गामा-रे स्पेक्ट्रोमीटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 14: Line 14:
थोड़ा अलग ऊर्जा की गामा-किरणों के बीच अंतर जटिल स्पेक्ट्रा के विश्लेषण में एक महत्वपूर्ण विचार है, और ऐसा करने के लिए जीआरएस की क्षमता को उपकरण के [[वर्णक्रमीय संकल्प]], या त्रुटिहीनता के साथ प्रत्येक फोटॉन की ऊर्जा को मापा जाता है।
थोड़ा अलग ऊर्जा की गामा-किरणों के बीच अंतर जटिल स्पेक्ट्रा के विश्लेषण में एक महत्वपूर्ण विचार है, और ऐसा करने के लिए जीआरएस की क्षमता को उपकरण के [[वर्णक्रमीय संकल्प]], या त्रुटिहीनता के साथ प्रत्येक फोटॉन की ऊर्जा को मापा जाता है।


कूल्ड [[जर्मेनियम]] या [[सिलिकॉन]] डिटेक्टिंग तत्वों पर आधारित सेमी-कंडक्टर डिटेक्टर ऐसे अनुप्रयोगों के लिए अमूल्य हैं।
कूल्ड [[जर्मेनियम]] या [[सिलिकॉन]] डिटेक्टिंग तत्वों पर आधारित अर्धचालकर डिटेक्टर ऐसे अनुप्रयोगों के लिए अमूल्य हैं।


क्योंकि नाभिक का ऊर्जा स्तर स्पेक्ट्रम सामान्यतः लगभग 10 MeV से ऊपर मर जाता है, गामा-किरण उपकरण अभी भी उच्च ऊर्जा की तलाश में सामान्यतः केवल सातत्य स्पेक्ट्रा का निरीक्षण करते हैं, जिससे [[जगमगाहट (भौतिकी)]] (अधिकांशतः सोडियम आयोडाइड (NaI) या सीज़ियम का मध्यम वर्णक्रमीय संकल्प आयोडाइड, (सीएसआई) स्पेक्ट्रोमीटर), अधिकांशतः ऐसे अनुप्रयोगों के लिए पर्याप्त होते हैं।
क्योंकि नाभिक का ऊर्जा स्तर स्पेक्ट्रम सामान्यतः लगभग 10 MeV से ऊपर मर जाता है, गामा-किरण उपकरण अभी भी उच्च ऊर्जा की तलाश में सामान्यतः केवल सातत्य स्पेक्ट्रा का निरीक्षण करते हैं, जिससे [[जगमगाहट (भौतिकी)]] (अधिकांशतः सोडियम आयोडाइड (NaI) या सीज़ियम का मध्यम वर्णक्रमीय संकल्प आयोडाइड, (सीएसआई) स्पेक्ट्रोमीटर), अधिकांशतः ऐसे अनुप्रयोगों के लिए पर्याप्त होते हैं।
Line 25: Line 25:
इन सतहों पर उच्च-ऊर्जा [[ब्रह्मांडीय किरणों]] की लगातार बमबारी होती है, जो उनमें नाभिक को विशिष्ट गामा-किरणों का उत्सर्जन करने के लिए उत्तेजित करती हैं जिन्हें कक्षा से पता लगाया जा सकता है।
इन सतहों पर उच्च-ऊर्जा [[ब्रह्मांडीय किरणों]] की लगातार बमबारी होती है, जो उनमें नाभिक को विशिष्ट गामा-किरणों का उत्सर्जन करने के लिए उत्तेजित करती हैं जिन्हें कक्षा से पता लगाया जा सकता है।
इस प्रकार एक परिक्रमा करने वाला उपकरण सैद्धांतिक रूप से पूरे ग्रह के लिए तत्वों के सतही वितरण का मानचित्रण कर सकता है।
इस प्रकार एक परिक्रमा करने वाला उपकरण सैद्धांतिक रूप से पूरे ग्रह के लिए तत्वों के सतही वितरण का मानचित्रण कर सकता है।
उदाहरणों में मंगल, [[433 इरोस]] और चंद्रमा के अन्वेषण में देखे गए 20 [[रासायनिक तत्व]]ों की मैपिंग सम्मलित है।<ref>{{cite journal
उदाहरणों में मंगल, [[433 इरोस]] और चंद्रमा के अन्वेषण में देखे गए 20 [[रासायनिक तत्व]]ों की मैपिंग सम्मलित है।<ref>{{cite journal
  | journal = Science  
  | journal = Science  
Line 42: Line 43:
  | last7 = Thomsen
  | last7 = Thomsen
  | doi-access = free
  | doi-access = free
  }}</ref> वे सामान्यतः [[न्यूट्रॉन]] डिटेक्टरों से जुड़े होते हैं जो न्यूट्रॉन को मापकर मिट्टी में पानी और बर्फ की तलाश कर सकते हैं। वे सिलिकॉन, [[ऑक्सीजन]], [[लोहा]], [[मैगनीशियम]], [[पोटैशियम]], [[अल्युमीनियम]], [[कैल्शियम]], [[गंधक]] और [[कार्बन]] सहित आवर्त सारणी के लगभग 20 प्राथमिक तत्वों की प्रचुरता और वितरण को मापने में सक्षम हैं। सतह पर या उसके पास कौन से तत्व हैं, यह जानने से विस्तृत जानकारी मिलेगी कि समय के साथ ग्रहों के पिंड कैसे बदल गए हैं। मंगल ग्रह की सतह के तात्विक श्रृंगार को निर्धारित करने के लिए, [[मंगल ओडिसी]] ने एक गामा-रे [[स्पेक्ट्रोमीटर]] और दो [[न्यूट्रॉन डिटेक्टर]]ों का उपयोग किया।
  }}</ref> वे सामान्यतः [[न्यूट्रॉन]] डिटेक्टरों से जुड़े होते हैं जो न्यूट्रॉन को मापकर मिट्टी में पानी और बर्फ की तलाश कर सकते हैं। वे सिलिकॉन, [[ऑक्सीजन]], [[लोहा]], [[मैगनीशियम]], [[पोटैशियम]], [[अल्युमीनियम]], [[कैल्शियम]], [[गंधक]] और [[कार्बन]] सहित आवर्त सारणी के लगभग 20 प्राथमिक तत्वों की प्रचुरता और वितरण को मापने में सक्षम हैं। सतह पर या उसके पास कौन से तत्व हैं, यह जानने से विस्तृत जानकारी मिलेगी कि समय के साथ ग्रहों के पिंड कैसे बदल गए हैं। मंगल ग्रह की सतह के तात्विक श्रृंगार को निर्धारित करने के लिए, [[मंगल ओडिसी]] ने एक गामा-रे [[स्पेक्ट्रोमीटर]] और दो [[न्यूट्रॉन डिटेक्टर|न्यूट्रॉन डिटेक्टरों]] का उपयोग किया।


जीआरएस उपकरण रासायनिक तत्वों के वितरण और प्रचुरता पर डेटा की आपूर्ति करते हैं, ठीक वैसे ही जैसे लूनर प्रॉस्पेक्टर मिशन ने चंद्रमा पर किया था। इस स्थिति में, रासायनिक तत्व थोरियम को मैप किया गया था, जिसमें दाईं ओर दिखाई गई बाईं ओर की छवि में पीले/नारंगी/लाल रंग में उच्च सांद्रता दिखाई गई थी।
जीआरएस उपकरण रासायनिक तत्वों के वितरण और प्रचुरता पर डेटा की आपूर्ति करते हैं, ठीक वैसे ही जैसे लूनर प्रॉस्पेक्टर मिशन ने चंद्रमा पर किया था। इस स्थिति में, रासायनिक तत्व थोरियम को मैप किया गया था, जिसमें दाईं ओर दिखाई गई बाईं ओर की छवि में पीले/नारंगी/लाल रंग में उच्च सांद्रता दिखाई गई थी।


===जीआरएस कैसे काम करता है===
===जीआरएस कैसे काम करता है===
[[जगमगाहट काउंटर]]ों के कुछ निर्माण गामा-रे स्पेक्ट्रोमीटर के रूप में उपयोग किए जा सकते हैं। गामा फोटॉन ऊर्जा को [[सिंटिलेटर]] के फ्लैश की तीव्रता से पहचाना जाता है, एकल उच्च-ऊर्जा वाले कई कम-ऊर्जा वाले फोटॉन। एक अन्य दृष्टिकोण [[जर्मेनियम डिटेक्टर]]ों का उपयोग करने पर निर्भर करता है - हाइपरप्योर जर्मेनियम का एक क्रिस्टल जो कैप्चर की गई फोटॉन ऊर्जा के अनुपात में दालों का उत्पादन करता है; अधिक संवेदनशील होते हुए, इसे कम तापमान पर ठंडा करना पड़ता है, जिसके लिए भारी [[क्रायोजेनिक]] उपकरण की आवश्यकता होती है। हैंडहेल्ड और कई प्रयोगशाला गामा स्पेक्ट्रोमीटर इसलिए स्किंटिलेटर प्रकार के होते हैं, ज्यादातर [[थालियम]]-[[डोपिंग (अर्धचालक)]] [[सोडियम आयोडाइड]], थैलियम-डोप्ड [[सीज़ियम आयोडाइड]], या हाल ही में, [[मोम]] डोप्ड [[लेण्टेनियुम ब्रोमाइड]] के साथ। अंतरिक्ष मिशन के लिए स्पेक्ट्रोमीटर इसके विपरीत जर्मेनियम प्रकार के होते हैं।
[[जगमगाहट काउंटर|जगमगाहट काउंटरों]] के कुछ निर्माण गामा-रे स्पेक्ट्रोमीटर के रूप में उपयोग किए जा सकते हैं। गामा फोटॉन ऊर्जा को [[सिंटिलेटर]] के फ्लैश की तीव्रता से पहचाना जाता है, एकल उच्च-ऊर्जा वाले कई कम-ऊर्जा वाले फोटॉन। एक अन्य दृष्टिकोण [[जर्मेनियम डिटेक्टर|जर्मेनियम डिटेक्टरों]] का उपयोग करने पर निर्भर करता है - हाइपरप्योर जर्मेनियम का एक क्रिस्टल जो कैप्चर की गई फोटॉन ऊर्जा के अनुपात में दालों का उत्पादन करता है; अधिक संवेदनशील होते हुए, इसे कम तापमान पर ठंडा करना पड़ता है, जिसके लिए भारी [[क्रायोजेनिक]] उपकरण की आवश्यकता होती है। हैंडहेल्ड और कई प्रयोगशाला गामा स्पेक्ट्रोमीटर इसलिए स्किंटिलेटर प्रकार के होते हैं, ज्यादातर [[थालियम]]-[[डोपिंग (अर्धचालक)]] [[सोडियम आयोडाइड]], थैलियम-डोप्ड [[सीज़ियम आयोडाइड]], या हाल ही में, [[मोम]] डोप्ड [[लेण्टेनियुम ब्रोमाइड]] के साथ। अंतरिक्ष मिशन के लिए स्पेक्ट्रोमीटर इसके विपरीत जर्मेनियम प्रकार के होते हैं।


ब्रह्मांडीय किरणों (अंतरिक्ष से आवेशित कण संभवतः [[सुपरनोवा]] और सक्रिय गैलेक्टिक नाभिक में उत्पन्न होते हैं) के संपर्क में आने पर, मिट्टी और चट्टानों में रासायनिक तत्व गामा किरणों के रूप में ऊर्जा के विशिष्ट पहचान योग्य संकेतों का उत्सर्जन करते हैं। गामा-रे स्पेक्ट्रोमीटर लक्ष्य मिट्टी में उपस्थित तत्वों से आने वाले इन हस्ताक्षरों या ऊर्जाओं को देखता है।
ब्रह्मांडीय किरणों (अंतरिक्ष से आवेशित कण संभवतः [[सुपरनोवा]] और सक्रिय गैलेक्टिक नाभिक में उत्पन्न होते हैं) के संपर्क में आने पर, मिट्टी और चट्टानों में रासायनिक तत्व गामा किरणों के रूप में ऊर्जा के विशिष्ट पहचान योग्य संकेतों का उत्सर्जन करते हैं। गामा-रे स्पेक्ट्रोमीटर लक्ष्य मिट्टी में उपस्थित तत्वों से आने वाले इन हस्ताक्षरों या ऊर्जाओं को देखता है।


[[Image:Grsradiation-med.jpg|right|250px]]लक्ष्य पिंड से आने वाली गामा किरणों को मापकर, विभिन्न तत्वों की प्रचुरता और उन्हें ग्रह की सतह के चारों ओर कैसे वितरित किया जाता है, इसकी गणना करना संभव है। गामा किरणें, [[परमाणुओं]] के परमाणु नाभिक से उत्सर्जित होती हैं, जो उपकरण के स्पेक्ट्रम आउटपुट पर तीव्र उत्सर्जन रेखाओं के रूप में दिखाई देती हैं। जबकि इन उत्सर्जनों में प्रदर्शित ऊर्जा यह निर्धारित करती है कि कौन से तत्व उपस्थित हैं, स्पेक्ट्रम की तीव्रता से तत्वों की सांद्रता का पता चलता है। स्पेक्ट्रोमीटर से मंगल ग्रह जैसे ग्रहों की उत्पत्ति और विकास की बढ़ती समझ और उन्हें आज और अतीत में आकार देने वाली प्रक्रियाओं में महत्वपूर्ण रूप से जोड़ने की उम्मीद है।
[[Image:Grsradiation-med.jpg|right|250px]]लक्ष्य पिंड से आने वाली गामा किरणों को मापकर, विभिन्न तत्वों की प्रचुरता और उन्हें ग्रह की सतह के चारों ओर कैसे वितरित किया जाता है, इसकी गणना करना संभव है। गामा किरणें, [[परमाणुओं]] के परमाणु नाभिक से उत्सर्जित होती हैं, जो उपकरण के स्पेक्ट्रम आउटपुट पर तीव्र उत्सर्जन रेखाओं के रूप में दिखाई देती हैं। जबकि इन उत्सर्जनों में प्रदर्शित ऊर्जा यह निर्धारित करती है कि कौन से तत्व उपस्थित हैं, स्पेक्ट्रम की तीव्रता से तत्वों की सांद्रता का पता चलता है। स्पेक्ट्रोमीटर से मंगल ग्रह जैसे ग्रहों की उत्पत्ति और विकास की बढ़ती समझ और जिन्हें आज और भूतकाल में आकार देने वाली प्रक्रियाओं में महत्वपूर्ण रूप से जोड़ने की उम्मीद है।


ब्रह्मांडीय किरणों द्वारा गामा किरणें और न्यूट्रॉन कैसे उत्पन्न होते हैं? आने वाली ब्रह्मांडीय किरणें—कुछ उच्चतम-ऊर्जा कण—मिट्टी में परमाणुओं के [[नाभिक (परमाणु संरचना)]] से टकराती हैं। जब नाभिकों पर ऐसी ऊर्जा से प्रहार किया जाता है, तो न्यूट्रॉन निकलते हैं, जो बिखर जाते हैं और अन्य नाभिकों से टकराते हैं। इस प्रक्रिया में नाभिक उत्तेजित हो जाते हैं, और अतिरिक्त ऊर्जा को मुक्त करने के लिए गामा किरणों का उत्सर्जन करते हैं जिससे वे अपनी सामान्य आराम अवस्था में वापस आ सकें। पोटेशियम, [[यूरेनियम]] और थोरियम जैसे कुछ तत्व स्वाभाविक रूप से रेडियोधर्मी होते हैं और [[रेडियोधर्मी क्षय]] के रूप में गामा किरणें देते हैं, किन्तु गामा किरणें उत्पन्न करने के लिए सभी तत्व कॉस्मिक किरणों के साथ टकराव से उत्तेजित हो सकते हैं। GRS पर [[HEND]] और [[न्यूट्रॉन स्पेक्ट्रोमीटर]] सीधे बिखरे हुए न्यूट्रॉन का पता लगाते हैं, और गामा सेंसर गामा किरणों का पता लगाता है।
कैसे ब्रह्मांडीय रेखाएं द्वारा गामा रेखाएं और न्यूट्रॉन उत्पन्न होते हैं? आते हुए ब्रह्मांडीय किरणें—कुछ उच्चतम-ऊर्जा कण—मिट्टी में परमाणुओं के [[नाभिक (परमाणु संरचना)]] से टकराते हैं। जब नाभिकों पर ऐसी ऊर्जा से प्रहार किया जाता है, तो न्यूट्रॉन मुक्त होते हैं, जो अन्य नाभियों से टकराते हुए फैलते हैं और टकराते हैं। इस प्रक्रिया में नाभिक "उत्तेजित" हो जाते हैं, और वे  अतिरिक्त ऊर्जा को मुक्त करने के लिए गामा किरणों का उत्सर्जन करते हैं जिससे वे अपनी सामान्य शांत अवस्था में वापस आ सकें। पोटेशियम, [[यूरेनियम]] और थोरियम जैसे कुछ तत्व स्वाभाविक रूप से रेडियोधर्मी होते हैं और [[रेडियोधर्मी क्षय]] के रूप में गामा किरणें देते हैं, किन्तु गामा किरणें उत्पन्न करने के लिए सभी तत्व ब्रह्मांडीय किरणों के साथ टकराव से उत्तेजित हो सकते हैं। जीआरएस पर [[HEND|हेंड]] और [[न्यूट्रॉन स्पेक्ट्रोमीटर]] सीधे फैले हुए न्यूट्रॉन का पता लगाते हैं, और गामा सेंसर गामा किरणों का पता लगाता है।


=== पानी का पता लगाना ===
=== पानी का पता लगाना ===


[[Image:Lunarhydrogen2-med.jpg|right|250px]]न्यूट्रॉन को मापकर, हाइड्रोजन की प्रचुरता की गणना करना संभव है, इस प्रकार पानी की उपस्थिति का अनुमान लगाया जा सकता है। न्यूट्रॉन डिटेक्टर सतह के ऊपरी मीटर में हाइड्रोजन की सांद्रता के प्रति संवेदनशील होते हैं। जब कॉस्मिक किरणें मंगल की सतह से टकराती हैं तो मिट्टी से न्यूट्रॉन और गामा-किरणें निकलती हैं। जीआरएस ने उनकी ऊर्जा को मापा।<ref>[https://science.nasa.gov/headlines/y2002/28may_marsice.html?list540155 NASA.gov]{{dead link|date=June 2021|bot=medic}}{{cbignore|bot=medic}}</ref> हाइड्रोजन द्वारा कुछ ऊर्जाएँ उत्पन्न होती हैं। चूंकि हाइड्रोजन पानी की बर्फ के रूप में सबसे अधिक उपस्थित है, स्पेक्ट्रोमीटर सीधे स्थायी जमीनी बर्फ की मात्रा को मापने में सक्षम होगा और मौसम के साथ यह कैसे बदलता है। सतह में खुदाई करने वाले एक आभासी फावड़े की तरह, स्पेक्ट्रोमीटर वैज्ञानिकों को मंगल की इस उथली उपसतह में झाँकने और हाइड्रोजन के अस्तित्व को मापने की अनुमति देगा।
[[Image:Lunarhydrogen2-med.jpg|right|250px]]न्यूट्रॉन को मापकर, हाइड्रोजन की प्रचुरता की गणना करना संभव है, इस प्रकार पानी की उपस्थिति का अनुमान लगाया जा सकता है। न्यूट्रॉन डिटेक्टर सतह के ऊपरी मीटर में हाइड्रोजन की सांद्रता के प्रति संवेदनशील होते हैं। जब ब्रह्मांडीय किरणें मंगल ग्रह  की सतह से टकराती हैं तो मिट्टी से न्यूट्रॉन और गामा-किरणें निकलती हैं। जीआरएस ने उनकी ऊर्जा को मापा।<ref>[https://science.nasa.gov/headlines/y2002/28may_marsice.html?list540155 NASA.gov]{{dead link|date=June 2021|bot=medic}}{{cbignore|bot=medic}}</ref> हाइड्रोजन द्वारा कुछ ऊर्जाएँ उत्पन्न होती हैं। चूंकि हाइड्रोजन जल  बर्फ के रूप में सबसे अधिक उपस्थित है,इसलिए  स्पेक्ट्रोमीटर सीधे स्थायी जमीनी बर्फ की मात्रा को मापने में सक्षम होगा और मौसम के साथ यह कैसे बदलता है। सतह में खुदाई करने वाले एक आभासी फावड़े की तरह, स्पेक्ट्रोमीटर वैज्ञानिकों को मंगल की इस उथली उपसतह में झाँकने और हाइड्रोजन के अस्तित्व को मापने की अनुमति देगा।


जीआरएस सफल लूनर प्रॉस्पेक्टर मिशन के समान डेटा की आपूर्ति करेगा, जिसने हमें बताया कि चंद्रमा पर कितना हाइड्रोजन और इस प्रकार पानी होने की संभावना है।
जीआरएस सफल लूनर प्रॉस्पेक्टर मिशन के समान डेटा की आपूर्ति करेगा, जिससे हमें बताया कि चंद्रमा पर कितना हाइड्रोजन और इस प्रकार पानी होने की संभावना है।


ओडिसी अंतरिक्ष यान पर उपयोग किए जाने वाले गामा-रे स्पेक्ट्रोमीटर में चार मुख्य घटक होते हैं: गामा सेंसर हेड, न्यूट्रॉन स्पेक्ट्रोमीटर, उच्च ऊर्जा न्यूट्रॉन डिटेक्टर और केंद्रीय इलेक्ट्रॉनिक्स असेंबली। संवेदक शीर्ष को शेष अंतरिक्ष यान से 6.2 मीटर (20 फीट) बूम द्वारा अलग किया जाता है, जिसे ओडिसी द्वारा मंगल ग्रह पर मानचित्रण कक्षा में प्रवेश करने के बाद बढ़ाया गया था। यह युद्धाभ्यास अंतरिक्ष यान से ही आने वाली किसी भी गामा किरणों के हस्तक्षेप को कम करने के लिए किया जाता है। प्रारंभिक स्पेक्ट्रोमीटर गतिविधि, जो 15 से 40 दिनों के बीच चलती है, ने बूम को प्रणाली करने से पहले एक उपकरण अंशांकन किया। मैपिंग मिशन के लगभग 100 दिनों के बाद, बूम प्रणाली किया गया और मिशन की अवधि के लिए इस स्थिति में बना रहा। दो न्यूट्रॉन डिटेक्टर-न्यूट्रॉन स्पेक्ट्रोमीटर और उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर-मुख्य अंतरिक्ष यान संरचना पर लगाए जाते हैं और मैपिंग मिशन के समय लगातार संचालित होते हैं।
ओडिसी अंतरिक्ष यान पर उपयोग किए जाने वाले गामा-रे स्पेक्ट्रोमीटर में चार मुख्य भाग होते हैं: गामा सेंसर हेड, न्यूट्रॉन स्पेक्ट्रोमीटर, उच्च ऊर्जा न्यूट्रॉन डिटेक्टर और केंद्रीय इलेक्ट्रॉनिक्स असेंबली। संवेदक शीर्ष को शेष अंतरिक्ष यान से 6.2 मीटर (20 फीट) बूम द्वारा अलग किया जाता है, जिसे ओडिसी द्वारा मंगल ग्रह पर मानचित्रण कक्षा में प्रवेश करने के बाद बढ़ाया गया था। यह युद्धाभ्यास अंतरिक्ष यान से ही आने वाली किसी भी गामा किरणों के हस्तक्षेप को कम करने के लिए किया जाता है। प्रारंभिक स्पेक्ट्रोमीटर गतिविधि, जो 15 से 40 दिनों के बीच चलती है, ने बूम को प्रणाली करने से पहले एक उपकरण अंशांकन किया। मैपिंग मिशन के लगभग 100 दिनों के बाद, बूम प्रणाली किया गया और मिशन की अवधि के लिए इस स्थिति में बना रहा। दो न्यूट्रॉन डिटेक्टर-न्यूट्रॉन स्पेक्ट्रोमीटर और उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर-मुख्य अंतरिक्ष यान संरचना पर लगाए जाते हैं और मैपिंग मिशन के समय लगातार संचालित होते हैं।


=== ओडिसी मिशन के लिए जीआरएस विनिर्देश ===
=== ओडिसी मिशन के लिए जीआरएस विनिर्देश ===
{{main|गामा रे स्पेक्ट्रोमीटर (2001 मार्स ओडिसी)}}
{{main|गामा रे स्पेक्ट्रोमीटर (2001 मार्स ओडिसी)}}
[[Image:Grs-draw.jpg|right|150px]]गामा-रे स्पेक्ट्रोमीटर का वजन 30.5 किलोग्राम (67.2 पाउंड) होता है और यह 32 वाट बिजली का उपयोग करता है। अपने कूलर के साथ, इसका माप 468 गुणा 534 गुणा 604 मिमी (18.4 गुणा 21.0 गुणा 23.8 इंच) है। डिटेक्टर 1.2 किलोग्राम के जर्मेनियम क्रिस्टल से बना एक फोटोडायोड है, जो लगभग 3 किलोवोल्ट के रिवर्स बायस्ड है, जो अंतरिक्ष यान द्वारा उत्पादित गामा विकिरण से हस्तक्षेप को कम करने के लिए छह मीटर बूम के अंत में लगाया जाता है। इसका स्थानिक विभेदन लगभग 300 किमी है।<ref>{{cite journal
[[Image:Grs-draw.jpg|right|150px]]गामा-रे स्पेक्ट्रोमीटर का वजन 30.5 किलोग्राम (67.2 पाउंड) है और इसका उपयोग 32 वॉट की ऊर्जा का उपभोग करता है। इसके साथ ही इसके कूलर का उपयोग किया जाता है, जो 468 × 534 × 604 मिमी (18.4 × 21.0 × 23.8 इंच) का आकार होता है। डिटेक्टर एक फोटोडायोड है, जो 1.2 किलोग्राम के जर्मेनियम क्रिस्टल से बना होता है, जिसे अधिकतर 3 किलोवोल्ट के रिवर्स बायस के साथ माउंट किया जाता है, जो अंत में एक छह मीटर के बूम पर लगाया जाता है जिससे अंतरिक्ष यान द्वारा उत्पन्न गैमा विकिरण से अधिक अंतराक्ष में पहुँचा जा सके। इसका अंतरिक्षीय स्थानीय संकलन लगभग 300 किलोमीटर होता है।<ref>{{cite journal
  | title = The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite
  | title = The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite
  | author = W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. d'Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward1, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton'chev
  | author = W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. d'Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward1, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton'chev
Line 103: Line 104:
  | last29 = Ton'Chev
  | last29 = Ton'Chev
  }}</ref><ref>[https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2001-014A&ex NASA Space Science Data Coordinated Archive]</ref>
  }}</ref><ref>[https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2001-014A&ex NASA Space Science Data Coordinated Archive]</ref>
न्यूट्रॉन स्पेक्ट्रोमीटर 173 गुणा 144 गुणा 314 मिमी (6.8 गुणा 5.7 गुणा 12.4 इंच) है।
न्यूट्रॉन स्पेक्ट्रोमीटर का आकार 173 × 144 × 314 मिमी (6.8 × 5.7 × 12.4 इंच) होता है।


उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर 303 गुणा 248 गुणा 242 मिमी (11.9 गुणा 9.8 गुणा 9.5 इंच) मापता है। उपकरण का केंद्रीय इलेक्ट्रॉनिक्स बॉक्स 281 गुणा 243 गुणा 234 मिमी (11.1 गुणा 9.6 गुणा 9.2 इंच) है।
उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर 303 × 248 × 242 मिमी (11.9 × 9.8 × 9.5 इंच) मापता है। उपकरण का केंद्रीय इलेक्ट्रॉनिक्स बॉक्स 281 × 243 × 234 मिमी (11.1 × 9.6 × 9.2 इंच) होता है


== यह भी देखें ==
== यह भी देखें ==
Line 123: Line 124:
* [https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1998-001A&ex Lunar Prospector's GRS] at National Space Science Data Center (NSSDC)
* [https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1998-001A&ex Lunar Prospector's GRS] at National Space Science Data Center (NSSDC)


{{DEFAULTSORT:Gamma Ray Spectrometer}}[[Category: स्पेक्ट्रोमीटर]]
{{DEFAULTSORT:Gamma Ray Spectrometer}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with dead external links]]
[[Category:Created On 14/02/2023]]
[[Category:Articles with dead external links from June 2021]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Gamma Ray Spectrometer]]
[[Category:CS1 maint]]
[[Category:Created On 14/02/2023|Gamma Ray Spectrometer]]
[[Category:Lua-based templates|Gamma Ray Spectrometer]]
[[Category:Machine Translated Page|Gamma Ray Spectrometer]]
[[Category:Pages with script errors|Gamma Ray Spectrometer]]
[[Category:Short description with empty Wikidata description|Gamma Ray Spectrometer]]
[[Category:Templates Vigyan Ready|Gamma Ray Spectrometer]]
[[Category:Templates that add a tracking category|Gamma Ray Spectrometer]]
[[Category:Templates that generate short descriptions|Gamma Ray Spectrometer]]
[[Category:Templates using TemplateData|Gamma Ray Spectrometer]]
[[Category:Webarchive template wayback links|Gamma Ray Spectrometer]]
[[Category:स्पेक्ट्रोमीटर|Gamma Ray Spectrometer]]

Latest revision as of 13:25, 9 April 2023

60सह का स्पेक्ट्रम ; 1.17 और 1.33 MeV पर पीक होती हैं।

गामा-रे स्पेक्ट्रोमीटर (जीआरएस) एक उपकरण है जो प्रत्येक फोटॉन की ऊर्जा के विपरीत गामा विकिरण की तीव्रता का वितरण (या स्पेक्ट्रम-देखें गामा स्पेक्ट्रोस्कोपी सिंटिलेशन डिटेक्टर) मापता है ।

वैज्ञानिक और तकनीकी उपयोग के लिए गामा-रे स्पेक्ट्रोस्कोपी नामक अध्ययन और विश्लेषण में गामा स्पेक्ट्रोस्कोपी कहा जाता है, और गामा-रे स्पेक्ट्रोमीटर का अध्ययन और विश्लेषण किया जाता है और गामा-रे स्पेक्ट्रोमीटर ऐसे उपकरण हैं जो ऐसे डेटा को देखते और इकट्ठा करते हैं।

क्योंकि ईएम विकिरण के प्रत्येक फोटॉन की ऊर्जा उसके आवृत्ति के समानुपाती होती है, इसलिए गामा किरणों की ऊर्जा इतनी पर्याप्त होती है, कि वे सामान्यतः फोटोन की गिनती करके देखा जाते है।

गामा-रे स्पेक्ट्रोस्कोपी

जी-किरण स्पेक्ट्रम के निर्धारण के लिए प्रयोगशाला उपकरण एक सिंटिलेशन काउंटर के साथ। सिंटिलेशन काउंटर से आउटपुट मल्टीचैनल विश्लेषक तक जाता है जो डेटा को प्रोसेस करता है और फॉर्मेट करता है।

परमाणु नाभिक के एक ऊर्जा-स्तर संरचना होती है जो परमाणु की ऊर्जा स्तर संरचना के तुलनात्मक होती है। इसलिए वे विशेष ऊर्जाओं के फोटों को उत्सर्जित (या अवशोषित) कर सकते हैं, जैसे परमाणु भी करते हैं, लेकिन उन ऊर्जाओं की ऊंचाई हजारों से लाखों गुना अधिक होती है जो ऑप्टिकल स्पेक्ट्रोस्कोपी में सामान्यतः अध्ययन की जाने वाली ऊर्जाओं से काफी अधिक होती है।

(ध्यान दें कि परमाणु स्पेक्ट्रोस्कोपी ऊर्जा रेंज (कुछ इलेक्ट्रॉनवोल्ट से कुछ सौ keV तक) की लघु-तरंग दैर्ध्य उच्च-ऊर्जा अंत, जिसे सामान्यतः एक्स-रे कहा जाता है, परमाणु गामा-रे रेंज (10 MeV ~ 10 keV) के कम अंत के साथ कुछ हद तक ओवरलैप करता है। ) जिससे गामा किरणों से एक्स-रे को अलग करने के लिए उपयोग की जाने वाली शब्दावली ओवरलैप क्षेत्र में मनमाना या अस्पष्ट हो।)

परमाणुओं के साथ, नाभिक के विशेष ऊर्जा स्तर प्रत्येक प्रजाति की विशेषता हैं, जिससे उत्सर्जित गामा किरणों की फोटॉन ऊर्जा, जो नाभिक के ऊर्जा अंतर के अनुरूप हो, का उपयोग विशेष तत्वों और समस्थानिकों की पहचान के लिए किया जा सकता है।

थोड़ा अलग ऊर्जा की गामा-किरणों के बीच अंतर जटिल स्पेक्ट्रा के विश्लेषण में एक महत्वपूर्ण विचार है, और ऐसा करने के लिए जीआरएस की क्षमता को उपकरण के वर्णक्रमीय संकल्प, या त्रुटिहीनता के साथ प्रत्येक फोटॉन की ऊर्जा को मापा जाता है।

कूल्ड जर्मेनियम या सिलिकॉन डिटेक्टिंग तत्वों पर आधारित अर्धचालकर डिटेक्टर ऐसे अनुप्रयोगों के लिए अमूल्य हैं।

क्योंकि नाभिक का ऊर्जा स्तर स्पेक्ट्रम सामान्यतः लगभग 10 MeV से ऊपर मर जाता है, गामा-किरण उपकरण अभी भी उच्च ऊर्जा की तलाश में सामान्यतः केवल सातत्य स्पेक्ट्रा का निरीक्षण करते हैं, जिससे जगमगाहट (भौतिकी) (अधिकांशतः सोडियम आयोडाइड (NaI) या सीज़ियम का मध्यम वर्णक्रमीय संकल्प आयोडाइड, (सीएसआई) स्पेक्ट्रोमीटर), अधिकांशतः ऐसे अनुप्रयोगों के लिए पर्याप्त होते हैं।

खगोलीय स्पेक्ट्रोमीटर

सूर्य औरअन्य खगोलीय स्रोतों, के गामा-रे स्पेक्ट्रा का अध्ययन करने के लिए कई जांचें की गई हैं, जो खगोलीय और एक्स्ट्रा-खगोलीय दोनों स्रोतों के लिए हैं। गामा-रे इमेजिंग स्पेक्ट्रोमीटर, एचईएओ 1 पर हार्ड एक्स-रे / लो-एनर्जी गैमा-रे प्रयोग (ए-4), बर्स्ट और ट्रांसिएंट स्पेक्ट्रोमेट्री एक्सपेरिमेंट (बैट्सी) और सीजीआरओ पर ओएसएसआई (ओरिएंटेड सिंटिलेशन स्पेक्ट्रोमीटर प्रयोग), एचईएओ 3 पर सी 1 जर्मेनियम (जी) गामा-रे उपकरण, और यूरोपीय अंतरिक्ष एजेंसी अभिन्न मिशन पर जी गामा-रे स्पेक्ट्रोमीटर (एसपीआई) कुछ उदाहरण हैं। जबकि सौर अधिकतम मिशन एसएमएम पर जीआरएस और आरएचईएसएसआई उपग्रह पर इमेजिंग जी स्पेक्ट्रोमीटर सौर्य अवलोकन के लिए समर्पित हैं।

ग्रह गामा-रे स्पेक्ट्रोमीटर

चंद्रमा पर थोरियम का नक्शा दिखाने वाला लुनर चंद्र प्रॉस्पेक्टर उपकरण।

गामा-रे स्पेक्ट्रोमीटर का व्यापक रूप से सौर मंडल में निकायों, विशेष रूप से चंद्रमा और मंगल के मौलिक और समस्थानिक विश्लेषण के लिए उपयोग किया जाता है।

इन सतहों पर उच्च-ऊर्जा ब्रह्मांडीय किरणों की लगातार बमबारी होती है, जो उनमें नाभिक को विशिष्ट गामा-किरणों का उत्सर्जन करने के लिए उत्तेजित करती हैं जिन्हें कक्षा से पता लगाया जा सकता है। इस प्रकार एक परिक्रमा करने वाला उपकरण सैद्धांतिक रूप से पूरे ग्रह के लिए तत्वों के सतही वितरण का मानचित्रण कर सकता है।

उदाहरणों में मंगल, 433 इरोस और चंद्रमा के अन्वेषण में देखे गए 20 रासायनिक तत्वों की मैपिंग सम्मलित है।[1] वे सामान्यतः न्यूट्रॉन डिटेक्टरों से जुड़े होते हैं जो न्यूट्रॉन को मापकर मिट्टी में पानी और बर्फ की तलाश कर सकते हैं। वे सिलिकॉन, ऑक्सीजन, लोहा, मैगनीशियम, पोटैशियम, अल्युमीनियम, कैल्शियम, गंधक और कार्बन सहित आवर्त सारणी के लगभग 20 प्राथमिक तत्वों की प्रचुरता और वितरण को मापने में सक्षम हैं। सतह पर या उसके पास कौन से तत्व हैं, यह जानने से विस्तृत जानकारी मिलेगी कि समय के साथ ग्रहों के पिंड कैसे बदल गए हैं। मंगल ग्रह की सतह के तात्विक श्रृंगार को निर्धारित करने के लिए, मंगल ओडिसी ने एक गामा-रे स्पेक्ट्रोमीटर और दो न्यूट्रॉन डिटेक्टरों का उपयोग किया।

जीआरएस उपकरण रासायनिक तत्वों के वितरण और प्रचुरता पर डेटा की आपूर्ति करते हैं, ठीक वैसे ही जैसे लूनर प्रॉस्पेक्टर मिशन ने चंद्रमा पर किया था। इस स्थिति में, रासायनिक तत्व थोरियम को मैप किया गया था, जिसमें दाईं ओर दिखाई गई बाईं ओर की छवि में पीले/नारंगी/लाल रंग में उच्च सांद्रता दिखाई गई थी।

जीआरएस कैसे काम करता है

जगमगाहट काउंटरों के कुछ निर्माण गामा-रे स्पेक्ट्रोमीटर के रूप में उपयोग किए जा सकते हैं। गामा फोटॉन ऊर्जा को सिंटिलेटर के फ्लैश की तीव्रता से पहचाना जाता है, एकल उच्च-ऊर्जा वाले कई कम-ऊर्जा वाले फोटॉन। एक अन्य दृष्टिकोण जर्मेनियम डिटेक्टरों का उपयोग करने पर निर्भर करता है - हाइपरप्योर जर्मेनियम का एक क्रिस्टल जो कैप्चर की गई फोटॉन ऊर्जा के अनुपात में दालों का उत्पादन करता है; अधिक संवेदनशील होते हुए, इसे कम तापमान पर ठंडा करना पड़ता है, जिसके लिए भारी क्रायोजेनिक उपकरण की आवश्यकता होती है। हैंडहेल्ड और कई प्रयोगशाला गामा स्पेक्ट्रोमीटर इसलिए स्किंटिलेटर प्रकार के होते हैं, ज्यादातर थालियम-डोपिंग (अर्धचालक) सोडियम आयोडाइड, थैलियम-डोप्ड सीज़ियम आयोडाइड, या हाल ही में, मोम डोप्ड लेण्टेनियुम ब्रोमाइड के साथ। अंतरिक्ष मिशन के लिए स्पेक्ट्रोमीटर इसके विपरीत जर्मेनियम प्रकार के होते हैं।

ब्रह्मांडीय किरणों (अंतरिक्ष से आवेशित कण संभवतः सुपरनोवा और सक्रिय गैलेक्टिक नाभिक में उत्पन्न होते हैं) के संपर्क में आने पर, मिट्टी और चट्टानों में रासायनिक तत्व गामा किरणों के रूप में ऊर्जा के विशिष्ट पहचान योग्य संकेतों का उत्सर्जन करते हैं। गामा-रे स्पेक्ट्रोमीटर लक्ष्य मिट्टी में उपस्थित तत्वों से आने वाले इन हस्ताक्षरों या ऊर्जाओं को देखता है।

Grsradiation-med.jpg

लक्ष्य पिंड से आने वाली गामा किरणों को मापकर, विभिन्न तत्वों की प्रचुरता और उन्हें ग्रह की सतह के चारों ओर कैसे वितरित किया जाता है, इसकी गणना करना संभव है। गामा किरणें, परमाणुओं के परमाणु नाभिक से उत्सर्जित होती हैं, जो उपकरण के स्पेक्ट्रम आउटपुट पर तीव्र उत्सर्जन रेखाओं के रूप में दिखाई देती हैं। जबकि इन उत्सर्जनों में प्रदर्शित ऊर्जा यह निर्धारित करती है कि कौन से तत्व उपस्थित हैं, स्पेक्ट्रम की तीव्रता से तत्वों की सांद्रता का पता चलता है। स्पेक्ट्रोमीटर से मंगल ग्रह जैसे ग्रहों की उत्पत्ति और विकास की बढ़ती समझ और जिन्हें आज और भूतकाल में आकार देने वाली प्रक्रियाओं में महत्वपूर्ण रूप से जोड़ने की उम्मीद है।

कैसे ब्रह्मांडीय रेखाएं द्वारा गामा रेखाएं और न्यूट्रॉन उत्पन्न होते हैं? आते हुए ब्रह्मांडीय किरणें—कुछ उच्चतम-ऊर्जा कण—मिट्टी में परमाणुओं के नाभिक (परमाणु संरचना) से टकराते हैं। जब नाभिकों पर ऐसी ऊर्जा से प्रहार किया जाता है, तो न्यूट्रॉन मुक्त होते हैं, जो अन्य नाभियों से टकराते हुए फैलते हैं और टकराते हैं। इस प्रक्रिया में नाभिक "उत्तेजित" हो जाते हैं, और वे अतिरिक्त ऊर्जा को मुक्त करने के लिए गामा किरणों का उत्सर्जन करते हैं जिससे वे अपनी सामान्य शांत अवस्था में वापस आ सकें। पोटेशियम, यूरेनियम और थोरियम जैसे कुछ तत्व स्वाभाविक रूप से रेडियोधर्मी होते हैं और रेडियोधर्मी क्षय के रूप में गामा किरणें देते हैं, किन्तु गामा किरणें उत्पन्न करने के लिए सभी तत्व ब्रह्मांडीय किरणों के साथ टकराव से उत्तेजित हो सकते हैं। जीआरएस पर हेंड और न्यूट्रॉन स्पेक्ट्रोमीटर सीधे फैले हुए न्यूट्रॉन का पता लगाते हैं, और गामा सेंसर गामा किरणों का पता लगाता है।

पानी का पता लगाना

Lunarhydrogen2-med.jpg

न्यूट्रॉन को मापकर, हाइड्रोजन की प्रचुरता की गणना करना संभव है, इस प्रकार पानी की उपस्थिति का अनुमान लगाया जा सकता है। न्यूट्रॉन डिटेक्टर सतह के ऊपरी मीटर में हाइड्रोजन की सांद्रता के प्रति संवेदनशील होते हैं। जब ब्रह्मांडीय किरणें मंगल ग्रह की सतह से टकराती हैं तो मिट्टी से न्यूट्रॉन और गामा-किरणें निकलती हैं। जीआरएस ने उनकी ऊर्जा को मापा।[2] हाइड्रोजन द्वारा कुछ ऊर्जाएँ उत्पन्न होती हैं। चूंकि हाइड्रोजन जल बर्फ के रूप में सबसे अधिक उपस्थित है,इसलिए स्पेक्ट्रोमीटर सीधे स्थायी जमीनी बर्फ की मात्रा को मापने में सक्षम होगा और मौसम के साथ यह कैसे बदलता है। सतह में खुदाई करने वाले एक आभासी फावड़े की तरह, स्पेक्ट्रोमीटर वैज्ञानिकों को मंगल की इस उथली उपसतह में झाँकने और हाइड्रोजन के अस्तित्व को मापने की अनुमति देगा।

जीआरएस सफल लूनर प्रॉस्पेक्टर मिशन के समान डेटा की आपूर्ति करेगा, जिससे हमें बताया कि चंद्रमा पर कितना हाइड्रोजन और इस प्रकार पानी होने की संभावना है।

ओडिसी अंतरिक्ष यान पर उपयोग किए जाने वाले गामा-रे स्पेक्ट्रोमीटर में चार मुख्य भाग होते हैं: गामा सेंसर हेड, न्यूट्रॉन स्पेक्ट्रोमीटर, उच्च ऊर्जा न्यूट्रॉन डिटेक्टर और केंद्रीय इलेक्ट्रॉनिक्स असेंबली। संवेदक शीर्ष को शेष अंतरिक्ष यान से 6.2 मीटर (20 फीट) बूम द्वारा अलग किया जाता है, जिसे ओडिसी द्वारा मंगल ग्रह पर मानचित्रण कक्षा में प्रवेश करने के बाद बढ़ाया गया था। यह युद्धाभ्यास अंतरिक्ष यान से ही आने वाली किसी भी गामा किरणों के हस्तक्षेप को कम करने के लिए किया जाता है। प्रारंभिक स्पेक्ट्रोमीटर गतिविधि, जो 15 से 40 दिनों के बीच चलती है, ने बूम को प्रणाली करने से पहले एक उपकरण अंशांकन किया। मैपिंग मिशन के लगभग 100 दिनों के बाद, बूम प्रणाली किया गया और मिशन की अवधि के लिए इस स्थिति में बना रहा। दो न्यूट्रॉन डिटेक्टर-न्यूट्रॉन स्पेक्ट्रोमीटर और उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर-मुख्य अंतरिक्ष यान संरचना पर लगाए जाते हैं और मैपिंग मिशन के समय लगातार संचालित होते हैं।

ओडिसी मिशन के लिए जीआरएस विनिर्देश

Grs-draw.jpg

गामा-रे स्पेक्ट्रोमीटर का वजन 30.5 किलोग्राम (67.2 पाउंड) है और इसका उपयोग 32 वॉट की ऊर्जा का उपभोग करता है। इसके साथ ही इसके कूलर का उपयोग किया जाता है, जो 468 × 534 × 604 मिमी (18.4 × 21.0 × 23.8 इंच) का आकार होता है। डिटेक्टर एक फोटोडायोड है, जो 1.2 किलोग्राम के जर्मेनियम क्रिस्टल से बना होता है, जिसे अधिकतर 3 किलोवोल्ट के रिवर्स बायस के साथ माउंट किया जाता है, जो अंत में एक छह मीटर के बूम पर लगाया जाता है जिससे अंतरिक्ष यान द्वारा उत्पन्न गैमा विकिरण से अधिक अंतराक्ष में पहुँचा जा सके। इसका अंतरिक्षीय स्थानीय संकलन लगभग 300 किलोमीटर होता है।[3][4]

न्यूट्रॉन स्पेक्ट्रोमीटर का आकार 173 × 144 × 314 मिमी (6.8 × 5.7 × 12.4 इंच) होता है।

उच्च-ऊर्जा न्यूट्रॉन डिटेक्टर 303 × 248 × 242 मिमी (11.9 × 9.8 × 9.5 इंच) मापता है। उपकरण का केंद्रीय इलेक्ट्रॉनिक्स बॉक्स 281 × 243 × 234 मिमी (11.1 × 9.6 × 9.2 इंच) होता है

यह भी देखें

संदर्भ

  1. D. J. Lawrence, * W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic, S. Maurice, D. R. Thomsen; Feldman; Barraclough; Binder; Elphic; Maurice; Thomsen (1998). "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science. 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. doi:10.1126/science.281.5382.1484. PMID 9727970.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. NASA.gov[dead link]
  3. W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. d'Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward1, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton'chev; Feldman; Mitrofanov; Evans; Reedy; Squyres; Starr; Trombka; d'Uston; Arnold; Englert; Metzger; Wänke; Brückner; Drake; Shinohara; Fellows; Hamara; Harshman; Kerry; Turner; Ward; Barthe; Fuller; Storms; Thornton; Longmire; Litvak; Ton'Chev (2004). "The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite". Space Science Reviews. 110 (1–2): 37. Bibcode:2004SSRv..110...37B. doi:10.1023/B:SPAC.0000021007.76126.15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. NASA Space Science Data Coordinated Archive


बाहरी संबंध