Template:Relative permittivity table: Difference between revisions
From Vigyanwiki
(Created page with "{| class="sortable wikitable" style="float:right; margin-left:10px; text-align:center;" |+ Relative permittivities of some materials at room temperature under radio wave...") |
(No difference)
|
Revision as of 15:04, 24 March 2023
| Material | εr |
|---|---|
| Vacuum | 1 (by definition) |
| Air | 1.00058986±0.00000050 (at STP, 900 kHz),[1] |
| PTFE/Teflon | 2.1 |
| Polyethylene/XLPE | 2.25 |
| Polyimide | 3.4 |
| Polypropylene | 2.2–2.36 |
| Polystyrene | 2.4–2.7 |
| Carbon disulfide | 2.6 |
| BoPET | 3.1[2] |
| Paper, printing | 1.4[3] (200 kHz) |
| Electroactive polymers | 2–12 |
| Mica | 3–6[2] |
| Silicon dioxide | 3.9[4] |
| Sapphire | 8.9–11.1 (anisotropic)[5] |
| Concrete | 4.5 |
| Pyrex (glass) | 4.7 (3.7–10) |
| Neoprene | 6.7[2] |
| Natural rubber | 7 |
| Diamond | 5.5–10 |
| Salt | 3–15 |
| Graphite | 10–15 |
| Silicone rubber | 2.9–4[6] |
| Silicon | 11.68 |
| GaAs | 12.4[7] |
| Silicon nitride | 7–8 (polycrystalline, 1 MHz)[8][9] |
| Ammonia | 26, 22, 20, 17 (−80, −40, 0, +20 °C) |
| Methanol | 30 |
| Ethylene glycol | 37 |
| Furfural | 42.0 |
| Glycerol | 41.2, 47, 42.5 (0, 20, 25 °C) |
| Water | 87.9, 80.2, 55.5 (0, 20, 100 °C)[10] for visible light: 1.77 |
| Hydrofluoric acid | 175, 134, 111, 83.6 (−73, −42, −27, 0 °C), |
| Hydrazine | 52.0 (20 °C), |
| Formamide | 84.0 (20 °C) |
| Sulfuric acid | 84–100 (20–25 °C) |
| Hydrogen peroxide | 128 aqueous–60 (−30–25 °C) |
| Hydrocyanic acid | 158.0–2.3 (0–21 °C) |
| Titanium dioxide | 86–173 |
| Strontium titanate | 310 |
| Barium strontium titanate | 500 |
| Barium titanate[11] | 1200–10,000 (20–120 °C) |
| Lead zirconate titanate | 500–6000 |
| Conjugated polymers | 1.8–6 up to 100,000[12] |
| Calcium copper titanate | >250,000[13] |
References
- ↑ Hector, L. G.; Schultz, H. L. (1936). "The Dielectric Constant of Air at Radiofrequencies". Physics. 7 (4): 133–136. Bibcode:1936Physi...7..133H. doi:10.1063/1.1745374.
- ↑ 2.0 2.1 2.2 Young, H. D.; Freedman, R. A.; Lewis, A. L. (2012). University Physics with Modern Physics (13th ed.). Addison-Wesley. p. 801. ISBN 978-0-321-69686-1.
- ↑ Borch, Jens; Lyne, M. Bruce; Mark, Richard E. (2001). Handbook of Physical Testing of Paper Vol. 2 (2 ed.). CRC Press. p. 348. ISBN 0203910494.
- ↑ Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. (2009). Analysis and Design of Analog Integrated Circuits (5th ed.). Wiley. p. 40. ISBN 978-0-470-24599-6.
- ↑ Harman, A. K.; Ninomiya, S.; Adachi, S. (1994). "Optical constants of sapphire (α‐Al2O3) single crystals". Journal of Applied Physics. 76 (12): 8032–8036. Bibcode:1994JAP....76.8032H. doi:10.1063/1.357922.
- ↑ "Properties of silicone rubber". Azo Materials.
- ↑ Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 283. ISBN 978-0199573370.
- ↑ "Fine Ceramics" (PDF). Toshiba Materials.
- ↑ "Material Properties Charts" (PDF). Ceramic Industry. 2013.
- ↑ Archer, G. G.; Wang, P. (1990). "The Dielectric Constant of Water and Debye-Hückel Limiting Law Slopes". Journal of Physical and Chemical Reference Data. 19 (2): 371–411. doi:10.1063/1.555853.
- ↑ "Permittivity". schools.matter.org.uk. Archived from the original on 2016-03-11.
- ↑ Pohl, H. A. (1986). "Giant polarization in high polymers". Journal of Electronic Materials. 15 (4): 201. Bibcode:1986JEMat..15..201P. doi:10.1007/BF02659632.
- ↑ Guillemet-Fritsch, S.; Lebey, T.; Boulos, M.; Durand, B. (2006). "Dielectric properties of CaCu3Ti4O12 based multiphased ceramics" (PDF). Journal of the European Ceramic Society. 26 (7): 1245. doi:10.1016/j.jeurceramsoc.2005.01.055.