आवेश वाहक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 77: Line 77:


=== बहुसंख्यक और अल्पसंख्यक वाहक ===
=== बहुसंख्यक और अल्पसंख्यक वाहक ===
प्रचुर मात्रा में आवेश वाहक बहुसंख्यक वाहक कहलाते हैं, जो मुख्य रूप से अर्धचालक के टुकड़े में वर्तमान परिवहन के लिए उत्तरदायी होते हैं। n-प्रकार के अर्धचालकों में वे इलेक्ट्रॉन होते हैं, जबकि p-प्रकार के अर्धचालकों में वे छिद्र होते हैं। कम प्रचुर मात्रा में आवेश वाहक अल्पसंख्यक वाहक कहलाते हैं; n-प्रकार के अर्धचालकों में वे छिद्र होते हैं, जबकि p-प्रकार के अर्धचालकों में वे इलेक्ट्रॉन होते हैं।<ref>{{cite web
प्रचुर मात्रा में आवेश वाहक बहुसंख्यक वाहक कहलाते हैं, जो मुख्य रूप से अर्धचालक के भाग में वर्तमान परिवहन के लिए उत्तरदायी होते हैं। निम्न प्रचुर मात्रा में आवेश वाहक अल्पसंख्यक वाहक कहलाते हैं; एन-टाइप के अर्धचालकों में वे छिद्र होते हैं, जबकि पी-टाइप के अर्धचालकों में वे इलेक्ट्रॉन होते हैं।<ref>{{cite web
  |url=https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/semiconductor/majority-and-minority-carriers.html
  |url=https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/semiconductor/majority-and-minority-carriers.html
  |title=Majority and minority charge carriers
  |title=Majority and minority charge carriers
  |access-date=May 2, 2021}}</ref>
  |access-date=May 2, 2021}}</ref> आंतरिक अर्धचालक में, जिसमें कोई अशुद्धता नहीं होती है, दोनों प्रकार के वाहकों की सांद्रता आदर्श रूप से बराबर होती है। यदि आंतरिक अर्धचालक दाता अशुद्धता के साथ अर्धचालक होता है, तो बहुसंख्यक वाहक इलेक्ट्रॉन होते हैं। यदि अर्धचालक को ग्राही अशुद्धि से डोपित किया जाता है तो बहुसंख्यक वाहक छिद्र होते हैं।<ref>{{cite web
आंतरिक अर्धचालक में, जिसमें कोई अशुद्धता नहीं होती है, दोनों प्रकार के वाहकों की सांद्रता आदर्श रूप से बराबर होती है। यदि आंतरिक अर्धचालक दाता अशुद्धता के साथ अपमिश्रित (अर्धचालक) होता है तो बहुसंख्यक वाहक इलेक्ट्रॉन होते हैं। यदि अर्धचालक को ग्राही अशुद्धि से डोपित किया जाता है तो बहुसंख्यक वाहक छिद्र होते हैं।<ref>{{cite web
  |url=http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html
  |url=http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html
  |title=Doped Semiconductors
  |title=Doped Semiconductors
Line 87: Line 86:
  |first=R.
  |first=R.
  |last=Nave}}</ref>
  |last=Nave}}</ref>
द्विध्रुवी जंक्शन ट्रांजिस्टर और सौर कोशिकाओं में अल्पसंख्यक वाहक महत्वपूर्ण भूमिका निभाते हैं।<ref>{{cite web|url=https://inst.eecs.berkeley.edu/~ee105/sp04/handouts/lectures/Lecture21.pdf|title=Lecture 21: BJTs|access-date=May 2, 2021|first=J. S.|last=Smith}}</ref> क्षेत्र-प्रभाव ट्रांजिस्टर (एफईटी) में उनकी भूमिका थोड़ी अधिक जटिल है: उदाहरण के लिए, एमओएसएफईटी में पी-टाइप और एन-टाइप क्षेत्र होते हैं। ट्रांजिस्टर क्रिया में क्षेत्र-प्रभाव ट्रांजिस्टर और क्षेत्र-प्रभाव ट्रांजिस्टर क्षेत्रों के बहुसंख्यक वाहक शामिल होते हैं, लेकिन ये वाहक विपरीत प्रकार के क्षेत्र-प्रभाव ट्रांजिस्टर को पार करते हैं, जहाँ वे अल्पसंख्यक वाहक होते हैं। हालांकि, ट्रैवर्सिंग वाहक स्थानांतरण क्षेत्र में अपने विपरीत प्रकार से बहुत अधिक संख्या में हैं (वास्तव में, विपरीत प्रकार के वाहक लागू विद्युत क्षेत्र द्वारा हटा दिए जाते हैं जो व्युत्क्रम परत (अर्धचालक) बनाता है), इसलिए पारंपरिक रूप से वाहक के लिए स्रोत और नाली पदनाम है अपनाया गया, और FET को बहुसंख्यक वाहक उपकरण कहा जाता है।<ref>{{cite web
द्विध्रुवी जंक्शन ट्रांजिस्टर और सौर कोशिकाओं में अल्पसंख्यक वाहक महत्वपूर्ण भूमिका निभाते हैं।<ref>{{cite web|url=https://inst.eecs.berkeley.edu/~ee105/sp04/handouts/lectures/Lecture21.pdf|title=Lecture 21: BJTs|access-date=May 2, 2021|first=J. S.|last=Smith}}</ref> क्षेत्र-प्रभाव ट्रांजिस्टर में उनकी भूमिका थोड़ी अधिक जटिल है: उदाहरण के लिए, एमओएसएफईटी में पी-टाइप और एन-टाइप क्षेत्र होते हैं। ट्रांजिस्टर क्रिया में क्षेत्र-प्रभाव ट्रांजिस्टर और क्षेत्र-प्रभाव ट्रांजिस्टर क्षेत्रों के बहुसंख्यक वाहक सम्मलित होते हैं, लेकिन ये वाहक विपरीत प्रकार के क्षेत्र-प्रभाव ट्रांजिस्टर को पार करते हैं, जहाँ वे अल्पसंख्यक वाहक होते हैं। चूँकि, ट्रैवर्सिंग वाहक स्थानांतरण क्षेत्र में अपने विपरीत प्रकार से बहुत अधिक संख्या में हैं (वास्तव में, विपरीत प्रकार के वाहक लागू विद्युत क्षेत्र द्वारा हटा दिए जाते हैं जो व्युत्क्रम परत (अर्धचालक) बनाता है), इसलिए पारंपरिक रूप से वाहक के लिए स्रोत अपनाया गया है, और एफईटी को बहुसंख्यक वाहक उपकरण कहा जाता है।<ref>{{cite web
  |url=https://www.eetimes.com/back-to-the-basics-of-power-mosfets/
  |url=https://www.eetimes.com/back-to-the-basics-of-power-mosfets/
  |title=Back to the basics of power MOSFETs
  |title=Back to the basics of power MOSFETs
Line 97: Line 96:
{{Main|प्रभारी वाहक घनत्व}}
{{Main|प्रभारी वाहक घनत्व}}


मुक्त वाहक एकाग्रता डोपिंग (सेमीकंडक्टर) में मुक्त वाहक की एकाग्रता है। यह धातु में वाहक एकाग्रता के समान है और धाराओं या बहाव वेगों की गणना के प्रयोजनों के लिए उसी तरह उपयोग किया जा सकता है। मुक्त वाहक इलेक्ट्रॉन (इलेक्ट्रॉन छिद्र) होते हैं जिन्हें डोपिंग द्वारा चालन बैंड (वैलेंस बैंड) में पेश किया जाता है। इसलिए, वे दूसरे बैंड में छिद्रों (इलेक्ट्रॉनों) को पीछे छोड़कर दोहरे वाहक के रूप में कार्य नहीं करेंगे। दूसरे शब्दों में, आवेश वाहक वे कण होते हैं जो गति करने के लिए स्वतंत्र होते हैं, आवेश को वहन करते हैं। डोप्ड अर्धचालकों की मुक्त वाहक सांद्रता विशिष्ट तापमान निर्भरता दर्शाती है।<ref>{{cite web
मुक्त वाहक एकाग्रता डोपिंग (अर्धचालक) में मुक्त वाहक की एकाग्रता होती है। यह धातु में वाहक एकाग्रता के समान है, और धाराओं या बहाव वेगों की गणना के प्रयोजनों के लिए उसी प्रकार उपयोग किया जा सकता है। मुक्त वाहक इलेक्ट्रॉन (इलेक्ट्रॉन छिद्र) होते हैं जिन्हें डोपिंग द्वारा चालन बैंड में प्रस्तुत किया जाता है। इसलिए, वे दूसरे बैंड में छिद्रों को त्यागकर दोहरे वाहक के रूप में कार्य नहीं करेंगे। दूसरे शब्दों में, आवेश वाहक वे कण होते हैं, जो गति करने के लिए स्वतंत्र होते हैं, और आवेश को वहन करते हैं। डोप्ड अर्धचालकों की मुक्त वाहक सांद्रता विशिष्ट तापमान निर्भरता प्रदर्शित करती है।<ref>{{cite web
  |url=http://truenano.com/PSD20/chapter2/ch2_6.htm#2_6_4_4
  |url=http://truenano.com/PSD20/chapter2/ch2_6.htm#2_6_4_4
  |title=Carrier densities
  |title=Carrier densities

Revision as of 11:16, 18 March 2023

भौतिकी में, आवेश वाहक कण या क्वासिपार्टिकल होता है, जो गति करने के लिए स्वतंत्र होता है, और विद्युत आवेश को वहन करता है, विशेष रूप से वे कण जो विद्युत चालकों में विद्युत आवेशों को वहन करते हैं।[1] उदाहरण, इलेक्ट्रॉन आयन और इलेक्ट्रॉन छिद्र हैं। इस शब्द का प्रयोग सामान्यतः ठोस अवस्था भौतिकी में किया जाता है।[2] संवाहक माध्यम में, विद्युत क्षेत्र इन मुक्त कणों पर बल लगा सकता है, जिसके माध्यम से कणों की शुद्ध गति हो सकती है I यह वही है जो विद्युत प्रवाह का गठन करता है, और[3] मीडिया के संचालन में कण आवेश प्राप्त करने के लिए कार्य करते हैं:-

  • कई धातुओं में आवेश वाहक इलेक्ट्रॉन होते हैं। प्रत्येक परमाणु से या दो वैलेंस इलेक्ट्रॉन, धातु के क्रिस्टल संरचना के अंदर स्वतंत्र रूप से घूर्णन में सक्षम होते हैं।[4] मुक्त इलेक्ट्रॉनों को चालन बैंड कहा जाता है, और मुक्त इलेक्ट्रॉनों के बादल को फर्मी गैस कहा जाता है।[5][6]कई धातुओं में इलेक्ट्रॉन और होल बैंड होते हैं। कुछ में, बहुसंख्यक वाहक छिद्र होते हैं।[citation needed]
  • इलेक्ट्रोलाइट्स में खारा पानी और आवेश वाहक आयन होते हैं,[6]जो परमाणु या अणु होते हैं I जिन्होंने इलेक्ट्रॉन प्राप्त किये है, या खो दिए हैं इसलिए वे विद्युत रूप से आवेश होते हैं। जिन परमाणुओं ने इलेक्ट्रॉनों को प्राप्त किया है, वे नकारात्मक रूप से आवेशित हैं, उन्हें ऋणायन कहा जाता है, जिन परमाणुओं ने इलेक्ट्रॉनों को खो दिया है, वे सकारात्मक रूप से आवेशित होते हैं, उन्हें धनायन कहा जाता है।[7] विखंडित द्रव के धनायन और ऋणायन भी पिघले हुए आयनिक यौगिकों में आवेश वाहकों के रूप में काम करते हैं (देखें उदाहरण के लिए पिघले हुए आयनिक ठोस के इलेक्ट्रोलिसिस के उदाहरण के लिए हॉल-हेरॉल्ट प्रक्रिया)। प्रोटॉन कंडक्टर इलेक्ट्रोलाइटिक कंडक्टर होते हैं, जो सकारात्मक हाइड्रोजन आयनों को वाहक के रूप में नियोजित करते हैं।[8]
  • प्लाज्मा (भौतिकी) में, विद्युत आवेशित गैस जो वायु, नियॉन संकेतों, सूर्य और तारों के माध्यम से विद्युत चाप में प्राप्त की जाती हैI आयनित गैस के इलेक्ट्रॉन और धनायन आवेश वाहक के रूप में कार्य करते हैं।[9]
  • निर्वात में, मुक्त इलेक्ट्रॉन आवेश वाहकों के रूप में कार्य कर सकते हैं। इलेक्ट्रॉनिक घटक में निर्वात नलिका के रूप में जाना जाता है I मोबाइल इलेक्ट्रॉन क्लाउड गर्म धातु कैथोड द्वारा उत्पन्न होता है, जिसे थर्मिओनिक उत्सर्जन कहा जाता है।[10] जब विद्युत क्षेत्र को बीम में इलेक्ट्रॉनों को आकर्षित करने के लिए पर्याप्त रूप से प्रारम्भ किया जाता है, तो इसे कैथोड रे के रूप में संदर्भित किया जा सकता है, और यह 2000 के दशक तक टीवी और कंप्यूटर मॉनिटर में व्यापक रूप से उपयोग किए जाने वाले कैथोड रे नलिका के डिस्प्ले का आधार होते है।[11]
  • अर्धचालकों में, जो इलेक्ट्रॉनिक घटक जैसे ट्रांजिस्टर और एकीकृत परिपथ बनाने के लिए उपयोग की जाने वाली सामग्री हैं, उसमें दो प्रकार के आवेश वाहक संभव हैं। पी-टाइप सेमीकंडक्टर्स में, क्वासिपार्टिकल जिसे इलेक्ट्रॉन होल के रूप में जाना जाता है, सकारात्मक आवेश के साथ क्रिस्टल जाली के माध्यम से गति करता है, जिससे विद्युत प्रवाह उत्पन्न होता है। छिद्र प्रभाव में, वैलेंस बैंड की इलेक्ट्रॉन रिक्तियां हैं, जिसे अर्धचालक की वैलेंस-बैंड इलेक्ट्रॉन संख्या और आवेश वाहक के रूप में माना जाता है, क्योंकि वे मोबाइल हैं, और परमाणु स्थान से परमाणु स्थान पर जा रहे हैं। एन-प्रकार के अर्धचालकों में, चालन बैंड के इलेक्ट्रॉन क्रिस्टल के माध्यम से गति करते हैं, जिसके परिणामस्वरूप विद्युत प्रवाह होता है।

कुछ सुचालको में, जैसे आयनिक समाधान और प्लास्मा, सकारात्मक और नकारात्मक आवेश वाहक सह-अस्तित्व में होते हैं, इसलिए इन स्तिथियों में विद्युत प्रवाह में दो प्रकार के वाहक होते हैं, जो विपरीत दिशाओं में गति करते हैं। अन्य सुचालको में, जैसे कि धातु केवल ध्रुवता के आवेश वाहक होते हैं, इसलिए उनमें विद्युत प्रवाह में केवल दिशा में गति करने वाले आवेश वाहक होते हैं।

अर्धचालकों में

अर्धचालकों में दो मान्यता प्राप्त प्रकार के आवेश वाहक होते हैं। इलेक्ट्रॉन जो नकारात्मक विद्युत आवेश को वहन करता है। इसके अतिरिक्त, दूसरे प्रकार के आवेश वाहक के रूप में वैलेंस बैंड इलेक्ट्रॉन संख्या में यात्रा रिक्तियों का चिकित्सा करना सुविधाजनक है, जो इलेक्ट्रॉन के परिमाण में सकारात्मक आवेश के समान होता है।[12]

वाहक पीढ़ी और पुनर्संयोजन

जब इलेक्ट्रॉन छिद्र से मिलता है, तो वे वाहक पीढ़ी पुनर्संयोजन और ये मुक्त वाहक प्रभावी रूप से विलुप्त हो जाते हैं।[13] उत्सर्जित ऊर्जा या तो थर्मल हो सकती है, और अर्धचालक को गर्म कर सकती है, या फोटॉन (ऑप्टिकल पुनर्संयोजन, प्रकाश उत्सर्जक डायोड और लेजर डायोड में उपयोग किया जाता है) के रूप में उत्सर्जित होती है।[14] पुनर्संयोजन का अर्थ है, इलेक्ट्रॉन जो वैलेंस बैंड से कंडक्शन बैंड तक उत्तेजित हो गया है, वैलेंस बैंड रिक्त अवस्था में वापस आ जाता है, जिसे छिद्र के रूप में जाना जाता है। छिद्र वैलेंस बैंड में निर्मित रिक्त अवस्थाएँ होती हैं, जब ऊर्जा अंतर को पार करने के लिए कुछ ऊर्जा प्राप्त करने के पश्चात इलेक्ट्रॉन उत्तेजित हो जाता है।

बहुसंख्यक और अल्पसंख्यक वाहक

प्रचुर मात्रा में आवेश वाहक बहुसंख्यक वाहक कहलाते हैं, जो मुख्य रूप से अर्धचालक के भाग में वर्तमान परिवहन के लिए उत्तरदायी होते हैं। निम्न प्रचुर मात्रा में आवेश वाहक अल्पसंख्यक वाहक कहलाते हैं; एन-टाइप के अर्धचालकों में वे छिद्र होते हैं, जबकि पी-टाइप के अर्धचालकों में वे इलेक्ट्रॉन होते हैं।[15] आंतरिक अर्धचालक में, जिसमें कोई अशुद्धता नहीं होती है, दोनों प्रकार के वाहकों की सांद्रता आदर्श रूप से बराबर होती है। यदि आंतरिक अर्धचालक दाता अशुद्धता के साथ अर्धचालक होता है, तो बहुसंख्यक वाहक इलेक्ट्रॉन होते हैं। यदि अर्धचालक को ग्राही अशुद्धि से डोपित किया जाता है तो बहुसंख्यक वाहक छिद्र होते हैं।[16] द्विध्रुवी जंक्शन ट्रांजिस्टर और सौर कोशिकाओं में अल्पसंख्यक वाहक महत्वपूर्ण भूमिका निभाते हैं।[17] क्षेत्र-प्रभाव ट्रांजिस्टर में उनकी भूमिका थोड़ी अधिक जटिल है: उदाहरण के लिए, एमओएसएफईटी में पी-टाइप और एन-टाइप क्षेत्र होते हैं। ट्रांजिस्टर क्रिया में क्षेत्र-प्रभाव ट्रांजिस्टर और क्षेत्र-प्रभाव ट्रांजिस्टर क्षेत्रों के बहुसंख्यक वाहक सम्मलित होते हैं, लेकिन ये वाहक विपरीत प्रकार के क्षेत्र-प्रभाव ट्रांजिस्टर को पार करते हैं, जहाँ वे अल्पसंख्यक वाहक होते हैं। चूँकि, ट्रैवर्सिंग वाहक स्थानांतरण क्षेत्र में अपने विपरीत प्रकार से बहुत अधिक संख्या में हैं (वास्तव में, विपरीत प्रकार के वाहक लागू विद्युत क्षेत्र द्वारा हटा दिए जाते हैं जो व्युत्क्रम परत (अर्धचालक) बनाता है), इसलिए पारंपरिक रूप से वाहक के लिए स्रोत अपनाया गया है, और एफईटी को बहुसंख्यक वाहक उपकरण कहा जाता है।[18]

मुक्त वाहक एकाग्रता

मुक्त वाहक एकाग्रता डोपिंग (अर्धचालक) में मुक्त वाहक की एकाग्रता होती है। यह धातु में वाहक एकाग्रता के समान है, और धाराओं या बहाव वेगों की गणना के प्रयोजनों के लिए उसी प्रकार उपयोग किया जा सकता है। मुक्त वाहक इलेक्ट्रॉन (इलेक्ट्रॉन छिद्र) होते हैं जिन्हें डोपिंग द्वारा चालन बैंड में प्रस्तुत किया जाता है। इसलिए, वे दूसरे बैंड में छिद्रों को त्यागकर दोहरे वाहक के रूप में कार्य नहीं करेंगे। दूसरे शब्दों में, आवेश वाहक वे कण होते हैं, जो गति करने के लिए स्वतंत्र होते हैं, और आवेश को वहन करते हैं। डोप्ड अर्धचालकों की मुक्त वाहक सांद्रता विशिष्ट तापमान निर्भरता प्रदर्शित करती है।[19]

यह भी देखें

  • वाहक जीवनकाल
  • आणविक प्रसार

संदर्भ

  1. Dharan, Gokul; Stenhouse, Kailyn; Donev, Jason (May 11, 2018). "Energy Education - Charge carrier". Retrieved April 30, 2021.
  2. "Charge carrier". The Great Soviet Encyclopedia 3rd Edition. (1970-1979).
  3. Nave, R. "Microscopic View of Electric Current". Retrieved April 30, 2021.
  4. Nave, R. "Conductors and Insulators". Retrieved April 30, 2021.
  5. Fitzpatrick, Richard (February 2, 2002). "Conduction electrons in a metal". Retrieved April 30, 2021.
  6. 6.0 6.1 "Conductors-Insulators-Semiconductors". Retrieved April 30, 2021.
  7. Steward, Karen (August 15, 2019). "Cation vs Anion: Definition, Chart and the Periodic Table". Retrieved April 30, 2021.
  8. Ramesh Suvvada (1996). "Lecture 12: Proton Conduction, Stoichiometry". University of Illinois at Urbana–Champaign. Retrieved April 30, 2021.
  9. Souček, Pavel (October 24, 2011). "Plasma conductivity and diffusion" (PDF). Retrieved April 30, 2021.
  10. Alba, Michael (January 19, 2018). "Vacuum Tubes: The World Before Transistors". Retrieved April 30, 2020.
  11. "Cathode Rays | Introduction to Chemistry". Retrieved April 30, 2021.
  12. Nave, R. "Intrinsic Semiconductors". Retrieved May 1, 2021.
  13. Van Zeghbroeck, B. (2011). "Carrier recombination and generation". Retrieved May 1, 2021.
  14. del Alamo, Jesús (February 12, 2007). "Lecture 4 - Carrier generation and recombination" (PDF). MIT Open CourseWare, Massachusetts Institute of Technology. p. 3. Retrieved May 2, 2021.
  15. "Majority and minority charge carriers". Retrieved May 2, 2021.
  16. Nave, R. "Doped Semiconductors". Retrieved May 1, 2021.
  17. Smith, J. S. "Lecture 21: BJTs" (PDF). Retrieved May 2, 2021.
  18. Tulbure, Dan (February 22, 2007). "Back to the basics of power MOSFETs". EE Times. Retrieved May 2, 2021.
  19. Van Zeghbroeck, B. (2011). "Carrier densities". Retrieved July 28, 2022.