकल इंड्यूस्ड-ड्राफ्ट या फोर्स्ड-ड्राफ्ट वेट कूलिंग टावर्स | वेस्ट- टू-एनर्जी प्लांट नीचे आने वाले पानी के माध्यम से ऊपर की ओर हवा की गति प्रदान करने के लिए फैन (मैकेनिकल) का उपयोग करते हैं और हाइपरबोलॉइड चिमनी जैसी संरचनाएं नहीं हैं। प्रेरित या मजबूर-ड्राफ्ट कूलिंग टॉवर आमतौर पर आयताकार, बॉक्स जैसी संरचनाएं होती हैं जो | हालांकि, कई बड़े थर्मल पावर प्लांट्स, न्यूक्लियर पावर प्लांट्स, फॉसिल-फायर्ड पावर प्लांट्स, ऑयल रिफाइनरी, पेट्रोकेमिकल, जियोथर्मल पावर, बायोमास और ट्रैश-टू-एनर्जी प्लांट में मैकेनिकल इंड्यूस्ड-ड्राफ्ट या फोर्स्ड-ड्राफ्ट वेट कूलिंग टावर्स | वेस्ट- टू-एनर्जी प्लांट नीचे आने वाले पानी के माध्यम से ऊपर की ओर हवा की गति प्रदान करने के लिए फैन (मैकेनिकल) का उपयोग करते हैं और हाइपरबोलॉइड चिमनी जैसी संरचनाएं नहीं हैं। प्रेरित या मजबूर-ड्राफ्ट कूलिंग टॉवर आमतौर पर आयताकार, बॉक्स जैसी संरचनाएं होती हैं जो ऐसी सामग्री से भरी होती हैं जो ऊपर की ओर बहने वाली हवा और नीचे बहने वाले पानी के मिश्रण को बढ़ाती हैं।<ref>{{Cite book |editor=J. C. Hensley |url=http://spxcooling.com/en/library/detail/cooling-tower-fundamentals/ |title=Cooling Tower Fundamentals |publisher=SPX Cooling Technologies |year=2006 |edition=2nd}}</ref><ref name="Beychok">{{Cite book |last=Beychok, Milton R. |title=[[Aqueous Wastes from Petroleum and Petrochemical Plants]] |publisher=John Wiley and Sons |year=1967 |edition=4th |lccn= 67019834}} (Includes cooling tower material balance for evaporation emissions and blowdown effluents. Available in many university libraries)</ref> | ||
प्रतिबंधित पानी के उपयोग वाले क्षेत्रों में, | प्रतिबंधित पानी के उपयोग वाले क्षेत्रों में, ड्राई कूलिंग टॉवर या सीधे एयर कूल्ड रेडिएटर्स आवश्यक हो सकते हैं, क्योंकि बाष्पीकरणीय शीतलन के लिए मेक-अप पानी प्राप्त करने की लागत या पर्यावरणीय परिणाम निषेधात्मक होंगे। विशिष्ट गीले, बाष्पीकरणीय कूलिंग टॉवर की तुलना में इन कूलरों में पंखों को चलाने के लिए कम दक्षता और उच्च ऊर्जा खपत होती है। | ||
=== एयर कूल्ड कंडेनसर (एसीसी) === | === एयर कूल्ड कंडेनसर (एसीसी) === | ||
पावर प्लांट | पावर प्लांट एयर-कूल्ड कंडेनसर का उपयोग कर सकते हैं, पारंपरिक रूप से सीमित या महंगे पानी की आपूर्ति वाले क्षेत्रों में। एयर-कूल्ड कंडेनसर पानी का उपयोग किए बिना कूलिंग टावर (गर्मी अपव्यय) के समान उद्देश्य प्रदान करते हैं। वे अतिरिक्त सहायक शक्ति का उपभोग करते हैं और इस प्रकार पारंपरिक कूलिंग टावर की तुलना में उच्च कार्बन पदचिह्न हो सकते हैं। | ||
=== वन्स-थ्रू कूलिंग सिस्टम्स === | === वन्स-थ्रू कूलिंग सिस्टम्स === | ||
इलेक्ट्रिक कंपनियां अक्सर कूलिंग टॉवर के बजाय समुद्र या झील, नदी या कूलिंग तालाब से ठंडा पानी का उपयोग करना पसंद करती हैं। यह सिंगल पास या वन्स-थ्रू कूलिंग सिस्टम कूलिंग टॉवर की लागत को बचा सकता है और प्लांट के हीट एक्सचेंजर्स के माध्यम से ठंडा पानी पंप करने के लिए कम ऊर्जा लागत हो सकती है। हालाँकि, अपशिष्ट ऊष्मा तापीय प्रदूषण का कारण बन सकती है क्योंकि पानी का निर्वहन होता है। शीतलन के लिए पानी के प्राकृतिक निकायों का उपयोग करने वाले बिजली संयंत्रों को शीतलन मशीनरी में जीवों के सेवन को सीमित करने के लिए मछली स्क्रीन जैसे तंत्र के साथ डिजाइन किया गया है। ये स्क्रीन केवल आंशिक रूप से प्रभावी हैं और इसके परिणामस्वरूप हर साल अरबों मछलियाँ और अन्य जलीय जीव बिजली संयंत्रों द्वारा मारे जाते हैं।<ref>{{cite court |litigants=Riverkeeper, Inc. v. U.S. EPA |vol=358 |reporter=F.3d |opinion=174 |pinpoint=181 |court=2d Cir. |date=2004 |url=http://openjurist.org/358/f3d/174/riverkeeper-inc-llc-v-united-states-environmental-protection-agency |access-date=2015-08-22 |quote=A single power plant might impinge a million adult fish in just a three-week period, or entrain some 3 to 4 billion smaller fish and shellfish in a year, destabilizing wildlife populations in the surrounding ecosystem.}}</ref><ref>U.S. Environmental Protection Agency, Washington, DC (May 2014). [http://www2.epa.gov/sites/production/files/2015-04/documents/final-regulations-cooling-water-intake-structures-at-existing-facilities_fact-sheet_may-2014.pdf "Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities."] {{Webarchive|url=https://web.archive.org/web/20200619180853/https://www.epa.gov/sites/production/files/2015-04/documents/final-regulations-cooling-water-intake-structures-at-existing-facilities_fact-sheet_may-2014.pdf |date=19 June 2020 }} Fact sheet. Document no. EPA-821-F-14-001.</ref> उदाहरण के लिए, न्यूयॉर्क में इंडियन पॉइंट एनर्जी सेंटर में शीतलन प्रणाली सालाना | इलेक्ट्रिक कंपनियां अक्सर कूलिंग टॉवर के बजाय समुद्र या झील, नदी या कूलिंग तालाब से ठंडा पानी का उपयोग करना पसंद करती हैं। यह सिंगल पास या वन्स-थ्रू कूलिंग सिस्टम कूलिंग टॉवर की लागत को बचा सकता है और प्लांट के हीट एक्सचेंजर्स के माध्यम से ठंडा पानी पंप करने के लिए कम ऊर्जा लागत हो सकती है। हालाँकि, अपशिष्ट ऊष्मा तापीय प्रदूषण का कारण बन सकती है क्योंकि पानी का निर्वहन होता है। शीतलन के लिए पानी के प्राकृतिक निकायों का उपयोग करने वाले बिजली संयंत्रों को शीतलन मशीनरी में जीवों के सेवन को सीमित करने के लिए मछली स्क्रीन जैसे तंत्र के साथ डिजाइन किया गया है। ये स्क्रीन केवल आंशिक रूप से प्रभावी हैं और इसके परिणामस्वरूप हर साल अरबों मछलियाँ और अन्य जलीय जीव बिजली संयंत्रों द्वारा मारे जाते हैं।<ref>{{cite court |litigants=Riverkeeper, Inc. v. U.S. EPA |vol=358 |reporter=F.3d |opinion=174 |pinpoint=181 |court=2d Cir. |date=2004 |url=http://openjurist.org/358/f3d/174/riverkeeper-inc-llc-v-united-states-environmental-protection-agency |access-date=2015-08-22 |quote=A single power plant might impinge a million adult fish in just a three-week period, or entrain some 3 to 4 billion smaller fish and shellfish in a year, destabilizing wildlife populations in the surrounding ecosystem.}}</ref><ref>U.S. Environmental Protection Agency, Washington, DC (May 2014). [http://www2.epa.gov/sites/production/files/2015-04/documents/final-regulations-cooling-water-intake-structures-at-existing-facilities_fact-sheet_may-2014.pdf "Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities."] {{Webarchive|url=https://web.archive.org/web/20200619180853/https://www.epa.gov/sites/production/files/2015-04/documents/final-regulations-cooling-water-intake-structures-at-existing-facilities_fact-sheet_may-2014.pdf |date=19 June 2020 }} Fact sheet. Document no. EPA-821-F-14-001.</ref> उदाहरण के लिए, न्यूयॉर्क में इंडियन पॉइंट एनर्जी सेंटर में शीतलन प्रणाली सालाना अरब से अधिक मछली के अंडे और लार्वा को मारती है।<ref>{{Cite news |last=McGeehan |first=Patrick |date=2015-05-12 |title=Fire Prompts Renewed Calls to Close the Indian Point Nuclear Plant |work=The New York Times |url=https://www.nytimes.com/2015/05/13/nyregion/fire-prompts-renewed-calls-to-close-the-indian-point-nuclear-plant.html}}</ref> [https://www.skvenergyservices.com/ भारत में पावर प्लांट सलाहकार] | ||
और पर्यावरणीय प्रभाव यह है कि अगर ठंडे मौसम में पौधे बंद हो जाते हैं तो जलीय जीव जो गर्म निर्वहन वाले पानी के अनुकूल हो जाते हैं, घायल हो सकते हैं।. | और पर्यावरणीय प्रभाव यह है कि अगर ठंडे मौसम में पौधे बंद हो जाते हैं तो जलीय जीव जो गर्म निर्वहन वाले पानी के अनुकूल हो जाते हैं, घायल हो सकते हैं।. | ||
बिजली स्टेशनों द्वारा पानी की खपत | बिजली स्टेशनों द्वारा पानी की खपत विकासशील मुद्दा है।<ref>American Association for the Advancement of Science. AAAS Annual Meeting 17 - 21 Feb 2011, Washington DC. "Sustainable or Not? Impacts and Uncertainties of Low-Carbon Energy Technologies on Water." Dr Evangelos Tzimas, European Commission, JRC Institute for Energy, Petten, Netherlands.</ref> | ||
हाल के वर्षों में, पुनर्नवीनीकरण अपशिष्ट जल, या ग्रेवाटर का उपयोग कूलिंग टावरों में किया गया है। विस्कॉन्सिन में कैलपाइन रिवरसाइड और कैलपाइन फॉक्स पावर स्टेशनों के साथ-साथ मिनेसोटा में कैलपाइन मैनकैटो पावर स्टेशन इन सुविधाओं में से हैं। | हाल के वर्षों में, पुनर्नवीनीकरण अपशिष्ट जल, या ग्रेवाटर का उपयोग कूलिंग टावरों में किया गया है। विस्कॉन्सिन में कैलपाइन रिवरसाइड और कैलपाइन फॉक्स पावर स्टेशनों के साथ-साथ मिनेसोटा में कैलपाइन मैनकैटो पावर स्टेशन इन सुविधाओं में से हैं। | ||
| Line 96: | Line 96: | ||
=== हाइड्रोइलेक्ट्रिक पावर स्टेशन === | === हाइड्रोइलेक्ट्रिक पावर स्टेशन === | ||
{{Main|Hydroelectricity}} | {{Main|Hydroelectricity}} | ||
[[File:ThreeGorgesDam-China2009.jpg|thumb|थ्री गोरजेस डैम, हुबेई, चीन]]पनबिजली केंद्र में पनबिजली उत्पन्न करने के लिए पनबिजली का उपयोग कर टर्बाइनों के माध्यम से पानी बहता है। विद्युत जनित्र से जुड़े पानी के टर्बाइनों तक पेनस्टॉक्स के माध्यम से गिरने वाले पानी के गुरुत्वाकर्षण बल से शक्ति प्राप्त की जाती है। उपलब्ध बिजली की मात्रा ऊंचाई और जल प्रवाह का | [[File:ThreeGorgesDam-China2009.jpg|thumb|थ्री गोरजेस डैम, हुबेई, चीन]]पनबिजली केंद्र में पनबिजली उत्पन्न करने के लिए पनबिजली का उपयोग कर टर्बाइनों के माध्यम से पानी बहता है। विद्युत जनित्र से जुड़े पानी के टर्बाइनों तक पेनस्टॉक्स के माध्यम से गिरने वाले पानी के गुरुत्वाकर्षण बल से शक्ति प्राप्त की जाती है। उपलब्ध बिजली की मात्रा ऊंचाई और जल प्रवाह का संयोजन है। जल स्तर को बढ़ाने और जलाशय के लिए झील बनाने के लिए कई प्रकार के बांध बनाए जा सकते हैं। | ||
जलविद्युत का उत्पादन 150 देशों में होता है, एशिया-प्रशांत क्षेत्र में 2010 में वैश्विक जलविद्युत का 32 प्रतिशत उत्पादन होता है। चीन 2010 में 721 टेरावाट घंटे के उत्पादन के साथ सबसे बड़ा जलविद्युत उत्पादक है, जो घरेलू बिजली के उपयोग के लगभग 17 प्रतिशत का प्रतिनिधित्व करता है।{{Citation needed|date=July 2021}} | जलविद्युत का उत्पादन 150 देशों में होता है, एशिया-प्रशांत क्षेत्र में 2010 में वैश्विक जलविद्युत का 32 प्रतिशत उत्पादन होता है। चीन 2010 में 721 टेरावाट घंटे के उत्पादन के साथ सबसे बड़ा जलविद्युत उत्पादक है, जो घरेलू बिजली के उपयोग के लगभग 17 प्रतिशत का प्रतिनिधित्व करता है।{{Citation needed|date=July 2021}} | ||
| Line 104: | Line 104: | ||
[[File:Giant photovoltaic array.jpg|thumb|नेवादा, संयुक्त राज्य अमेरिका में नेलिस सौर ऊर्जा संयंत्र]]सौर ऊर्जा को या तो सीधे सौर सेल में, या ताप इंजन चलाने के लिए प्रकाश पर ध्यान केंद्रित करके सौर ऊर्जा संयंत्र में केंद्रित किया जा सकता है।<ref>{{Cite web|url=https://www.energy.gov/eere/solar/concentrating-solar-power|title=Concentrating Solar Power|website=Energy.gov}}</ref> | [[File:Giant photovoltaic array.jpg|thumb|नेवादा, संयुक्त राज्य अमेरिका में नेलिस सौर ऊर्जा संयंत्र]]सौर ऊर्जा को या तो सीधे सौर सेल में, या ताप इंजन चलाने के लिए प्रकाश पर ध्यान केंद्रित करके सौर ऊर्जा संयंत्र में केंद्रित किया जा सकता है।<ref>{{Cite web|url=https://www.energy.gov/eere/solar/concentrating-solar-power|title=Concentrating Solar Power|website=Energy.gov}}</ref> | ||
सौर फोटोवोल्टिक बिजली संयंत्र फोटोइलेक्ट्रिक प्रभाव का उपयोग करके सूर्य के प्रकाश को प्रत्यक्ष वर्तमान बिजली में परिवर्तित करता है। पावर इन्वर्टर विद्युत ग्रिड से कनेक्शन के लिए प्रत्यक्ष धारा को प्रत्यावर्ती धारा में बदलते हैं। इस प्रकार के संयंत्र ऊर्जा रूपांतरण के लिए घूमने वाली मशीनों का उपयोग नहीं करते हैं।<ref>{{Cite web|url=https://sites.lafayette.edu/egrs352-sp14-pv/technology/conversion-from-sunlight-to-electricity/|title=Conversion from sunlight to electricity – Solar photovoltaic|website=sites.lafayette.edu}}</ref> | सौर फोटोवोल्टिक बिजली संयंत्र फोटोइलेक्ट्रिक प्रभाव का उपयोग करके सूर्य के प्रकाश को प्रत्यक्ष वर्तमान बिजली में परिवर्तित करता है। पावर इन्वर्टर विद्युत ग्रिड से कनेक्शन के लिए प्रत्यक्ष धारा को प्रत्यावर्ती धारा में बदलते हैं। इस प्रकार के संयंत्र ऊर्जा रूपांतरण के लिए घूमने वाली मशीनों का उपयोग नहीं करते हैं।<ref>{{Cite web|url=https://sites.lafayette.edu/egrs352-sp14-pv/technology/conversion-from-sunlight-to-electricity/|title=Conversion from sunlight to electricity – Solar photovoltaic|website=sites.lafayette.edu}}</ref> | ||
सौर तापीय ऊर्जा संयंत्र या तो परवलयिक गर्तों या हेलिओस्टैट्स का उपयोग | सौर तापीय ऊर्जा संयंत्र या तो परवलयिक गर्तों या हेलिओस्टैट्स का उपयोग पाइप पर सूर्य के प्रकाश को निर्देशित करने के लिए करते हैं, जिसमें गर्मी हस्तांतरण द्रव होता है, जैसे कि तेल। गर्म तेल का उपयोग तब पानी को भाप में उबालने के लिए किया जाता है, जो टरबाइन को घुमाता है जो विद्युत जनरेटर को चलाता है। सौर तापीय विद्युत संयंत्र का केंद्रीय टावर प्रकार, आकार के आधार पर सैकड़ों या हजारों दर्पणों का उपयोग करता है, जो टॉवर के शीर्ष पर रिसीवर पर सूर्य के प्रकाश को निर्देशित करता है। बिजली के जनरेटर चलाने वाले टर्बाइनों को चालू करने के लिए भाप का उत्पादन करने के लिए गर्मी का उपयोग किया जाता है। | ||
| Line 115: | Line 115: | ||
=== समुद्री === | === समुद्री === | ||
{{Main|Marine energy}} | {{Main|Marine energy}} | ||
समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी समुद्र ऊर्जा या महासागर शक्ति भी कहा जाता है) समुद्र की लहरों, ज्वार, लवणता और महासागर तापीय ऊर्जा द्वारा वहन की जाने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति गतिज ऊर्जा, या गति में ऊर्जा का | समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी समुद्र ऊर्जा या महासागर शक्ति भी कहा जाता है) समुद्र की लहरों, ज्वार, लवणता और महासागर तापीय ऊर्जा द्वारा वहन की जाने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति गतिज ऊर्जा, या गति में ऊर्जा का विशाल भंडार बनाती है। इस ऊर्जा का उपयोग बिजली पैदा करने के लिए बिजली घरों, परिवहन और उद्योगों को बिजली देने के लिए किया जा सकता है। | ||
समुद्री ऊर्जा शब्द में तरंग शक्ति - सतही तरंगों से शक्ति, और ज्वारीय शक्ति - चलती पानी के बड़े पिंडों की गतिज ऊर्जा से प्राप्त दोनों शामिल हैं। अपतटीय पवन ऊर्जा समुद्री ऊर्जा का | समुद्री ऊर्जा शब्द में तरंग शक्ति - सतही तरंगों से शक्ति, और ज्वारीय शक्ति - चलती पानी के बड़े पिंडों की गतिज ऊर्जा से प्राप्त दोनों शामिल हैं। अपतटीय पवन ऊर्जा समुद्री ऊर्जा का रूप नहीं है, क्योंकि पवन ऊर्जा पवन से प्राप्त होती है, भले ही पवन टर्बाइनों को पानी के ऊपर रखा गया हो। | ||
महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं। महासागर ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई नवीकरणीय ऊर्जा प्रदान करने की क्षमता है।<ref>Carbon Trust, ''Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy'', January 2006</ref> | महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं। महासागर ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई नवीकरणीय ऊर्जा प्रदान करने की क्षमता है।<ref>Carbon Trust, ''Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy'', January 2006</ref> | ||
| Line 125: | Line 125: | ||
[[File:Hurum osmosis power 02.JPG|thumb|टॉफ्टे (हुरम), नॉर्वे में ऑस्मोटिक पावर प्रोटोटाइप]] | [[File:Hurum osmosis power 02.JPG|thumb|टॉफ्टे (हुरम), नॉर्वे में ऑस्मोटिक पावर प्रोटोटाइप]] | ||
{{Main|Osmotic power}} | {{Main|Osmotic power}} | ||
लवणता प्रवणता ऊर्जा को दाब-मंदित परासरण कहते हैं। इस पद्धति में, समुद्री जल को | लवणता प्रवणता ऊर्जा को दाब-मंदित परासरण कहते हैं। इस पद्धति में, समुद्री जल को दबाव कक्ष में पंप किया जाता है जो खारे पानी और ताजे पानी के दबावों के अंतर से कम दबाव पर होता है। मीठे पानी को भी झिल्ली के माध्यम से दबाव कक्ष में पंप किया जाता है, जिससे कक्ष का आयतन और दबाव दोनों बढ़ जाता है। जैसे ही दबाव के अंतर की भरपाई की जाती है, टरबाइन घूमती है जिससे ऊर्जा पैदा होती है। इस पद्धति का विशेष रूप से नॉर्वेजियन यूटिलिटी स्टेटक्राफ्ट द्वारा अध्ययन किया जा रहा है, जिसने गणना की है कि नॉर्वे में इस प्रक्रिया से 25 TWH/yr तक उपलब्ध होगा। स्टेटक्राफ्ट ने ओस्लो फोजर्ड पर दुनिया का पहला प्रोटोटाइप ऑस्मोटिक पावर प्लांट बनाया है जो 24 नवंबर 2009 को खोला गया था। हालांकि जनवरी 2014 में स्टेटक्राफ्ट ने इस पायलट को जारी नहीं रखने की घोषणा की।<ref>{{Cite web |title=Is PRO economically feasible? Not according to Statkraft | ForwardOsmosisTech |date=22 January 2014 |url=http://www.forwardosmosistech.com/statkraft-discontinues-investments-in-pressure-retarded-osmosis/ |url-status=live |archive-url=https://web.archive.org/web/20170118220928/http://www.forwardosmosistech.com/statkraft-discontinues-investments-in-pressure-retarded-osmosis/ |archive-date=2017-01-18 |access-date=2017-01-18}}</ref> | ||
=== बायोमास === | === बायोमास === | ||
[[File:Metz biomass power station.jpg|thumb|मेट्ज़ बायोमास पावर स्टेशन]]पानी को भाप में गर्म करने और भाप टर्बाइन चलाने के लिए अपशिष्ट हरी सामग्री के दहन से बायोमास ऊर्जा का उत्पादन किया जा सकता है। गैसीकरण, पाइरोलिसिस या टॉरफेक्शन प्रतिक्रियाओं में तापमान और दबावों की | [[File:Metz biomass power station.jpg|thumb|मेट्ज़ बायोमास पावर स्टेशन]]पानी को भाप में गर्म करने और भाप टर्बाइन चलाने के लिए अपशिष्ट हरी सामग्री के दहन से बायोमास ऊर्जा का उत्पादन किया जा सकता है। गैसीकरण, पाइरोलिसिस या टॉरफेक्शन प्रतिक्रियाओं में तापमान और दबावों की श्रृंखला के माध्यम से बायोएनेर्जी को भी संसाधित किया जा सकता है। वांछित अंतिम उत्पाद के आधार पर, ये प्रतिक्रियाएँ अधिक ऊर्जा-सघन उत्पाद (सिनगैस, लकड़ी के छर्रों, टोरेफैक्शन) का निर्माण करती हैं, जिन्हें बाद में खुले जलने की तुलना में बहुत कम उत्सर्जन दर पर बिजली का उत्पादन करने के लिए साथ इंजन में फीड किया जा सकता है। | ||
| Line 137: | Line 137: | ||
=== पंप किया गया भंडारण === | === पंप किया गया भंडारण === | ||
{{main|Pumped-storage hydroelectricity}} | {{main|Pumped-storage hydroelectricity}} | ||
अतिरिक्त बिजली के भंडारण का दुनिया का सबसे बड़ा रूप, पंप-स्टोरेज हाइड्रोइलेक्ट्रिकिटी| पंप-स्टोरेज | अतिरिक्त बिजली के भंडारण का दुनिया का सबसे बड़ा रूप, पंप-स्टोरेज हाइड्रोइलेक्ट्रिकिटी| पंप-स्टोरेज रिवर्सिबल हाइड्रोइलेक्ट्रिक प्लांट है। वे ऊर्जा के शुद्ध उपभोक्ता हैं लेकिन बिजली के किसी भी स्रोत के लिए भंडारण प्रदान करते हैं, प्रभावी ढंग से बिजली की आपूर्ति और मांग में चोटियों और गर्तों को सुचारू करते हैं। पंप स्टोरेज प्लांट आमतौर पर कम जलाशय से ऊपरी जलाशय तक पानी पंप करने के लिए ऑफ पीक अवधि के दौरान अतिरिक्त बिजली का उपयोग करते हैं। क्योंकि पम्पिंग व्यस्ततम समय में होती है, बिजली चरम समय की तुलना में कम मूल्यवान होती है। यह कम मूल्यवान अतिरिक्त बिजली अनियंत्रित पवन ऊर्जा और कोयला, परमाणु और भूतापीय जैसे बेस लोड बिजली संयंत्रों से आती है, जो अभी भी रात में बिजली का उत्पादन करते हैं, हालांकि मांग बहुत कम है। दिन के समय पीक डिमांड के दौरान, जब बिजली की कीमतें अधिक होती हैं, तो भंडारण का उपयोग पीकिंग पावर प्लांट के लिए किया जाता है, जहां ऊपरी जलाशय में पानी को टर्बाइन और जनरेटर के माध्यम से निचले जलाशय में वापस प्रवाहित करने की अनुमति दी जाती है। कोयला बिजली स्टेशनों के विपरीत, जो ठंड से शुरू होने में 12 घंटे से अधिक समय ले सकता है, जलविद्युत जनरेटर को कुछ ही मिनटों में सेवा में लाया जा सकता है, जो पीक लोड की मांग को पूरा करने के लिए आदर्श है। दक्षिण अफ्रीका में दो पर्याप्त पंप वाली भंडारण योजनाएं हैं, पाल्मेट पंप स्टोरेज स्कीम और दूसरी ड्रेकेन्सबर्ग, इंगुला पंप स्टोरेज स्कीम। | ||
== विशिष्ट बिजली उत्पादन == | == विशिष्ट बिजली उत्पादन == | ||
| Line 156: | Line 156: | ||
गैस टर्बाइन बिजली संयंत्र दसियों से सैकड़ों मेगावाट बिजली पैदा कर सकते हैं। कुछ उदाहरण: | गैस टर्बाइन बिजली संयंत्र दसियों से सैकड़ों मेगावाट बिजली पैदा कर सकते हैं। कुछ उदाहरण: | ||
:इंडियन क्वींस सिंपल-साइकिल, या ओपन साइकिल गैस टर्बाइन (ओसीजीटी), कॉर्नवॉल यूके में पीकिंग पावर स्टेशन, | :इंडियन क्वींस सिंपल-साइकिल, या ओपन साइकिल गैस टर्बाइन (ओसीजीटी), कॉर्नवॉल यूके में पीकिंग पावर स्टेशन, गैस टर्बाइन के साथ 140 मेगावाट रेट किया गया है। | ||
:मेडवे पावर स्टेशन, | :मेडवे पावर स्टेशन, संयुक्त चक्र गैस टर्बाइन (सीसीजीटी) पावर स्टेशन केंट, यूके में दो गैस टर्बाइन और स्टीम टर्बाइन के साथ 700 मेगावाट का मूल्यांकन किया गया है।<ref>[https://wayback.archive-it.org/all/20170525170032/http://www.industcards.com/cc-england-south.htm CCGT Plants in South England], by Power Plants Around the World</ref> | ||
पावर स्टेशन की रेटेड क्षमता लगभग अधिकतम विद्युत शक्ति है जो पावर स्टेशन उत्पादन कर सकता है। | पावर स्टेशन की रेटेड क्षमता लगभग अधिकतम विद्युत शक्ति है जो पावर स्टेशन उत्पादन कर सकता है। | ||
अनुसूचित या अनिर्धारित रखरखाव के समय को छोड़कर, कुछ बिजली संयंत्र लगभग हर समय अपनी रेटेड क्षमता पर गैर-लोड-निम्न बेस लोड पावर प्लांट के रूप में चलाए जाते हैं। | अनुसूचित या अनिर्धारित रखरखाव के समय को छोड़कर, कुछ बिजली संयंत्र लगभग हर समय अपनी रेटेड क्षमता पर गैर-लोड-निम्न बेस लोड पावर प्लांट के रूप में चलाए जाते हैं। | ||
| Line 163: | Line 163: | ||
हालांकि, कई बिजली संयंत्र आमतौर पर उनकी निर्धारित क्षमता से बहुत कम बिजली का उत्पादन करते हैं। | हालांकि, कई बिजली संयंत्र आमतौर पर उनकी निर्धारित क्षमता से बहुत कम बिजली का उत्पादन करते हैं। | ||
कुछ मामलों में | कुछ मामलों में बिजली संयंत्र अपनी रेटेड क्षमता से बहुत कम बिजली पैदा करता है क्योंकि यह आंतरायिक ऊर्जा स्रोत का उपयोग करता है। | ||
ऑपरेटर ऐसे बिजली संयंत्रों से अधिकतम पावर प्वाइंट ट्रैकर खींचने की कोशिश करते हैं, क्योंकि उनकी सीमांत लागत व्यावहारिक रूप से शून्य है, लेकिन उपलब्ध बिजली व्यापक रूप से भिन्न होती है - विशेष रूप से, यह रात में भारी तूफान के दौरान शून्य हो सकती है। | ऑपरेटर ऐसे बिजली संयंत्रों से अधिकतम पावर प्वाइंट ट्रैकर खींचने की कोशिश करते हैं, क्योंकि उनकी सीमांत लागत व्यावहारिक रूप से शून्य है, लेकिन उपलब्ध बिजली व्यापक रूप से भिन्न होती है - विशेष रूप से, यह रात में भारी तूफान के दौरान शून्य हो सकती है। | ||
| Line 174: | Line 174: | ||
संयंत्र की सभी उत्पन्न शक्ति आवश्यक रूप से वितरण प्रणाली में वितरित नहीं की जाती है। बिजली संयंत्र आमतौर पर कुछ बिजली का उपयोग स्वयं भी करते हैं, इस मामले में उत्पादन उत्पादन को सकल उत्पादन और शुद्ध उत्पादन में वर्गीकृत किया जाता है। | संयंत्र की सभी उत्पन्न शक्ति आवश्यक रूप से वितरण प्रणाली में वितरित नहीं की जाती है। बिजली संयंत्र आमतौर पर कुछ बिजली का उपयोग स्वयं भी करते हैं, इस मामले में उत्पादन उत्पादन को सकल उत्पादन और शुद्ध उत्पादन में वर्गीकृत किया जाता है। | ||
'सकल उत्पादन' या 'सकल विद्युत उत्पादन' | 'सकल उत्पादन' या 'सकल विद्युत उत्पादन' विशिष्ट अवधि में बिजली संयंत्र द्वारा बिजली उत्पादन#टर्बाइन की कुल मात्रा है।<ref>{{cite web|url=https://www.eia.gov/tools/faqs/faq.cfm?id=101&t=3|title=What is the difference between electricity generation capacity and electricity generation? - FAQ - U.S. Energy Information Administration (EIA)}}</ref> इसे जनरेटिंग टर्मिनल पर मापा जाता है और किलोवाट_घंटा|किलोवाट-घंटे (kW·h), किलोवाट_घंटा#वाट_घंटा_बहुल_और_बिलिंग_यूनिट|मेगावाट-घंटे (MW·h) में मापा जाता है।<ref>{{cite web|url=https://www.eia.gov/tools/glossary/index.cfm?id=g|title=Glossary - U.S. Energy Information Administration (EIA)}}</ref> Kilowatt_hour#Watt_hour_multiples_and_billing_units|gigawatt-hours (GW·h) या सबसे बड़े बिजली संयंत्रों के लिए Kilowatt_hour#Watt_hour_multiples_and_billing_units|terawatt-hours (TW·h)। इसमें संयंत्र सहायक और ट्रांसफार्मर में उपयोग की जाने वाली बिजली शामिल है।<ref>{{cite web|url=http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Gross_electricity_generation|title=Glossary:Gross electricity generation - Statistics Explained}}</ref> | ||
: सकल उत्पादन = शुद्ध उत्पादन + संयंत्र के भीतर उपयोग (इन-हाउस लोड के रूप में भी जाना जाता है) | : सकल उत्पादन = शुद्ध उत्पादन + संयंत्र के भीतर उपयोग (इन-हाउस लोड के रूप में भी जाना जाता है) | ||
शुद्ध उत्पादन | शुद्ध उत्पादन बिजली संयंत्र द्वारा उत्पन्न बिजली की मात्रा है जो उपभोक्ता उपयोग के लिए प्रेषित और वितरित की जाती है। शुद्ध उत्पादन कुल सकल बिजली उत्पादन से कम है क्योंकि उत्पादित कुछ बिजली संयंत्र के भीतर ही पंप, मोटर और प्रदूषण नियंत्रण उपकरणों जैसे सहायक उपकरणों को चलाने के लिए उपयोग की जाती है।<ref>{{Cite web|title=What is the difference between electricity generation capacity and electricity generation?|url=https://www.eia.gov/tools/faqs/faq.php?id=101&t=3|date=4 February 2020|website=U.S. Energy Information Administration|access-date=29 May 2020}}</ref> इस प्रकार | ||
: शुद्ध उत्पादन = सकल उत्पादन - संयंत्र के भीतर उपयोग ({{aka}} आंतरिक भार) | : शुद्ध उत्पादन = सकल उत्पादन - संयंत्र के भीतर उपयोग ({{aka}} आंतरिक भार) | ||
Revision as of 13:22, 15 March 2023
| Part of a series on |
| Power engineering |
|---|
| Electric power conversion |
| Electric power infrastructure |
| Electric power systems components |
पावर स्टेशन, जिसे पावर प्लांट और कभी-कभी जनरेटिंग स्टेशन या जनरेटिंग प्लांट के रूप में भी जाना जाता है, बिजली के बिजली उत्पादन के लिए औद्योगिक सुविधा है। पावर स्टेशन आमतौर पर इलेक्ट्रिकल ग्रिड से जुड़े होते हैं।
कई पावर स्टेशनों में या से अधिक विद्युत जनरेटर होते हैं, घूर्णन मशीन जो यांत्रिक शक्ति को तीन-चरण विद्युत शक्ति में परिवर्तित करती है। चुंबकीय क्षेत्र और विद्युत कंडक्टर के बीच सापेक्ष गति विद्युत प्रवाह बनाती है।
जनरेटर को चालू करने के लिए ऊर्जा स्रोत का उपयोग व्यापक रूप से भिन्न होता है। दुनिया के अधिकांश पावर स्टेशन बिजली पैदा करने के लिए कोयला, पेट्रोलियम और प्राकृतिक गैस जैसे जीवाश्म ईंधन जलाते हैं। निम्न-कार्बन ऊर्जा स्रोतों में परमाणु ऊर्जा और नवीकरणीय ऊर्जा जैसे सौर ऊर्जा, पवन ऊर्जा, भू-तापीय ऊर्जा और जलविद्युत का उपयोग शामिल है।
इतिहास
1871 की शुरुआत में बेल्जियम के आविष्कारक जेनोबे ग्राम ने उद्योग के लिए व्यावसायिक पैमाने पर बिजली उत्पादन के लिए पर्याप्त शक्तिशाली जनरेटर का आविष्कार किया।[1] 1878 में, इंग्लैंड के क्रैगसाइड में विलियम आर्मस्ट्रांग, प्रथम बैरन आर्मस्ट्रांग | विलियम, लॉर्ड आर्मस्ट्रांग द्वारा हाइड्रोइलेक्ट्रिक पावर स्टेशन का डिजाइन और निर्माण किया गया था। यह सीमेंस एजी डायनेमोस को बिजली देने के लिए अपनी संपत्ति पर झीलों के पानी का इस्तेमाल करता था। बिजली ने रोशनी, हीटिंग, गर्म पानी का उत्पादन करने, लिफ्ट चलाने के साथ-साथ श्रम-बचत उपकरणों और खेत की इमारतों को बिजली की आपूर्ति की।[2] जनवरी 1882 में दुनिया का पहला सार्वजनिक कोयला आधारित बिजली स्टेशन, एडिसन इलेक्ट्रिक लाइट स्टेशन, एडवर्ड हिबर्ड जॉनसन द्वारा आयोजित थॉमस एडिसन की परियोजना, लंदन में बनाया गया था। बैबकॉक और विलकॉक्स बॉयलर संचालित a 93 kW (125 horsepower) भाप का इंजन जो चला रहा था a 27-tonne (27-long-ton) जनरेटर। इसने उस क्षेत्र में परिसर में बिजली की आपूर्ति की जो सड़क को खोदे बिना वायडक्ट की पुलियों के माध्यम से पहुंचा जा सकता था, जिस पर गैस कंपनियों का एकाधिकार था। ग्राहकों में सिटी टेम्पल (लंदन) और ओल्ड बेली शामिल थे। अन्य महत्वपूर्ण ग्राहक जनरल पोस्ट ऑफिस # मुख्यालय का टेलीग्राफ कार्यालय था, लेकिन यह पुलियों के माध्यम से नहीं पहुँचा जा सकता था। जॉनसन ने होलबोर्न टैवर्न और न्यूगेट के माध्यम से आपूर्ति केबल को ओवरहेड चलाने की व्यवस्था की।[3] न्यूयॉर्क में सितंबर 1882 में, निचले मैनहट्टन द्वीप क्षेत्र में विद्युत प्रकाश व्यवस्था प्रदान करने के लिए एडिसन द्वारा पर्ल स्ट्रीट स्टेशन की स्थापना की गई थी। स्टेशन 1890 में आग से नष्ट होने तक चलता रहा। स्टेशन ने प्रत्यक्ष-वर्तमान जनरेटर को चालू करने के लिए भाप के इंजनों का इस्तेमाल किया। डीसी वितरण के कारण, सेवा क्षेत्र छोटा था, फीडरों में वोल्टेज ड्रॉप द्वारा सीमित। 1886 में जॉर्ज वेस्टिंगहाउस ने वैकल्पिक चालू प्रणाली का निर्माण शुरू किया जिसने लंबी दूरी के संचरण के लिए वोल्टेज बढ़ाने के लिए ट्रांसफॉर्मर का इस्तेमाल किया और फिर इसे इनडोर प्रकाश व्यवस्था के लिए वापस ले लिया, अधिक कुशल और कम महंगी प्रणाली जो आधुनिक प्रणालियों के समान है। धाराओं का युद्ध अंततः एसी वितरण और उपयोग के पक्ष में हल हो गया, हालांकि कुछ डीसी सिस्टम 20 वीं शताब्दी के अंत तक बने रहे। मील (किलोमीटर) या उससे अधिक के सेवा त्रिज्या वाले डीसी सिस्टम आवश्यक रूप से छोटे, ईंधन की खपत के कम कुशल और बहुत बड़े केंद्रीय एसी उत्पादन स्टेशनों की तुलना में अधिक श्रम-गहन थे।
एसी सिस्टम ने लोड के प्रकार के आधार पर उपयोगिता आवृत्ति की विस्तृत श्रृंखला का उपयोग किया; उच्च आवृत्तियों, और कर्षण प्रणालियों और भारी मोटर लोड प्रणालियों का उपयोग करते हुए प्रकाश भार कम आवृत्तियों को प्राथमिकता देते हैं। केंद्रीय स्टेशन उत्पादन के अर्थशास्त्र में बहुत सुधार हुआ जब समान आवृत्ति पर संचालित एकीकृत प्रकाश और बिजली प्रणालियों को विकसित किया गया। वही जनरेटिंग प्लांट जो दिन के दौरान बड़े औद्योगिक भार को संचालित करता था, व्यस्त समय के दौरान कम्यूटर रेलवे सिस्टम को फीड कर सकता था और फिर शाम को लाइटिंग लोड की सेवा करता था, इस प्रकार सिस्टम लोड फैक्टर (इलेक्ट्रिकल) में सुधार होता था और कुल मिलाकर विद्युत ऊर्जा की लागत कम हो जाती थी। कई अपवाद मौजूद थे, उत्पादन स्टेशन आवृत्ति की पसंद से बिजली या प्रकाश के लिए समर्पित थे, और आवृत्ति परिवर्तक घूर्णन और घूर्णन कन्वर्टर्स सामान्य प्रकाश व्यवस्था और बिजली नेटवर्क से इलेक्ट्रिक रेलवे सिस्टम को खिलाने के लिए विशेष रूप से आम थे।
20वीं शताब्दी के पहले कुछ दशकों के दौरान केंद्रीय स्टेशन बड़े हो गए, अधिक दक्षता प्रदान करने के लिए उच्च भाप के दबावों का उपयोग करते हुए, और विश्वसनीयता और लागत में सुधार के लिए कई जनरेटिंग स्टेशनों के इंटरकनेक्शन पर निर्भर रहे। हाई-वोल्टेज एसी ट्रांसमिशन ने पनबिजली को दूर के झरनों से शहर के बाजारों तक आसानी से ले जाने की अनुमति दी। 1906 के आसपास केंद्रीय स्टेशन सेवा में भाप टरबाइन के आगमन ने उत्पादन क्षमता के बड़े विस्तार की अनुमति दी। जेनरेटर अब बेल्ट के पावर ट्रांसमिशन या पारस्परिक इंजनों की अपेक्षाकृत धीमी गति से सीमित नहीं थे, और बड़े आकार में बढ़ सकते थे। उदाहरण के लिए, सेबस्टियन जियानी डे फेरेंटी ने प्रस्तावित नए केंद्रीय स्टेशन के लिए कभी भी बनाए गए पारस्परिक भाप इंजन की योजना बनाई, लेकिन आवश्यक आकार में टर्बाइन उपलब्ध होने पर योजनाओं को खत्म कर दिया। केंद्रीय स्टेशनों के बाहर बिजली प्रणालियों का निर्माण करने के लिए समान मात्रा में इंजीनियरिंग कौशल और वित्तीय कौशल के संयोजन की आवश्यकता होती है। केंद्रीय स्टेशन निर्माण के अग्रदूतों में संयुक्त राज्य अमेरिका में जॉर्ज वेस्टिंगहाउस और सैमुअल इंसुल, यूके में फेरेंटी और चार्ल्स हेस्टरमैन मेर्ज़ और कई अन्य शामिल हैं।
2019 world electricity generation by source (total generation was 27 petawatt-hours)[4][5]
थर्मल पावर स्टेशन
थर्मल पावर स्टेशनों में, यांत्रिक शक्ति ताप इंजन द्वारा उत्पादित की जाती है जो तापीय ऊर्जा को अक्सर ईंधन के दहन से घूर्णी ऊर्जा में परिवर्तित करती है। अधिकांश थर्मल पावर स्टेशन भाप का उत्पादन करते हैं, इसलिए उन्हें कभी-कभी स्टीम पावर स्टेशन भी कहा जाता है। ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार, सभी तापीय ऊर्जा को यांत्रिक शक्ति में परिवर्तित नहीं किया जा सकता है; इसलिए, पर्यावरण में हमेशा गर्मी खो जाती है। यदि इस नुकसान को औद्योगिक प्रक्रियाओं या जिला तापन के लिए उपयोगी गर्मी के रूप में नियोजित किया जाता है, तो बिजली संयंत्र को कोजेनरेशन पावर प्लांट या सीएचपी (संयुक्त ताप और बिजली) संयंत्र के रूप में जाना जाता है। जिन देशों में जिला तापन सामान्य है, वहाँ समर्पित ताप संयंत्र हैं जिन्हें ताप-केवल बॉयलर स्टेशन कहा जाता है। मध्य पूर्व में बिजली स्टेशनों का महत्वपूर्ण वर्ग पानी के अलवणीकरण के लिए सह-उत्पाद गर्मी का उपयोग करता है।
थर्मल पावर चक्र की दक्षता उत्पादित अधिकतम कार्यशील द्रव तापमान द्वारा सीमित होती है। दक्षता सीधे इस्तेमाल किए गए ईंधन का कार्य नहीं है। समान भाप की स्थिति के लिए, कोयला-, परमाणु- और गैस बिजली संयंत्रों में सभी की सैद्धांतिक दक्षता समान होती है। कुल मिलाकर, यदि कोई सिस्टम लगातार (बेस लोड) पर है तो यह रुक-रुक कर उपयोग किए जाने वाले (पीक लोड) की तुलना में अधिक कुशल होगा। स्टीम टर्बाइन आमतौर पर पूर्ण क्षमता पर संचालित होने पर उच्च दक्षता पर काम करते हैं।
प्रक्रिया या जिला तापन के लिए रिजेक्ट हीट के उपयोग के अलावा, बिजली संयंत्र की समग्र दक्षता में सुधार करने का तरीका संयुक्त चक्र संयंत्र में दो अलग-अलग थर्मोडायनामिक चक्रों को जोड़ना है। आमतौर पर, गैस टर्बाइन से निकलने वाली गैसों का उपयोग बॉयलर और स्टीम टर्बाइन के लिए भाप उत्पन्न करने के लिए किया जाता है। शीर्ष चक्र और निचला चक्र का संयोजन अकेले चक्र की तुलना में उच्च समग्र दक्षता पैदा करता है।
2018 में, इंटर राव यूईएस और स्टेट ग्रिड Archived 21 December 2021 at the Wayback Machine 8-GW थर्मल पावर प्लांट बनाने की योजना है, [6] जो रूस में सबसे बड़ी कोयला आधारित बिजली संयंत्र निर्माण परियोजना है।[7]
वर्गीकरण
ऊष्मा स्रोत द्वारा
- जीवाश्म-ईंधन पावर स्टेशन भाप टरबाइन जनरेटर का भी उपयोग कर सकते हैं या प्राकृतिक गैस से चलने वाले बिजली संयंत्रों के मामले में गैस टरबाइन का उपयोग कर सकते हैं। कोयले से चलने वाला पावर स्टेशन स्टीम बॉयलर में कोयले को जलाकर गर्मी पैदा करता है। भाप भाप टर्बाइन और बिजली जनरेटर चलाती है जो तब बिजली पैदा करती है। दहन के अपशिष्ट उत्पादों में राख, सल्फर डाइऑक्साइड, नाइट्रोजन ऑक्साइड और कार्बन डाइऑक्साइड शामिल हैं। प्रदूषण को कम करने के लिए कुछ गैसों को अपशिष्ट धारा से हटाया जा सकता है।
- परमाणु ऊर्जा संयंत्र[8] भाप बनाने के लिए परमाणु रिएक्टर के कोर (परमाणु विखंडन प्रक्रिया द्वारा) में उत्पन्न गर्मी का उपयोग करें जो तब भाप टरबाइन और जनरेटर को संचालित करता है। संयुक्त राज्य अमेरिका में लगभग 20 प्रतिशत बिजली उत्पादन परमाणु ऊर्जा संयंत्रों द्वारा किया जाता है।
- भूतापीय विद्युत संयंत्र गर्म भूमिगत चट्टानों से निकाली गई भाप का उपयोग करते हैं। ये चट्टानें पृथ्वी के कोर में रेडियोधर्मी पदार्थ के क्षय से गर्म होती हैं।[9]
- बायोमास # बायोमास रूपांतरण प्रक्रिया को उपयोगी ऊर्जा में | बायोमास-ईंधन वाले बिजली संयंत्रों को खोई, भस्मीकरण, लैंडफिल मीथेन, या बायोमास के अन्य रूपों से ईंधन दिया जा सकता है।
- एकीकृत स्टील मिलों में, ब्लास्ट फर्नेस गैस कम लागत वाली, हालांकि कम ऊर्जा-घनत्व वाला ईंधन है।
- आमतौर पर स्टीम बॉयलर और टर्बाइन में बिजली उत्पादन के लिए उपयोग करने के लिए कोजेनरेशन कभी-कभी पर्याप्त रूप से केंद्रित होता है।
- सौर तापीय ऊर्जा विद्युत संयंत्र पानी को उबालने के लिए सूर्य के प्रकाश का उपयोग करते हैं और भाप उत्पन्न करते हैं जो जनरेटर को घुमाती है।
प्राइम मूवर द्वारा
प्राइम मूवर मशीन है जो विभिन्न रूपों की ऊर्जा को गति की ऊर्जा में परिवर्तित करती है।
- भाप टरबाइन संयंत्र टरबाइन के ब्लेड को घुमाने के लिए भाप के विस्तार से उत्पन्न गतिशील दबाव का उपयोग करते हैं। लगभग सभी बड़े गैर-जल संयंत्र इस प्रणाली का उपयोग करते हैं। दुनिया में उत्पादित कुल बिजली का लगभग 90 प्रतिशत भाप टर्बाइनों के उपयोग के माध्यम से होता है।[10]
- गैस टरबाइन संयंत्र टर्बाइन को सीधे संचालित करने के लिए बहने वाली गैसों (वायु और दहन उत्पादों) से गतिशील दबाव का उपयोग करते हैं। प्राकृतिक-गैस ईंधन (और तेल ईंधन) दहन टरबाइन संयंत्र तेजी से शुरू हो सकते हैं और इसलिए उच्च मांग की अवधि के दौरान चरम ऊर्जा की आपूर्ति के लिए उपयोग किया जाता है, हालांकि बेस-लोडेड संयंत्रों की तुलना में अधिक लागत पर। ये तुलनात्मक रूप से छोटी इकाइयाँ हो सकती हैं, और कभी-कभी पूरी तरह से मानव रहित, दूरस्थ रूप से संचालित होती हैं। इस प्रकार का नेतृत्व यूके, पॉकेट पावर स्टेशनों द्वारा किया गया था[11] दुनिया का पहला होने के नाते, 1959 में कमीशन किया गया।
- संयुक्त चक्र संयंत्रों में प्राकृतिक गैस से चलने वाली गैस टर्बाइन और भाप बॉयलर और भाप टर्बाइन दोनों होते हैं जो गैस टर्बाइन से गर्म निकास गैस का उपयोग बिजली का उत्पादन करने के लिए करते हैं। यह संयंत्र की समग्र दक्षता को बहुत बढ़ाता है, और कई नए बेसलोड बिजली संयंत्र प्राकृतिक गैस से चलने वाले संयुक्त चक्र संयंत्र हैं।
- आंतरिक दहन प्रत्यागामी इंजनों का उपयोग पृथक समुदायों के लिए शक्ति प्रदान करने के लिए किया जाता है और अक्सर छोटे कोजेनरेशन संयंत्रों के लिए उपयोग किया जाता है। अस्पताल, कार्यालय भवन, औद्योगिक संयंत्र और अन्य महत्वपूर्ण सुविधाएं भी बिजली आउटेज के मामले में बैकअप पावर प्रदान करने के लिए उनका उपयोग करती हैं। ये आमतौर पर डीजल तेल, भारी तेल, प्राकृतिक गैस और लैंडफिल गैस से ईंधन भरते हैं।
- गैस टर्बाइन#माइक्रोटर्बाइन, स्टर्लिंग इंजन और आंतरिक दहन प्रत्यागामी इंजन अवसर ईंधन का उपयोग करने के लिए कम लागत वाले समाधान हैं, जैसे लैंडफिल गैस, जल उपचार संयंत्रों से डाइजेस्टर गैस और तेल उत्पादन से अपशिष्ट गैस।
कर्तव्य से
सिस्टम को ऊर्जा प्रदान करने के लिए प्रेषित (अनुसूचित) किए जा सकने वाले बिजली संयंत्रों में शामिल हैं:
- बेस लोड पावर प्लांट सिस्टम लोड के उस घटक को प्रदान करने के लिए लगभग लगातार चलते हैं जो दिन या सप्ताह के दौरान भिन्न नहीं होता है। कम ईंधन लागत के लिए बेसलोड संयंत्रों को अत्यधिक अनुकूलित किया जा सकता है, लेकिन सिस्टम लोड में बदलाव के दौरान जल्दी से शुरू या बंद नहीं हो सकता है। बेस-लोड संयंत्रों के उदाहरणों में बड़े आधुनिक कोयले से चलने वाले और परमाणु उत्पादन केंद्र, या पानी की अनुमानित आपूर्ति वाले हाइड्रो प्लांट शामिल होंगे।
- पीकिंग पावर प्लांट दैनिक पीक लोड को पूरा करते हैं, जो प्रत्येक दिन केवल या दो घंटे के लिए हो सकता है। जबकि उनकी वृद्धिशील परिचालन लागत बेस लोड संयंत्रों की तुलना में हमेशा अधिक होती है, उन्हें लोड पीक के दौरान सिस्टम की सुरक्षा सुनिश्चित करने की आवश्यकता होती है। पीकिंग संयंत्रों में सरल चक्र गैस टर्बाइन और पारस्परिक आंतरिक दहन इंजन शामिल हैं, जिन्हें सिस्टम चोटियों की भविष्यवाणी होने पर तेजी से शुरू किया जा सकता है। जलविद्युत संयंत्रों को पीकिंग उपयोग के लिए भी डिज़ाइन किया जा सकता है।
- लोड निम्नलिखित बिजली संयंत्र आर्थिक रूप से दैनिक और साप्ताहिक लोड में भिन्नता का पालन कर सकते हैं, पीकिंग प्लांट्स की तुलना में कम लागत पर और बेसलोड प्लांट्स की तुलना में अधिक लचीलेपन के साथ।
गैर-प्रेषणीय संयंत्रों में पवन और सौर ऊर्जा जैसे स्रोत शामिल हैं; जबकि सिस्टम ऊर्जा आपूर्ति में उनके दीर्घकालिक योगदान का अनुमान लगाया जा सकता है, अल्पकालिक (दैनिक या प्रति घंटा) आधार पर उनकी ऊर्जा का उपयोग उपलब्ध के रूप में किया जाना चाहिए क्योंकि पीढ़ी को स्थगित नहीं किया जा सकता है। स्वतंत्र बिजली उत्पादकों के साथ संविदात्मक व्यवस्था (लेना या भुगतान करना) या अन्य नेटवर्क के लिए सिस्टम इंटरकनेक्शन प्रभावी रूप से गैर-प्रेषणीय हो सकते हैं।
कूलिंग टावर्स
सभी थर्मल पावर प्लांट उत्पादित उपयोगी विद्युत ऊर्जा के उपोत्पाद के रूप में अपशिष्ट ऊष्मा ऊर्जा का उत्पादन करते हैं। अपशिष्ट ऊष्मा ऊर्जा की मात्रा उपयोगी बिजली में परिवर्तित ऊर्जा की मात्रा के बराबर या उससे अधिक है. गैस से चलने वाले बिजली संयंत्र 65% रूपांतरण दक्षता प्राप्त कर सकते हैं, जबकि कोयला और तेल संयंत्र लगभग 30-49% प्राप्त कर सकते हैं। अपशिष्ट गर्मी वातावरण में तापमान वृद्धि पैदा करती है, जो उसी बिजली संयंत्र से ग्रीनहाउस-गैस उत्सर्जन द्वारा उत्पादित की तुलना में कम है। कई परमाणु ऊर्जा संयंत्रों में प्राकृतिक ड्राफ्ट वेट कूलिंग टावर और बड़े जीवाश्म-ईंधन से चलने वाले बिजली संयंत्र बड़े हाइपरबोलॉइड संरचना चिमनी जैसी संरचनाओं का उपयोग करते हैं (जैसा कि दाईं ओर की छवि में देखा गया है) जो वाष्पीकरण द्वारा परिवेशी वातावरण में अपशिष्ट गर्मी को छोड़ते हैं। पानी।
हालांकि, कई बड़े थर्मल पावर प्लांट्स, न्यूक्लियर पावर प्लांट्स, फॉसिल-फायर्ड पावर प्लांट्स, ऑयल रिफाइनरी, पेट्रोकेमिकल, जियोथर्मल पावर, बायोमास और ट्रैश-टू-एनर्जी प्लांट में मैकेनिकल इंड्यूस्ड-ड्राफ्ट या फोर्स्ड-ड्राफ्ट वेट कूलिंग टावर्स | वेस्ट- टू-एनर्जी प्लांट नीचे आने वाले पानी के माध्यम से ऊपर की ओर हवा की गति प्रदान करने के लिए फैन (मैकेनिकल) का उपयोग करते हैं और हाइपरबोलॉइड चिमनी जैसी संरचनाएं नहीं हैं। प्रेरित या मजबूर-ड्राफ्ट कूलिंग टॉवर आमतौर पर आयताकार, बॉक्स जैसी संरचनाएं होती हैं जो ऐसी सामग्री से भरी होती हैं जो ऊपर की ओर बहने वाली हवा और नीचे बहने वाले पानी के मिश्रण को बढ़ाती हैं।[12][13] प्रतिबंधित पानी के उपयोग वाले क्षेत्रों में, ड्राई कूलिंग टॉवर या सीधे एयर कूल्ड रेडिएटर्स आवश्यक हो सकते हैं, क्योंकि बाष्पीकरणीय शीतलन के लिए मेक-अप पानी प्राप्त करने की लागत या पर्यावरणीय परिणाम निषेधात्मक होंगे। विशिष्ट गीले, बाष्पीकरणीय कूलिंग टॉवर की तुलना में इन कूलरों में पंखों को चलाने के लिए कम दक्षता और उच्च ऊर्जा खपत होती है।
एयर कूल्ड कंडेनसर (एसीसी)
पावर प्लांट एयर-कूल्ड कंडेनसर का उपयोग कर सकते हैं, पारंपरिक रूप से सीमित या महंगे पानी की आपूर्ति वाले क्षेत्रों में। एयर-कूल्ड कंडेनसर पानी का उपयोग किए बिना कूलिंग टावर (गर्मी अपव्यय) के समान उद्देश्य प्रदान करते हैं। वे अतिरिक्त सहायक शक्ति का उपभोग करते हैं और इस प्रकार पारंपरिक कूलिंग टावर की तुलना में उच्च कार्बन पदचिह्न हो सकते हैं।
वन्स-थ्रू कूलिंग सिस्टम्स
इलेक्ट्रिक कंपनियां अक्सर कूलिंग टॉवर के बजाय समुद्र या झील, नदी या कूलिंग तालाब से ठंडा पानी का उपयोग करना पसंद करती हैं। यह सिंगल पास या वन्स-थ्रू कूलिंग सिस्टम कूलिंग टॉवर की लागत को बचा सकता है और प्लांट के हीट एक्सचेंजर्स के माध्यम से ठंडा पानी पंप करने के लिए कम ऊर्जा लागत हो सकती है। हालाँकि, अपशिष्ट ऊष्मा तापीय प्रदूषण का कारण बन सकती है क्योंकि पानी का निर्वहन होता है। शीतलन के लिए पानी के प्राकृतिक निकायों का उपयोग करने वाले बिजली संयंत्रों को शीतलन मशीनरी में जीवों के सेवन को सीमित करने के लिए मछली स्क्रीन जैसे तंत्र के साथ डिजाइन किया गया है। ये स्क्रीन केवल आंशिक रूप से प्रभावी हैं और इसके परिणामस्वरूप हर साल अरबों मछलियाँ और अन्य जलीय जीव बिजली संयंत्रों द्वारा मारे जाते हैं।[14][15] उदाहरण के लिए, न्यूयॉर्क में इंडियन पॉइंट एनर्जी सेंटर में शीतलन प्रणाली सालाना अरब से अधिक मछली के अंडे और लार्वा को मारती है।[16] भारत में पावर प्लांट सलाहकार और पर्यावरणीय प्रभाव यह है कि अगर ठंडे मौसम में पौधे बंद हो जाते हैं तो जलीय जीव जो गर्म निर्वहन वाले पानी के अनुकूल हो जाते हैं, घायल हो सकते हैं।.
बिजली स्टेशनों द्वारा पानी की खपत विकासशील मुद्दा है।[17] हाल के वर्षों में, पुनर्नवीनीकरण अपशिष्ट जल, या ग्रेवाटर का उपयोग कूलिंग टावरों में किया गया है। विस्कॉन्सिन में कैलपाइन रिवरसाइड और कैलपाइन फॉक्स पावर स्टेशनों के साथ-साथ मिनेसोटा में कैलपाइन मैनकैटो पावर स्टेशन इन सुविधाओं में से हैं।
नवीकरणीय ऊर्जा से ऊर्जा
पावर स्टेशन नवीकरणीय ऊर्जा स्रोतों से विद्युत ऊर्जा उत्पन्न कर सकते हैं।
हाइड्रोइलेक्ट्रिक पावर स्टेशन
पनबिजली केंद्र में पनबिजली उत्पन्न करने के लिए पनबिजली का उपयोग कर टर्बाइनों के माध्यम से पानी बहता है। विद्युत जनित्र से जुड़े पानी के टर्बाइनों तक पेनस्टॉक्स के माध्यम से गिरने वाले पानी के गुरुत्वाकर्षण बल से शक्ति प्राप्त की जाती है। उपलब्ध बिजली की मात्रा ऊंचाई और जल प्रवाह का संयोजन है। जल स्तर को बढ़ाने और जलाशय के लिए झील बनाने के लिए कई प्रकार के बांध बनाए जा सकते हैं।
जलविद्युत का उत्पादन 150 देशों में होता है, एशिया-प्रशांत क्षेत्र में 2010 में वैश्विक जलविद्युत का 32 प्रतिशत उत्पादन होता है। चीन 2010 में 721 टेरावाट घंटे के उत्पादन के साथ सबसे बड़ा जलविद्युत उत्पादक है, जो घरेलू बिजली के उपयोग के लगभग 17 प्रतिशत का प्रतिनिधित्व करता है।[citation needed]
सौर
सौर ऊर्जा को या तो सीधे सौर सेल में, या ताप इंजन चलाने के लिए प्रकाश पर ध्यान केंद्रित करके सौर ऊर्जा संयंत्र में केंद्रित किया जा सकता है।[18]
सौर फोटोवोल्टिक बिजली संयंत्र फोटोइलेक्ट्रिक प्रभाव का उपयोग करके सूर्य के प्रकाश को प्रत्यक्ष वर्तमान बिजली में परिवर्तित करता है। पावर इन्वर्टर विद्युत ग्रिड से कनेक्शन के लिए प्रत्यक्ष धारा को प्रत्यावर्ती धारा में बदलते हैं। इस प्रकार के संयंत्र ऊर्जा रूपांतरण के लिए घूमने वाली मशीनों का उपयोग नहीं करते हैं।[19] सौर तापीय ऊर्जा संयंत्र या तो परवलयिक गर्तों या हेलिओस्टैट्स का उपयोग पाइप पर सूर्य के प्रकाश को निर्देशित करने के लिए करते हैं, जिसमें गर्मी हस्तांतरण द्रव होता है, जैसे कि तेल। गर्म तेल का उपयोग तब पानी को भाप में उबालने के लिए किया जाता है, जो टरबाइन को घुमाता है जो विद्युत जनरेटर को चलाता है। सौर तापीय विद्युत संयंत्र का केंद्रीय टावर प्रकार, आकार के आधार पर सैकड़ों या हजारों दर्पणों का उपयोग करता है, जो टॉवर के शीर्ष पर रिसीवर पर सूर्य के प्रकाश को निर्देशित करता है। बिजली के जनरेटर चलाने वाले टर्बाइनों को चालू करने के लिए भाप का उत्पादन करने के लिए गर्मी का उपयोग किया जाता है।
हवा
पवन टर्बाइनों का उपयोग उन क्षेत्रों में बिजली उत्पन्न करने के लिए किया जा सकता है जहां तेज, स्थिर हवाएं चलती हैं, कभी-कभी तट। अतीत में कई अलग-अलग डिज़ाइनों का उपयोग किया गया है, लेकिन आज उत्पादित होने वाली लगभग सभी आधुनिक टर्बाइनों में तीन-ब्लेड, अपविंड डिज़ाइन का उपयोग किया जाता है।[20] ग्रिड से जुड़े पवन टर्बाइन अब बनाए जा रहे हैं जो 1970 के दशक के दौरान स्थापित इकाइयों की तुलना में बहुत बड़े हैं। इस प्रकार वे पहले के मॉडलों की तुलना में अधिक सस्ते और विश्वसनीय रूप से बिजली का उत्पादन करते हैं।[21] बड़े टर्बाइनों ( मेगावाट के क्रम में) के साथ, ब्लेड पुराने, छोटे, इकाइयों की तुलना में अधिक धीरे-धीरे चलते हैं, जो उन्हें पक्षियों के लिए कम ध्यान देने योग्य और सुरक्षित बनाता है।[22]
समुद्री
समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी समुद्र ऊर्जा या महासागर शक्ति भी कहा जाता है) समुद्र की लहरों, ज्वार, लवणता और महासागर तापीय ऊर्जा द्वारा वहन की जाने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति गतिज ऊर्जा, या गति में ऊर्जा का विशाल भंडार बनाती है। इस ऊर्जा का उपयोग बिजली पैदा करने के लिए बिजली घरों, परिवहन और उद्योगों को बिजली देने के लिए किया जा सकता है।
समुद्री ऊर्जा शब्द में तरंग शक्ति - सतही तरंगों से शक्ति, और ज्वारीय शक्ति - चलती पानी के बड़े पिंडों की गतिज ऊर्जा से प्राप्त दोनों शामिल हैं। अपतटीय पवन ऊर्जा समुद्री ऊर्जा का रूप नहीं है, क्योंकि पवन ऊर्जा पवन से प्राप्त होती है, भले ही पवन टर्बाइनों को पानी के ऊपर रखा गया हो।
महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं। महासागर ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई नवीकरणीय ऊर्जा प्रदान करने की क्षमता है।[23]
ऑस्मोसिस
लवणता प्रवणता ऊर्जा को दाब-मंदित परासरण कहते हैं। इस पद्धति में, समुद्री जल को दबाव कक्ष में पंप किया जाता है जो खारे पानी और ताजे पानी के दबावों के अंतर से कम दबाव पर होता है। मीठे पानी को भी झिल्ली के माध्यम से दबाव कक्ष में पंप किया जाता है, जिससे कक्ष का आयतन और दबाव दोनों बढ़ जाता है। जैसे ही दबाव के अंतर की भरपाई की जाती है, टरबाइन घूमती है जिससे ऊर्जा पैदा होती है। इस पद्धति का विशेष रूप से नॉर्वेजियन यूटिलिटी स्टेटक्राफ्ट द्वारा अध्ययन किया जा रहा है, जिसने गणना की है कि नॉर्वे में इस प्रक्रिया से 25 TWH/yr तक उपलब्ध होगा। स्टेटक्राफ्ट ने ओस्लो फोजर्ड पर दुनिया का पहला प्रोटोटाइप ऑस्मोटिक पावर प्लांट बनाया है जो 24 नवंबर 2009 को खोला गया था। हालांकि जनवरी 2014 में स्टेटक्राफ्ट ने इस पायलट को जारी नहीं रखने की घोषणा की।[24]
बायोमास
पानी को भाप में गर्म करने और भाप टर्बाइन चलाने के लिए अपशिष्ट हरी सामग्री के दहन से बायोमास ऊर्जा का उत्पादन किया जा सकता है। गैसीकरण, पाइरोलिसिस या टॉरफेक्शन प्रतिक्रियाओं में तापमान और दबावों की श्रृंखला के माध्यम से बायोएनेर्जी को भी संसाधित किया जा सकता है। वांछित अंतिम उत्पाद के आधार पर, ये प्रतिक्रियाएँ अधिक ऊर्जा-सघन उत्पाद (सिनगैस, लकड़ी के छर्रों, टोरेफैक्शन) का निर्माण करती हैं, जिन्हें बाद में खुले जलने की तुलना में बहुत कम उत्सर्जन दर पर बिजली का उत्पादन करने के लिए साथ इंजन में फीड किया जा सकता है।
स्टोरेज पावर स्टेशन
पंप-स्टोरेज हाइड्रोइलेक्ट्रिकिटी, थर्मल एनर्जी स्टोरेज, फ्लाईव्हील एनर्जी स्टोरेज, बैटरी स्टोरेज पावर स्टेशन आदि के रूप में बाद में ऊर्जा को संग्रहित करना और विद्युत शक्ति का उत्पादन करना संभव है।
पंप किया गया भंडारण
अतिरिक्त बिजली के भंडारण का दुनिया का सबसे बड़ा रूप, पंप-स्टोरेज हाइड्रोइलेक्ट्रिकिटी| पंप-स्टोरेज रिवर्सिबल हाइड्रोइलेक्ट्रिक प्लांट है। वे ऊर्जा के शुद्ध उपभोक्ता हैं लेकिन बिजली के किसी भी स्रोत के लिए भंडारण प्रदान करते हैं, प्रभावी ढंग से बिजली की आपूर्ति और मांग में चोटियों और गर्तों को सुचारू करते हैं। पंप स्टोरेज प्लांट आमतौर पर कम जलाशय से ऊपरी जलाशय तक पानी पंप करने के लिए ऑफ पीक अवधि के दौरान अतिरिक्त बिजली का उपयोग करते हैं। क्योंकि पम्पिंग व्यस्ततम समय में होती है, बिजली चरम समय की तुलना में कम मूल्यवान होती है। यह कम मूल्यवान अतिरिक्त बिजली अनियंत्रित पवन ऊर्जा और कोयला, परमाणु और भूतापीय जैसे बेस लोड बिजली संयंत्रों से आती है, जो अभी भी रात में बिजली का उत्पादन करते हैं, हालांकि मांग बहुत कम है। दिन के समय पीक डिमांड के दौरान, जब बिजली की कीमतें अधिक होती हैं, तो भंडारण का उपयोग पीकिंग पावर प्लांट के लिए किया जाता है, जहां ऊपरी जलाशय में पानी को टर्बाइन और जनरेटर के माध्यम से निचले जलाशय में वापस प्रवाहित करने की अनुमति दी जाती है। कोयला बिजली स्टेशनों के विपरीत, जो ठंड से शुरू होने में 12 घंटे से अधिक समय ले सकता है, जलविद्युत जनरेटर को कुछ ही मिनटों में सेवा में लाया जा सकता है, जो पीक लोड की मांग को पूरा करने के लिए आदर्श है। दक्षिण अफ्रीका में दो पर्याप्त पंप वाली भंडारण योजनाएं हैं, पाल्मेट पंप स्टोरेज स्कीम और दूसरी ड्रेकेन्सबर्ग, इंगुला पंप स्टोरेज स्कीम।
विशिष्ट बिजली उत्पादन
पावर स्टेशन द्वारा उत्पन्न बिजली को वाट के गुणकों में मापा जाता है, आमतौर पर मेगा- (106 वाट) या गीगा- (109 वाट)। पावर प्लांट के प्रकार और ऐतिहासिक, भौगोलिक और आर्थिक कारकों के आधार पर पावर स्टेशन क्षमता में बहुत भिन्न होते हैं। निम्नलिखित उदाहरण पैमाने की भावना प्रदान करते हैं।
कई सबसे बड़े ऑपरेशनल ऑनशोर विंड फ़ार्म चीन में स्थित हैं। 2022 तक, गांसु पवन फार्म दुनिया का सबसे बड़ा तटवर्ती पवन फार्म है, जो 8000 मेगावाट बिजली का उत्पादन करता है, इसके बाद झांग जियाकौ (3000 मेगावाट) है। जनवरी 2022 तक, यूनाइटेड किंगडम में हॉर्नसी विंड फ़ार्म 1218 मेगावाट पर दुनिया का सबसे बड़ा अपतटीय पवन फ़ार्म है, इसके बाद यूनाइटेड किंगडम में वॉल्नी विंड फ़ार्म 1026 मेगावाट है।
As of 2022[update], फोटोवोल्टिक पावर स्टेशनों की सूची | दुनिया में सबसे बड़े फोटोवोल्टिक (पीवी) बिजली संयंत्रों का नेतृत्व भारत में भादला सोलर पार्क द्वारा किया जाता है, जिसकी रेटिंग 2245 मेगावाट है।
यू.एस. में सौर तापीय विद्युत स्टेशनों का निम्न आउटपुट है:
- Ivanpah सौर ऊर्जा सुविधा 392 मेगावाट के उत्पादन के साथ देश की सबसे बड़ी है
बड़े कोयले से चलने वाले, परमाणु और पनबिजली स्टेशन सैकड़ों मेगावाट से लेकर कई गीगावाट तक पैदा कर सकते हैं। कुछ उदाहरण:
- दक्षिण अफ्रीका में कोएबर्ग परमाणु ऊर्जा स्टेशन की रेटेड क्षमता 1860 मेगावाट है।
- ब्रिटेन में कोयले से चलने वाले रैटक्लिफ-ऑन-सोर पावर स्टेशन की रेटेड क्षमता 2 गीगावाट है।
- मिस्र में असवान बांध पनबिजली संयंत्र की क्षमता 2.1 गीगावाट है।
- चीन में थ्री गोरजेस डैम हाइड्रो-इलेक्ट्रिक प्लांट की क्षमता 22.5 गीगावाट है।
गैस टर्बाइन बिजली संयंत्र दसियों से सैकड़ों मेगावाट बिजली पैदा कर सकते हैं। कुछ उदाहरण:
- इंडियन क्वींस सिंपल-साइकिल, या ओपन साइकिल गैस टर्बाइन (ओसीजीटी), कॉर्नवॉल यूके में पीकिंग पावर स्टेशन, गैस टर्बाइन के साथ 140 मेगावाट रेट किया गया है।
- मेडवे पावर स्टेशन, संयुक्त चक्र गैस टर्बाइन (सीसीजीटी) पावर स्टेशन केंट, यूके में दो गैस टर्बाइन और स्टीम टर्बाइन के साथ 700 मेगावाट का मूल्यांकन किया गया है।[25]
पावर स्टेशन की रेटेड क्षमता लगभग अधिकतम विद्युत शक्ति है जो पावर स्टेशन उत्पादन कर सकता है। अनुसूचित या अनिर्धारित रखरखाव के समय को छोड़कर, कुछ बिजली संयंत्र लगभग हर समय अपनी रेटेड क्षमता पर गैर-लोड-निम्न बेस लोड पावर प्लांट के रूप में चलाए जाते हैं।
हालांकि, कई बिजली संयंत्र आमतौर पर उनकी निर्धारित क्षमता से बहुत कम बिजली का उत्पादन करते हैं।
कुछ मामलों में बिजली संयंत्र अपनी रेटेड क्षमता से बहुत कम बिजली पैदा करता है क्योंकि यह आंतरायिक ऊर्जा स्रोत का उपयोग करता है। ऑपरेटर ऐसे बिजली संयंत्रों से अधिकतम पावर प्वाइंट ट्रैकर खींचने की कोशिश करते हैं, क्योंकि उनकी सीमांत लागत व्यावहारिक रूप से शून्य है, लेकिन उपलब्ध बिजली व्यापक रूप से भिन्न होती है - विशेष रूप से, यह रात में भारी तूफान के दौरान शून्य हो सकती है।
कुछ मामलों में ऑपरेटर जानबूझकर आर्थिक कारणों से कम बिजली का उत्पादन करते हैं। बिजली संयंत्र के बाद लोड चलाने के लिए ईंधन की लागत अपेक्षाकृत अधिक हो सकती है, और पीकिंग बिजली संयंत्र चलाने के लिए ईंधन की लागत और भी अधिक होती है - उनकी अपेक्षाकृत उच्च सीमांत लागत होती है। ऑपरेटर बिजली संयंत्रों को बंद रखते हैं (ऑपरेशनल रिजर्व) या न्यूनतम ईंधन खपत पर चलते हैं[citation needed] (स्पिनिंग रिजर्व) अधिकांश समय। ऑपरेटर बिजली संयंत्रों के बाद लोड में अधिक ईंधन भरते हैं, जब मांग कम लागत वाले संयंत्रों (यानी, रुक-रुक कर और बेस लोड प्लांट) से ऊपर उठती है, और तब बिजली संयंत्रों में अधिक ईंधन भरते हैं, जब मांग लोड से तेजी से बढ़ती है। निम्नलिखित बिजली संयंत्रों का पालन कर सकते हैं।
आउटपुट पैमाइश
संयंत्र की सभी उत्पन्न शक्ति आवश्यक रूप से वितरण प्रणाली में वितरित नहीं की जाती है। बिजली संयंत्र आमतौर पर कुछ बिजली का उपयोग स्वयं भी करते हैं, इस मामले में उत्पादन उत्पादन को सकल उत्पादन और शुद्ध उत्पादन में वर्गीकृत किया जाता है।
'सकल उत्पादन' या 'सकल विद्युत उत्पादन' विशिष्ट अवधि में बिजली संयंत्र द्वारा बिजली उत्पादन#टर्बाइन की कुल मात्रा है।[26] इसे जनरेटिंग टर्मिनल पर मापा जाता है और किलोवाट_घंटा|किलोवाट-घंटे (kW·h), किलोवाट_घंटा#वाट_घंटा_बहुल_और_बिलिंग_यूनिट|मेगावाट-घंटे (MW·h) में मापा जाता है।[27] Kilowatt_hour#Watt_hour_multiples_and_billing_units|gigawatt-hours (GW·h) या सबसे बड़े बिजली संयंत्रों के लिए Kilowatt_hour#Watt_hour_multiples_and_billing_units|terawatt-hours (TW·h)। इसमें संयंत्र सहायक और ट्रांसफार्मर में उपयोग की जाने वाली बिजली शामिल है।[28]
- सकल उत्पादन = शुद्ध उत्पादन + संयंत्र के भीतर उपयोग (इन-हाउस लोड के रूप में भी जाना जाता है)
शुद्ध उत्पादन बिजली संयंत्र द्वारा उत्पन्न बिजली की मात्रा है जो उपभोक्ता उपयोग के लिए प्रेषित और वितरित की जाती है। शुद्ध उत्पादन कुल सकल बिजली उत्पादन से कम है क्योंकि उत्पादित कुछ बिजली संयंत्र के भीतर ही पंप, मोटर और प्रदूषण नियंत्रण उपकरणों जैसे सहायक उपकरणों को चलाने के लिए उपयोग की जाती है।[29] इस प्रकार
- शुद्ध उत्पादन = सकल उत्पादन - संयंत्र के भीतर उपयोग (a.k.a. आंतरिक भार)
संचालन
पावर स्टेशन पर ऑपरेटिंग स्टाफ के कई कर्तव्य होते हैं। ऑपरेटर काम करने वाले कर्मचारियों की सुरक्षा के लिए जिम्मेदार होते हैं जो यांत्रिक और बिजली के उपकरणों पर अक्सर मरम्मत करते हैं। वे समय-समय पर निरीक्षण के साथ उपकरण का रखरखाव करते हैं और नियमित अंतराल पर तापमान, दबाव और अन्य महत्वपूर्ण जानकारी दर्ज करते हैं। आवश्यकता के आधार पर विद्युत जनरेटर को शुरू करने और बंद करने के लिए ऑपरेटर जिम्मेदार होते हैं। वे सिस्टम को परेशान किए बिना, चल रहे विद्युत प्रणाली के साथ जोड़े गए पीढ़ी के वोल्टेज आउटपुट को सिंक्रनाइज़ और समायोजित करने में सक्षम हैं। सुविधा में समस्याओं का निवारण करने और सुविधा की विश्वसनीयता में जोड़ने के लिए उन्हें विद्युत और यांत्रिक प्रणालियों को जानना चाहिए। ऑपरेटरों को किसी आपात स्थिति का जवाब देने में सक्षम होना चाहिए और इससे निपटने के लिए प्रक्रियाओं को जानना चाहिए।
यह भी देखें
- कोजेनरेशन
- शीतलन टॉवर
- स्रोत द्वारा बिजली की लागत
- एक स्रोत से जिले को उष्मा या गर्म पानी की आपूर्ति
- विद्युत उत्पादन
- बिजली उत्पादन का पर्यावरणीय प्रभाव
- ग्रिप-गैस स्टैक
- जीवाश्म-ईंधन पावर स्टेशन
- भूतापीय बिजली
- गुरुत्वाकर्षण जल भंवर बिजली संयंत्र
- ग्रिड से जुड़ी विद्युत प्रणाली मिनी-पावर प्लांट
- दुनिया के सबसे बड़े बिजलीघरों की सूची
- पावर स्टेशनों की सूची
- थर्मल पावर स्टेशन विफलताओं की सूची
- परमाणु ऊर्जा संयंत्र
- संयंत्र दक्षता
- विद्युत ऊर्जा उत्पादन में यूनिट प्रतिबद्धता समस्या
- वर्चुअल पावर प्लांट
संदर्भ
- ↑ Thompson, Silvanus Phillips (1888). Dynamo-electric Machinery: A Manual for Students of Electrotechnics. London: E. & F. N. Spon. p. 140.
- ↑ "Hydro-electricity restored to historic Northumberland home". BBC News. 27 February 2013.
- ↑ Jack Harris (14 January 1982), "The electricity of Holborn", New Scientist
- ↑ "Data & Statistics". International Energy Agency (in British English). Retrieved 2021-11-25.
- ↑ "World gross electricity production by source, 2019 – Charts – Data & Statistics". International Energy Agency (in British English). Retrieved 2021-11-25.
- ↑ "China and Russia accelerate pace of power cooperation". Ministry of Commerce. 2018-07-24.
- ↑ "Inter RAO UES cooperates with State Grid Corporation of China". Reference News. 2018-06-04.
- ↑ Nuclear Power Plants Information, by International Atomic Energy Agency
- ↑ Roberts, David (2020-10-21). "Geothermal energy is poised for a big breakout". Vox (in English). Retrieved 2022-04-13.
- ↑ Wiser, Wendell H. (2000). Energy resources: occurrence, production, conversion, use. Birkhäuser. p. 190. ISBN 978-0-387-98744-6.
- ↑ SWEB's Pocket Power Stations Archived 4 May 2006 at the Wayback Machine
- ↑ J. C. Hensley, ed. (2006). Cooling Tower Fundamentals (2nd ed.). SPX Cooling Technologies.
- ↑ Beychok, Milton R. (1967). Aqueous Wastes from Petroleum and Petrochemical Plants (4th ed.). John Wiley and Sons. LCCN 67019834. (Includes cooling tower material balance for evaporation emissions and blowdown effluents. Available in many university libraries)
- ↑ Riverkeeper, Inc. v. U.S. EPA, 358 F.3d 174, 181 (2d Cir. 2004) ("A single power plant might impinge a million adult fish in just a three-week period, or entrain some 3 to 4 billion smaller fish and shellfish in a year, destabilizing wildlife populations in the surrounding ecosystem.").
- ↑ U.S. Environmental Protection Agency, Washington, DC (May 2014). "Final Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities." Archived 19 June 2020 at the Wayback Machine Fact sheet. Document no. EPA-821-F-14-001.
- ↑ McGeehan, Patrick (2015-05-12). "Fire Prompts Renewed Calls to Close the Indian Point Nuclear Plant". The New York Times.
- ↑ American Association for the Advancement of Science. AAAS Annual Meeting 17 - 21 Feb 2011, Washington DC. "Sustainable or Not? Impacts and Uncertainties of Low-Carbon Energy Technologies on Water." Dr Evangelos Tzimas, European Commission, JRC Institute for Energy, Petten, Netherlands.
- ↑ "Concentrating Solar Power". Energy.gov.
- ↑ "Conversion from sunlight to electricity – Solar photovoltaic". sites.lafayette.edu.
- ↑ "The Best Places to Put Wind Turbines to Produce Electricity". Sciencing.
- ↑ "WINDExchange: Small Wind Guidebook". windexchange.energy.gov.
- ↑ "New "Bird-Friendly" Wind Turbines Come to California". www.aiche.org. 14 August 2014.
- ↑ Carbon Trust, Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy, January 2006
- ↑ "Is PRO economically feasible? Not according to Statkraft | ForwardOsmosisTech". 22 January 2014. Archived from the original on 2017-01-18. Retrieved 2017-01-18.
- ↑ CCGT Plants in South England, by Power Plants Around the World
- ↑ "What is the difference between electricity generation capacity and electricity generation? - FAQ - U.S. Energy Information Administration (EIA)".
- ↑ "Glossary - U.S. Energy Information Administration (EIA)".
- ↑ "Glossary:Gross electricity generation - Statistics Explained".
- ↑ "What is the difference between electricity generation capacity and electricity generation?". U.S. Energy Information Administration. 4 February 2020. Retrieved 29 May 2020.
बाहरी कड़ियाँ
- Identification System for Power Stations (KKS)
- Largest Power Plants in the World
- Database of carbon emissions of power plants worldwide (Carbon Monitoring For Action: CARMA)
- Net vs Gross Output Measurement Archived from the original (pdf) on 21 October 2012
- Measuring power generation Archived from the original (pdf) on 2 October 2012