ऊष्मामापी: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Instrument for measuring heat}} | {{Short description|Instrument for measuring heat}} | ||
{{About|ऊष्मा मापने के उपकरण|कण संसूचक|कैलोरीमीटर (कण भौतिकी)}} | {{About|ऊष्मा मापने के उपकरण|कण संसूचक|कैलोरीमीटर (कण भौतिकी)}} | ||
{{distinguish|वर्णमापी (रसायन विज्ञान)}}[[File:Ice-calorimeter.jpg|150px|right|thumb|विश्व का पहला आइस-कैलोरीमीटर, जिसका उपयोग 1782-83 की सर्दियों में [[एंटोनी लेवोइसियर]] और [[पियरे-साइमन लाप्लास]] द्वारा विभिन्न रासायनिक परिवर्तनों में विकसित ऊष्मा का निर्धारण करने के लिए किया गया था; गणना जो [[जोसेफ ब्लैक]] की गुप्त ऊष्मा की पूर्व खोज पर आधारित थी। ये प्रयोग [[ऊष्मारसायन]] की नींव रखते हैं।]]एक | {{distinguish|वर्णमापी (रसायन विज्ञान)}}[[File:Ice-calorimeter.jpg|150px|right|thumb|विश्व का पहला आइस-कैलोरीमीटर, जिसका उपयोग 1782-83 की सर्दियों में [[एंटोनी लेवोइसियर]] और [[पियरे-साइमन लाप्लास]] द्वारा विभिन्न रासायनिक परिवर्तनों में विकसित ऊष्मा का निर्धारण करने के लिए किया गया था; गणना जो [[जोसेफ ब्लैक]] की गुप्त ऊष्मा की पूर्व खोज पर आधारित थी। ये प्रयोग [[ऊष्मारसायन]] की नींव रखते हैं।]]एक ऊष्मामापी कैलोरीमेट्री के लिए उपयोग की जाने वाली वस्तु है, या रासायनिक प्रतिक्रियाओं या भौतिक परिवर्तनों के साथ-साथ ताप क्षमता को मापने की प्रक्रिया है। डिफरेंशियल अवलोकन कैलोरीमीटर, समतापीय सूक्ष्म कैलोरीमीटर, अनुमापन ऊष्मामापी और त्वरित दर ऊष्मामापी सबसे सामान्य प्रकारों में से हैं। एक साधारण ऊष्मामापी में दहन कक्ष के ऊपर निलंबित पानी से भरे धातु के कंटेनर से जुड़ा एक थर्मामीटर होता है। यह ऊष्मप्रवैगिकी, रसायन विज्ञान और जैव रसायन के अध्ययन में उपयोग किए जाने वाले माप उपकरणों में से एक है। | ||
दो पदार्थ A और B के बीच प्रतिक्रिया में पदार्थ A के प्रति तिल (यूनिट) [[तापीय धारिता]] परिवर्तन को खोजने के लिए, पदार्थों को अलग-अलग एक | दो पदार्थ A और B के बीच प्रतिक्रिया में पदार्थ A के प्रति तिल (यूनिट) [[तापीय धारिता]] परिवर्तन को खोजने के लिए, पदार्थों को अलग-अलग एक ऊष्मामापी में जोड़ा जाता है प्रारंभिक और अंतिम [[तापमान]] (प्रतिक्रिया प्रारंभिक होने से पहले और समाप्त होने के बाद) नोट किया जाता है। पदार्थ के द्रव्यमान और विशिष्ट ताप क्षमता द्वारा तापमान परिवर्तन को गुणा करने से प्रतिक्रिया के समय दी गई या अवशोषित [[ऊर्जा]] के लिए एक मूल्य मिलता है। A के कितने मोल उपस्थित थे, ऊर्जा परिवर्तन को विभाजित करने से इसकी प्रतिक्रिया में एन्थैल्पी परिवर्तन होता है।<math display="block">q = C_\text{v}(T_f - T_i)</math> | ||
जहाँ {{mvar|q}} जूल और में मापे गए तापमान में परिवर्तन के अनुसार ऊष्मा की मात्रा है {{math|''C''<sub>v</sub>}} | जहाँ {{mvar|q}} जूल और में मापे गए तापमान में परिवर्तन के अनुसार ऊष्मा की मात्रा है {{math|''C''<sub>v</sub>}} ऊष्मामापी की उष्मा क्षमता है जो प्रति तापमान (जूल/केल्विन) ऊर्जा की इकाइयों में प्रत्येक व्यक्तिगत उपकरण से जुड़ा मूल्य है। | ||
== इतिहास == | == इतिहास == | ||
1761 में जोसेफ ब्लैक ने अव्यक्त ऊष्मा का विचार प्रस्तुत किया जिसके कारण पहले बर्फ | 1761 में जोसेफ ब्लैक ने अव्यक्त ऊष्मा का विचार प्रस्तुत किया जिसके कारण पहले बर्फ ऊष्मामापी का निर्माण हुआ।<ref>Chisholm, Hugh, ed. (1911). "Black, Joseph". Encyclopædia Britannica. 4 (11th ed.). Cambridge University Press.</ref> 1780 में, एंटोनी लैवॉज़ियर ने गिनी पिग के श्वसन से ऊष्मा का उपयोग अपने उपकरण के आसपास बर्फ को पिघलाने के लिए किया, यह दिखाते हुए कि श्वसन गैस मोमबत्ती जलने के समान विनिमय दहन है।<ref>Antoine Laurent Lavoisier, Elements of Chemistry: In a New Systematic Order; Containing All the Modern Discoveries, 1789: "I acknowledge the name of Calorimeter, which I have given it, as derived partly from Greek and partly from Latin, is in some degree open to criticism; but in matters of science, a slight deviation from strict etymology, for the sake of giving distinctness of idea, is excusable; and I could not derive the name entirely from Greek without approaching too near to the names of known instruments employed for other purposes."</ref> लैवोज़ियर ने ग्रीक और लैटिन दोनों मूलों के आधार पर इस उपकरण को ऊष्मामापी करार दिया। 1782 की सर्दियों में लेवोज़ियर और पियरे-साइमन लाप्लास द्वारा पहली बर्फ ऊष्मामापी का उपयोग किया गया था, जो रासायनिक प्रतिक्रियाओं से जारी ऊष्मा को मापने के लिए बर्फ को पानी में पिघलाने के लिए आवश्यक ऊष्मा पर निर्भर था।<ref>{{cite journal |url=http://www.ajcn.org/cgi/content/full/79/5/899S |last1=Buchholz |first1=Andrea C |last2=Schoeller |first2=Dale A. |year=2004 |title=Is a Calorie a Calorie? |journal=American Journal of Clinical Nutrition |volume=79 |number=5 |pages=899S–906S |pmid=15113737 |access-date=2007-03-12 |doi=10.1093/ajcn/79.5.899S|doi-access=free }}</ref> | ||
== रुद्धोष्म कैलोरीमीटर == | == रुद्धोष्म कैलोरीमीटर == | ||
[[File:Calorimeter of Lavoisier and La Place plate xi the s1784m49j 3f462600t dl full size.jpg|thumb|right|लेवोज़ियर और ला प्लेस का कैलोरीमीटर, 1801]]एक रुद्धोष्म प्रक्रिया | [[File:Calorimeter of Lavoisier and La Place plate xi the s1784m49j 3f462600t dl full size.jpg|thumb|right|लेवोज़ियर और ला प्लेस का कैलोरीमीटर, 1801]]एक रुद्धोष्म प्रक्रिया ऊष्मामापी एक ऊष्मामापी है जिसका उपयोग भागा हुआ प्रतिक्रिया की जांच करने के लिए किया जाता है। चूँकि ऊष्मामापी रुद्धोष्म वातावरण में चलता है, परीक्षण के अनुसार सामग्री के नमूने द्वारा उत्पन्न किसी भी ऊष्मा के कारण नमूना तापमान में वृद्धि करता है, इस प्रकार प्रतिक्रिया को बढ़ावा देता है। | ||
कोई रुद्धोष्म | कोई रुद्धोष्म ऊष्मामापी पूरी तरह से रुद्धोष्म नहीं है - नमूना द्वारा नमूना धारक को कुछ ऊष्मा खो जाएगी। एक गणितीय सुधार कारक, जिसे फाई-कारक के रूप में जाना जाता है, का उपयोग इन ऊष्मा के हानि के लिए कैलोरीमेट्रिक परिणाम को समायोजित करने के लिए किया जा सकता है। फाई-कारक नमूना और नमूना धारक के [[थर्मल द्रव्यमान]] का अनुपात अकेले नमूने के थर्मल द्रव्यमान का अनुपात है। | ||
== प्रतिक्रिया कैलोरीमीटर == | == प्रतिक्रिया कैलोरीमीटर == | ||
| Line 19: | Line 19: | ||
{{Main article|प्रतिक्रिया कैलोरीमीटर}} | {{Main article|प्रतिक्रिया कैलोरीमीटर}} | ||
एक प्रतिक्रिया | एक प्रतिक्रिया ऊष्मामापी एक ऊष्मामापी है जिसमें एक बंद रोधित कंटेनर के अंदर एक रासायनिक प्रतिक्रिया प्रारंभिक की जाती है। प्रतिक्रिया ऊष्मा को मापा जाता है और ऊष्मा का प्रवाह बनाम समय को एकीकृत करके कुल ऊष्मा प्राप्त की जाती है। यह उद्योग में ऊष्मा को मापने के लिए उपयोग किया जाने वाला मानक है क्योंकि औद्योगिक प्रक्रियाओं को निरंतर तापमान पर चलाने के लिए इंजीनियर किया जाता है। रासायनिक प्रक्रिया इंजीनियरिंग के लिए और प्रतिक्रियाओं के वैश्विक कैनेटीक्स को ट्रैक करने के लिए अधिकतम ऊष्मा रिलीज दर निर्धारित करने के लिए प्रतिक्रिया कैलोरीमेट्री का भी उपयोग किया जा सकता है। प्रतिक्रिया ऊष्मामापी में ऊष्मा को मापने के लिए चार मुख्य विधियाँ हैं: | ||
=== ऊष्मा प्रवाह कैलोरीमीटर === | === ऊष्मा प्रवाह कैलोरीमीटर === | ||
कूलिंग/हीटिंग जैकेट या तो प्रक्रिया के तापमान या जैकेट के तापमान को नियंत्रित करता है।ऊष्मा अंतरण द्रव और प्रक्रिया द्रव के बीच तापमान के अंतर की निगरानी करके ऊष्मा को मापा जाता है। इसके अतिरिक्त भरने की मात्रा (अर्थात गीला क्षेत्र) विशिष्ट गर्मी हस्तांतरण गुणांक को एक सही मूल्य पर पहुंचने के लिए निर्धारित किया जाना है। इस प्रकार के | कूलिंग/हीटिंग जैकेट या तो प्रक्रिया के तापमान या जैकेट के तापमान को नियंत्रित करता है।ऊष्मा अंतरण द्रव और प्रक्रिया द्रव के बीच तापमान के अंतर की निगरानी करके ऊष्मा को मापा जाता है। इसके अतिरिक्त भरने की मात्रा (अर्थात गीला क्षेत्र) विशिष्ट गर्मी हस्तांतरण गुणांक को एक सही मूल्य पर पहुंचने के लिए निर्धारित किया जाना है। इस प्रकार के ऊष्मामापी से भाटा पर प्रतिक्रिया करना संभव है, चूंकि यह बहुत कम स्पष्ट है। | ||
=== ऊष्मा संतुलन कैलोरीमीटर === | === ऊष्मा संतुलन कैलोरीमीटर === | ||
| Line 35: | Line 35: | ||
== बम कैलोरीमीटर == | == बम कैलोरीमीटर == | ||
[[File:Bomb Calorimeter.png|thumb|बम कैलोरीमीटर]]एक बम | [[File:Bomb Calorimeter.png|thumb|बम कैलोरीमीटर]]एक बम ऊष्मामापी एक प्रकार का निरंतर-मात्रा ऊष्मामापी है जिसका उपयोग किसी विशेष प्रतिक्रिया के दहन की ऊष्मा को मापने में किया जाता है। बम ऊष्मामापी को ऊष्मामापी के अंदर बड़े दबाव का सामना करना पड़ता है क्योंकि प्रतिक्रिया को मापा जा रहा है। ईंधन को प्रज्वलित करने के लिए विद्युत ऊर्जा का उपयोग किया जाता है; चूंकि ईंधन जल रहा है, यह आसपास की हवा को गर्म करेगा, जो एक ट्यूब के माध्यम से फैलती और निकलती है जो हवा को ऊष्मामापी से बाहर ले जाती है। जब हवा तांबे की नली से बाहर निकल रही होती है तो वह नली के बाहर के पानी को भी गर्म कर देगी। पानी के तापमान में परिवर्तन ईंधन की कैलोरी सामग्री की गणना करने की अनुमति देता है। | ||
अधिक हाल के | अधिक हाल के ऊष्मामापी डिजाइनों में, पूरे बम को अतिरिक्त शुद्ध [[ऑक्सीजन]] (सामान्यतः 30 मानक वायुमंडल (3,000 kPa) ) के साथ दबाव डाला जाता है और इसमें एक नमूने का भारित द्रव्यमान (सामान्यतः 1-1.5 ग्राम) और पानी की एक छोटी निश्चित मात्रा (आंतरिक वातावरण को संतृप्त करने के लिए, इस प्रकार यह सुनिश्चित करना कि उत्पादित सभी पानी तरल है, और [[वाष्पीकरण]] की तापीय धारिता को सम्मिलित करने की आवश्यकता को हटाते हुए) चार्ज के विद्युत रूप से प्रज्वलित होने से पहले पानी की एक ज्ञात मात्रा (लगभग 2000 मिली) के नीचे डूबा हुआ है। नमूना और ऑक्सीजन के ज्ञात द्रव्यमान वाला बम एक बंद प्रणाली बनाता है — प्रतिक्रिया के समय कोई गैस नहीं निकलती है। स्टील के कंटेनर के अंदर रखे वजनी अभिकारक को तब प्रज्वलित किया जाता है। दहन द्वारा ऊर्जा जारी की जाती है और इससे निकलने वाली ऊष्मा स्टेनलेस स्टील की दीवार को पार करती है, इस प्रकार स्टील बम, इसकी सामग्री और आसपास के पानी के जैकेट का तापमान बढ़ जाता है। पानी में तापमान परिवर्तन को तब थर्मामीटर से स्पष्ट रूप से मापा जाता है। एक बम कारक (जो धातु बम भागों की ताप क्षमता पर निर्भर है) के साथ यह पढने, नमूना द्वारा जला दी गई ऊर्जा की गणना करने के लिए उपयोग की जाती है। विद्युत ऊर्जा इनपुट, जलते हुए फ्यूज, और एसिड उत्पादन (अवशिष्ट तरल के अनुमापन द्वारा) को ध्यान में रखते हुए एक छोटा सुधार किया जाता है। तापमान वृद्धि को मापने के बाद, बम में अतिरिक्त दबाव जारी किया जाता है। | ||
चूँकि | मूल रूप से, एक बम ऊष्मामापी में एक छोटा कप होता है जिसमें नमूना, ऑक्सीजन, एक स्टेनलेस स्टील बम, पानी, एक स्टिरर, एक थर्मामीटर, देवर या इन्सुलेट कंटेनर (ऊष्मामापी से आसपास के क्षेत्र में ऊष्मा के प्रवाह को रोकने के लिए) और बम से जुड़ा इग्निशन परिपथ होता है। बम के लिए स्टेनलेस स्टील का उपयोग करके, प्रतिक्रिया बिना किसी मात्रा परिवर्तन के देखी जाएगी। | ||
चूँकि ऊष्मामापी और परिवेश (Q = 0) (रुद्धोष्म ) के बीच कोई ऊष्मा विनिमय नहीं होता है, कोई कार्य नहीं किया जाता है (W = 0) | |||
इस प्रकार, कुल आंतरिक ऊर्जा परिवर्तन | इस प्रकार, कुल आंतरिक ऊर्जा परिवर्तन | ||
| Line 54: | Line 55: | ||
जहाँ <math>C_\text{v}</math> बम की ताप क्षमता है | जहाँ <math>C_\text{v}</math> बम की ताप क्षमता है | ||
किसी भी यौगिक के दहन की ऊष्मा निर्धारित करने के लिए बम का उपयोग करने से पहले, इसे | किसी भी यौगिक के दहन की ऊष्मा निर्धारित करने के लिए बम का उपयोग करने से पहले, इसे जांच किया जाना चाहिए। <math>C_\text{v}</math> के मान का अनुमान लगाया जा सकता है | ||
: <math>C_\text{v(calorimeter)} = m_\text{water} C_\text{v(water)} + m_\text{steel} C_\text{v(steel)}</math> | : <math>C_\text{v(calorimeter)} = m_\text{water} C_\text{v(water)} + m_\text{steel} C_\text{v(steel)}</math> | ||
: <math>m_\text{water}</math> और <math>m_\text{steel}</math> मापा जा सकता है; | : <math>m_\text{water}</math> और <math>m_\text{steel}</math> मापा जा सकता है; | ||
| Line 60: | Line 61: | ||
: <math>C_\text{v(steel)} = 0.1 \text{ cal g}^{-1} \text{ K}^{-1}</math> | : <math>C_\text{v(steel)} = 0.1 \text{ cal g}^{-1} \text{ K}^{-1}</math> | ||
प्रयोगशाला में, <math>C_\text{v}</math> दहन मान की ज्ञात ऊष्मा के साथ एक यौगिक चलाकर निर्धारित किया जाता है: <math>C_\text{v} = {H_\text{c} \over \Delta T}</math> | प्रयोगशाला में, <math>C_\text{v}</math> दहन मान की ज्ञात ऊष्मा के साथ एक यौगिक चलाकर निर्धारित किया जाता है: <math>C_\text{v} = {H_\text{c} \over \Delta T}</math> | ||
आम यौगिक [[ बेंज़ोइक एसिड ]] हैं (<math>H_\text{c} = 6318 \text{ cal/g}</math>) या पी-मिथाइल बेंजोइक एसिड (<math>H_\text{c} = 6957 \text{ cal/g}</math>). | |||
आम यौगिक [[ बेंज़ोइक एसिड | बेंज़ोइक एसिड]] हैं (<math>H_\text{c} = 6318 \text{ cal/g}</math>) या पी-मिथाइल बेंजोइक एसिड (<math>H_\text{c} = 6957 \text{ cal/g}</math>). | |||
तापमान ({{mvar|T}}) हर मिनट रिकॉर्ड किया जाता है और <math>\Delta T = T_\text{final} - T_\text{initial}</math> | तापमान ({{mvar|T}}) हर मिनट रिकॉर्ड किया जाता है और <math>\Delta T = T_\text{final} - T_\text{initial}</math> | ||
दहन की कुल ऊष्मा के सुधार में योगदान देने वाला एक छोटा कारक फ्यूज वायर है। निकेल फ्यूज तार का अधिकांशतः उपयोग किया जाता है और दहन की ऊष्मा होती है: 981.2कैल/जी. | दहन की कुल ऊष्मा के सुधार में योगदान देने वाला एक छोटा कारक फ्यूज वायर है। निकेल फ्यूज तार का अधिकांशतः उपयोग किया जाता है और दहन की ऊष्मा होती है: 981.2कैल/जी. | ||
बम को कैलिब्रेट करने के लिए, एक छोटी राशि (~ 1g) बेंजोइक एसिड, या पी-मिथाइल बेंजोइक एसिड का वजन किया जाता है। | बम को कैलिब्रेट करने के लिए, एक छोटी राशि (~ 1g) बेंजोइक एसिड, या पी-मिथाइल बेंजोइक एसिड का वजन किया जाता है। | ||
दहन प्रक्रिया से पहले और बाद में निकेल फ्यूज वायर (~ 10 सेमी) की लंबाई का वजन किया जाता है। फ्यूज तार का द्रव्यमान जल गया <math>\Delta m = m_\text{before} - m_\text{after}</math> | दहन प्रक्रिया से पहले और बाद में निकेल फ्यूज वायर (~ 10 सेमी) की लंबाई का वजन किया जाता है। फ्यूज तार का द्रव्यमान जल गया <math>\Delta m = m_\text{before} - m_\text{after}</math> | ||
बम के अंदर नमूना (बेंजोइक एसिड) का दहन | बम के अंदर नमूना (बेंजोइक एसिड) का दहन | ||
: <math chem>\Delta H_{c} = \Delta H_\ce{c(benzoic\ acid)} m_\ce{benzoic\ acid} + \Delta H_\ce{c(Ni\ fuse\ wire)} \Delta m_\ce{Ni\ fuse\ wire}</math> | : <math chem="">\Delta H_{c} = \Delta H_\ce{c(benzoic\ acid)} m_\ce{benzoic\ acid} + \Delta H_\ce{c(Ni\ fuse\ wire)} \Delta m_\ce{Ni\ fuse\ wire}</math> | ||
: <math>\Delta H_\text{c} = C_\text{v} \Delta T\ \rightarrow C_\text{v} = {\Delta H_\text{c} \over \Delta T}</math> | : <math>\Delta H_\text{c} = C_\text{v} \Delta T\ \rightarrow C_\text{v} = {\Delta H_\text{c} \over \Delta T}</math> | ||
एक बार <math>C_\text{v}</math> बम का मूल्य निर्धारित किया जाता है, बम किसी भी यौगिक के दहन की ऊष्मा की गणना करने के लिए उपयोग करने के लिए तैयार है | एक बार <math>C_\text{v}</math> बम का मूल्य निर्धारित किया जाता है, बम किसी भी यौगिक के दहन की ऊष्मा की गणना करने के लिए उपयोग करने के लिए तैयार है | ||
| Line 75: | Line 79: | ||
== गैर-ज्वलनशील पदार्थों का दहन == | == गैर-ज्वलनशील पदार्थों का दहन == | ||
बम प्रणाली में {{chem|O|2}} का उच्च दबाव और एकाग्रता दहनशील कुछ यौगिक प्रदान कर सकते हैं जो सामान्य रूप से ज्वलनशील नहीं होते हैं। कुछ पदार्थ पूरी तरह से नहीं जलते हैं, जिससे गणना कठिन हो जाती है क्योंकि शेष द्रव्यमान को ध्यान में रखा जाता है, जिससे संभावित त्रुटि अधिक बड़ी हो जाती है और डेटा से समझौता हो जाता है। | |||
यौगिकों के साथ काम करते समय जो ज्वलनशील नहीं होते हैं (जो पूरी तरह से दहन नहीं कर सकते हैं) एक समाधान यौगिक को कुछ ज्वलनशील यौगिकों के साथ दहन की ज्ञात ऊष्मा के साथ मिलाकर मिश्रण के साथ एक फूस बनाना होगा। एक बार {{tmath|C_\text{v} }} | यौगिकों के साथ काम करते समय जो ज्वलनशील नहीं होते हैं (जो पूरी तरह से दहन नहीं कर सकते हैं) एक समाधान यौगिक को कुछ ज्वलनशील यौगिकों के साथ दहन की ज्ञात ऊष्मा के साथ मिलाकर मिश्रण के साथ एक फूस बनाना होगा। एक बार बम के {{tmath|C_\text{v} }} तार के ज्वलनशील यौगिक{{mvar|C<sub>''FC''</sub>}} के दहन की ऊष्मा,{{mvar|C<sub>''W''</sub>}} और द्रव्यमान ({{mvar|m<sub>''FC''</sub>}} और {{mvar|m<sub>''W''</sub>}}), और तापमान परिवर्तन (ΔT), ज्ञात हो जाता है कम ज्वलनशील यौगिक के दहन की ऊष्मा ({{mvar|C<sub>''LFC''</sub>}}) के साथ गणना की जा सकती है: | ||
''C''<sub>LFC</sub> = ''C''<sub>v</sub> Δ''T'' − ''C''<sub>FC</sub> ''m''<sub>FC</sub> − ''C''<sub>W</sub> ''m''<sub>W</sub><ref>Bech, N., Jensen, P. A., & Dam-Johansen, K. (2009). Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition. Biomass & Bioenergy, 33(3), 534-537. 10.1016/j.biombioe.2008.08.015</ref> | |||
== काल्वेट-प्रकार कैलोरीमीटर == | == काल्वेट-प्रकार कैलोरीमीटर == | ||
पहचान त्रि-आयामी [[फ्लक्समीटर]] सेंसर पर आधारित है। फ्लक्समीटर तत्व में श्रृंखला में कई थर्माकोपल्स की अंगूठी होती है। उच्च तापीय चालकता के संबंधित [[ थर्मापाइल ]] प्रायोगिक स्थान को कैलोरीमेट्रिक ब्लॉक के अंदर घेर लेते हैं। [[थर्मोकपल]]्स की रेडियल व्यवस्था ऊष्मा के लगभग पूर्ण एकीकरण की गारंटी देती है। यह दक्षता अनुपात की गणना द्वारा सत्यापित किया गया है जो इंगित करता है कि कैल्वेट-प्रकार | पहचान त्रि-आयामी [[फ्लक्समीटर]] सेंसर पर आधारित है। फ्लक्समीटर तत्व में श्रृंखला में कई थर्माकोपल्स की अंगूठी होती है। उच्च तापीय चालकता के संबंधित [[ थर्मापाइल ]] प्रायोगिक स्थान को कैलोरीमेट्रिक ब्लॉक के अंदर घेर लेते हैं। [[थर्मोकपल]]्स की रेडियल व्यवस्था ऊष्मा के लगभग पूर्ण एकीकरण की गारंटी देती है। यह दक्षता अनुपात की गणना द्वारा सत्यापित किया गया है जो इंगित करता है कि कैल्वेट-प्रकार ऊष्मामापी के तापमान की पूरी श्रृंखला पर सेंसर के माध्यम से 94% ± 1% ऊष्मा का औसत मूल्य प्रेषित होता है। इस सेटअप में, ऊष्मामापी की संवेदनशीलता क्रूसिबल, पर्जगैस के प्रकार, या [[प्रवाह दर]] से प्रभावित नहीं होती है। सेटअप का मुख्य लाभ कैलोरीमेट्रिक माप की स्पष्ट ता को प्रभावित किए बिना प्रयोगात्मक पोत के आकार और परिणामस्वरूप नमूने के आकार में वृद्धि है। | ||
कैलोरीमेट्रिक डिटेक्टरों का अंशांकन एक प्रमुख पैरामीटर है और इसे बहुत सावधानी से किया जाना है। कैल्वेट-प्रकार | कैलोरीमेट्रिक डिटेक्टरों का अंशांकन एक प्रमुख पैरामीटर है और इसे बहुत सावधानी से किया जाना है। कैल्वेट-प्रकार ऊष्मामापी के लिए, मानक सामग्री के साथ किए गए अंशांकन द्वारा सामना की जाने वाली सभी समस्याओं को दूर करने के लिए एक विशिष्ट अंशांकन, जिसे जौल ताप या विद्युत अंशांकन कहा जाता है, विकसित किया गया है। इस प्रकार के अंशांकन के मुख्य लाभ इस प्रकार हैं: | ||
* यह एक पूर्ण अंशांकन है। | * यह एक पूर्ण अंशांकन है। | ||
* अंशांकन के लिए मानक सामग्री का उपयोग आवश्यक नहीं है। अंशांकन एक स्थिर तापमान पर, हीटिंग मोड में और कूलिंग मोड में किया जा सकता है। | * अंशांकन के लिए मानक सामग्री का उपयोग आवश्यक नहीं है। अंशांकन एक स्थिर तापमान पर, हीटिंग मोड में और कूलिंग मोड में किया जा सकता है। | ||
| Line 90: | Line 94: | ||
* यह एक बहुत ही स्पष्ट अंशांकन है। | * यह एक बहुत ही स्पष्ट अंशांकन है। | ||
Calvet-type | Calvet-type ऊष्मामापी का एक उदाहरण C80 ऊष्मामापी (प्रतिक्रिया, इज़ोटेर्मल और अवलोकन कैलोरीमीटर) है।<ref name="Calvet-type calorimeter">{{Cite web |url=http://www.setaram.com/C80.htm# |title=C80 Calorimeter from Setaram Instrumentation |access-date=2010-07-12 |archive-url=https://web.archive.org/web/20100531090227/http://www.setaram.com/C80.htm# |archive-date=2010-05-31 |url-status=dead }}</ref> | ||
== रुद्धोष्म और आइसोपेरिबोल कैलोरीमीटर == | == रुद्धोष्म और आइसोपेरिबोल कैलोरीमीटर == | ||
कभी-कभी स्थिर-दबाव | कभी-कभी स्थिर-दबाव ऊष्मामापी के रूप में संदर्भित, रुद्धोष्म ऊष्मामापी विलयन (रसायन विज्ञान) में होने वाली प्रतिक्रिया की एन्थैल्पी में परिवर्तन को मापते हैं, जिसके समय परिवेश के साथ कोई ताप विनिमय की अनुमति नहीं है ([[ स्थिरोष्म ]]) और वायुमंडलीय दबाव स्थिर रहता है। | ||
एक उदाहरण एक कॉफी-कप | एक उदाहरण एक कॉफी-कप ऊष्मामापी है, जो दो नेस्टेड [[स्टायरोफोम]] कपों से निर्मित होता है, जो परिवेश से इन्सुलेशन प्रदान करता है, और दो छेदों वाला एक ढक्कन होता है, जिससे थर्मामीटर और एक सरऊष्मा रॉड को सम्मिलित किया जा सकता है। आंतरिक कप में एक ज्ञात मात्रा में विलायक होता है, सामान्यतः पानी, जो प्रतिक्रिया से ऊष्मा को अवशोषित करता है। जब प्रतिक्रिया होती है, बाहरी कप [[थर्मल इन्सुलेशन]] प्रदान करता है। तब | ||
: <math>C_\text{p} = \frac {W\Delta H}{M\Delta T}</math> | : <math>C_\text{p} = \frac {W\Delta H}{M\Delta T}</math> | ||
| Line 108: | Line 112: | ||
:<math>M</math>, विलायक का आणविक द्रव्यमान | :<math>M</math>, विलायक का आणविक द्रव्यमान | ||
कॉफी कप | कॉफी कप ऊष्मामापी की तरह एक साधारण ऊष्मामापी का उपयोग करके ऊष्मा का मापन निरंतर-दबाव ऊष्मामापी का एक उदाहरण है, क्योंकि प्रक्रिया के समय दबाव (वायुमंडलीय दबाव) स्थिर रहता है। घोल में होने वाली एन्थैल्पी में होने वाले परिवर्तनों को निर्धारित करने के लिए निरंतर-दबाव कैलोरीमेट्री का उपयोग किया जाता है। इन परिस्थितियों में तापीय धारिता में परिवर्तन ऊष्मा के बराबर होती है। | ||
वाणिज्यिक | वाणिज्यिक ऊष्मामापी इसी तरह काम करते हैं। अर्ध-रुद्धोष्म (आइसोपेरिबोल) ऊष्मामापी माप तापमान 10 तक बदलता है{{sup|−6}} डिग्री सेल्सियस और प्रतिक्रिया पोत की दीवारों के माध्यम से पर्यावरण के लिए ऊष्मा के हानि के लिए जिम्मेदार है, इसलिए, अर्ध-एडियाबेटिक। प्रतिक्रिया पोत एक देवर फ्लास्क है जो एक स्थिर तापमान स्नान में डूबा हुआ है। यह एक निरंतर ताप रिसाव दर प्रदान करता है जिसे सॉफ्टवेयर के माध्यम से ठीक किया जा सकता है। अभिकारकों (और पोत) की ताप क्षमता को एक हीटर तत्व (वोल्टेज और करंट) का उपयोग करके और तापमान परिवर्तन को मापने के लिए ज्ञात मात्रा में ऊष्मा प्रारंभिक करके मापा जाता है। | ||
== विभेदक अवलोकन कैलोरीमीटर == | == विभेदक अवलोकन कैलोरीमीटर == | ||
{{main article|Differential scanning calorimetry}} | {{main article|Differential scanning calorimetry}} | ||
डिफरेंशियल अवलोकन | डिफरेंशियल अवलोकन ऊष्मामापी (डीएससी) में, एक नमूने में [[[[गर्मी का प्रवाह|ऊष्मा का प्रवाह]]]] - सामान्यतः एक छोटे [[अल्युमीनियम]] कैप्सूल या 'पैन' में निहित होता है - इसे एक खाली संदर्भ पैन में प्रवाह की तुलना करके अलग-अलग मापा जाता है। | ||
ऊष्मा प्रवाह डीएससी में, दोनों पलड़े एक ज्ञात (अंशांकित) ऊष्मा प्रतिरोध K के साथ सामग्री के एक छोटे से स्लैब पर बैठते हैं। | ऊष्मा प्रवाह डीएससी में, दोनों पलड़े एक ज्ञात (अंशांकित) ऊष्मा प्रतिरोध K के साथ सामग्री के एक छोटे से स्लैब पर बैठते हैं। ऊष्मामापी का तापमान समय के साथ रैखिक रूप से बढ़ाया जाता है (स्कैन किया जाता है), अर्थात, ताप दर | ||
: ''डीटी''/''डीटी'' = ''β'' | : ''डीटी''/''डीटी'' = ''β'' | ||
स्थिर रखा जाता है। इस बार रैखिकता के लिए अच्छे डिजाइन और अच्छे (कम्प्यूटरीकृत) तापमान नियंत्रण की आवश्यकता होती है। बेशक, नियंत्रित शीतलन और इज़ोटेर्मल प्रयोग भी संभव हैं। | स्थिर रखा जाता है। इस बार रैखिकता के लिए अच्छे डिजाइन और अच्छे (कम्प्यूटरीकृत) तापमान नियंत्रण की आवश्यकता होती है। बेशक, नियंत्रित शीतलन और इज़ोटेर्मल प्रयोग भी संभव हैं। | ||
| Line 133: | Line 137: | ||
डिफरेंशियल अवलोकन कैलोरीमेट्री कई क्षेत्रों में एक वर्कहॉर्स विधि है, विशेष रूप से बहुलक लक्षण वर्णन में। | डिफरेंशियल अवलोकन कैलोरीमेट्री कई क्षेत्रों में एक वर्कहॉर्स विधि है, विशेष रूप से बहुलक लक्षण वर्णन में। | ||
एक संशोधित तापमान अंतर अवलोकन | एक संशोधित तापमान अंतर अवलोकन ऊष्मामापी (एमटीडीएससी) एक प्रकार का डीएससी है जिसमें अन्यथा रैखिक ताप दर पर एक छोटा दोलन लगाया जाता है। | ||
इसके कई लाभ हैं। यह (अर्ध-) इज़ोटेर्मल स्थितियों में भी, एक माप में ताप क्षमता के प्रत्यक्ष माप की सुविधा प्रदान करता है। यह ऊष्मा के प्रभावों के एक साथ माप की अनुमति देता है जो बदलती हीटिंग दर (रिवर्सिंग) पर प्रतिक्रिया करता है और जो बदलती हीटिंग दर (गैर-रिवर्सिंग) पर प्रतिक्रिया नहीं देता है। यह धीमी औसत ताप दर (इष्टतमीकरण संकल्प) और तेजी से बदलती ताप दर (अनुकूलन संवेदनशीलता) की अनुमति देकर एकल परीक्षण में संवेदनशीलता और संकल्प दोनों के अनुकूलन की अनुमति देता है।<ref>{{Cite web |url=http://csacs.mcgill.ca/francais/docs/CHEM634/DSC_Hunt.pdf# |title=संग्रहीत प्रति|access-date=2014-07-25 |archive-url=https://web.archive.org/web/20140729025301/http://csacs.mcgill.ca/francais/docs/CHEM634/DSC_Hunt.pdf# |archive-date=2014-07-29 |url-status=dead }}</ref> | इसके कई लाभ हैं। यह (अर्ध-) इज़ोटेर्मल स्थितियों में भी, एक माप में ताप क्षमता के प्रत्यक्ष माप की सुविधा प्रदान करता है। यह ऊष्मा के प्रभावों के एक साथ माप की अनुमति देता है जो बदलती हीटिंग दर (रिवर्सिंग) पर प्रतिक्रिया करता है और जो बदलती हीटिंग दर (गैर-रिवर्सिंग) पर प्रतिक्रिया नहीं देता है। यह धीमी औसत ताप दर (इष्टतमीकरण संकल्प) और तेजी से बदलती ताप दर (अनुकूलन संवेदनशीलता) की अनुमति देकर एकल परीक्षण में संवेदनशीलता और संकल्प दोनों के अनुकूलन की अनुमति देता है।<ref>{{Cite web |url=http://csacs.mcgill.ca/francais/docs/CHEM634/DSC_Hunt.pdf# |title=संग्रहीत प्रति|access-date=2014-07-25 |archive-url=https://web.archive.org/web/20140729025301/http://csacs.mcgill.ca/francais/docs/CHEM634/DSC_Hunt.pdf# |archive-date=2014-07-29 |url-status=dead }}</ref> | ||
सुरक्षा जांच:- DSC का उपयोग प्रारंभिक सुरक्षा जांच उपकरण के रूप में भी किया जा सकता है। इस मोड में नमूना एक गैर-प्रतिक्रियाशील क्रूसिबल (अधिकांशतः [[सोना]], या सोना चढ़ाया हुआ स्टील) में रखा जाएगा, और जो [[दबाव]] (सामान्यतः 100 [[ बार (इकाई) ]] तक) का सामना करने में सक्षम होगा। एक [[एक्ज़ोथिर्मिक]] घटना की उपस्थिति का उपयोग किसी पदार्थ की ऊष्मा की [[रासायनिक स्थिरता]] का आकलन करने के लिए किया जा सकता है। चूंकि , अपेक्षाकृत कम संवेदनशीलता, सामान्य स्कैन दरों की तुलना में धीमी (सामान्यतः 2–3°/मिनट - बहुत भारी क्रूसिबल के कारण) और अज्ञात [[सक्रियण ऊर्जा]] के संयोजन के कारण, प्रारंभिक से लगभग 75–100 डिग्री सेल्सियस घटाना आवश्यक है सामग्री के लिए अधिकतम तापमान का सुझाव देने के लिए देखे गए एक्सोथर्म की प्रारंभिक । रुद्धोष्म | सुरक्षा जांच:- DSC का उपयोग प्रारंभिक सुरक्षा जांच उपकरण के रूप में भी किया जा सकता है। इस मोड में नमूना एक गैर-प्रतिक्रियाशील क्रूसिबल (अधिकांशतः [[सोना]], या सोना चढ़ाया हुआ स्टील) में रखा जाएगा, और जो [[दबाव]] (सामान्यतः 100 [[ बार (इकाई) ]] तक) का सामना करने में सक्षम होगा। एक [[एक्ज़ोथिर्मिक]] घटना की उपस्थिति का उपयोग किसी पदार्थ की ऊष्मा की [[रासायनिक स्थिरता]] का आकलन करने के लिए किया जा सकता है। चूंकि , अपेक्षाकृत कम संवेदनशीलता, सामान्य स्कैन दरों की तुलना में धीमी (सामान्यतः 2–3°/मिनट - बहुत भारी क्रूसिबल के कारण) और अज्ञात [[सक्रियण ऊर्जा]] के संयोजन के कारण, प्रारंभिक से लगभग 75–100 डिग्री सेल्सियस घटाना आवश्यक है सामग्री के लिए अधिकतम तापमान का सुझाव देने के लिए देखे गए एक्सोथर्म की प्रारंभिक । रुद्धोष्म ऊष्मामापी से अधिक स्पष्ट डेटा सेट प्राप्त किया जा सकता है, किन्तु इस तरह के परीक्षण में परिवेश के तापमान से प्रति आधे घंटे में 3 डिग्री सेल्सियस की वृद्धि की दर से 2-3 दिन लग सकते हैं। | ||
= समतापी अनुमापन कैलोरीमीटर = | = समतापी अनुमापन कैलोरीमीटर = | ||
{{main article|Isothermal titration calorimetry}} | {{main article|Isothermal titration calorimetry}} | ||
एक इज़ोटेर्माल अनुमापन | एक इज़ोटेर्माल अनुमापन ऊष्मामापी में, अनुमापन प्रयोग का पालन करने के लिए प्रतिक्रिया की ऊष्मा का उपयोग किया जाता है। यह एक प्रतिक्रिया के मध्य बिंदु ([[स्तुईचिओमेटरी]]) (एन) के साथ-साथ इसकी एन्थैल्पी (डेल्टा एच), एंट्रॉपी (डेल्टा एस) और प्राथमिक चिंता बाध्यकारी संबंध (केए) के निर्धारण की अनुमति देता है। | ||
विधि विशेष रूप से जैव रसायन के क्षेत्र में महत्व प्राप्त कर रही है, क्योंकि यह [[एंजाइम]]ों के लिए बाध्यकारी सब्सट्रेट के निर्धारण की सुविधा प्रदान करती है। संभावित दवा उम्मीदवारों को चिह्नित करने के लिए विधि का उपयोग सामान्यतः दवा उद्योग में किया जाता है। | विधि विशेष रूप से जैव रसायन के क्षेत्र में महत्व प्राप्त कर रही है, क्योंकि यह [[एंजाइम]]ों के लिए बाध्यकारी सब्सट्रेट के निर्धारण की सुविधा प्रदान करती है। संभावित दवा उम्मीदवारों को चिह्नित करने के लिए विधि का उपयोग सामान्यतः दवा उद्योग में किया जाता है। | ||
== सतत प्रतिक्रिया कैलोरीमीटर == | == सतत प्रतिक्रिया कैलोरीमीटर == | ||
[[Image:Kalorimeter mit Vorerhitzer 1.jpg|thumb|सतत प्रतिक्रिया कैलोरीमीटर]]ट्यूबलर रिएक्टरों में निरंतर प्रक्रियाओं के स्केल-अप के लिए थर्मोडायनामिक जानकारी प्राप्त करने के लिए सतत प्रतिक्रिया | [[Image:Kalorimeter mit Vorerhitzer 1.jpg|thumb|सतत प्रतिक्रिया कैलोरीमीटर]]ट्यूबलर रिएक्टरों में निरंतर प्रक्रियाओं के स्केल-अप के लिए थर्मोडायनामिक जानकारी प्राप्त करने के लिए सतत प्रतिक्रिया ऊष्मामापी विशेष रूप से उपयुक्त है। यह उपयोगी है क्योंकि जारी ऊष्मा विशेष रूप से गैर-चयनात्मक प्रतिक्रियाओं के लिए प्रतिक्रिया नियंत्रण पर दृढ़ता से निर्भर कर सकती है। सतत प्रतिक्रिया ऊष्मामापी के साथ ट्यूब रिएक्टर के साथ एक अक्षीय तापमान प्रोफ़ाइल अंकित की जा सकती है और प्रतिक्रिया की विशिष्ट ऊष्मा को ऊष्मा संतुलन और खंडीय गतिशील मापदंडों के माध्यम से निर्धारित किया जा सकता है। प्रणाली में एक ट्यूबलर रिएक्टर, डोजिंग सिस्टम, प्रीहीटर्स, तापमान सेंसर और फ्लो मीटर सम्मिलित होने चाहिए। | ||
परंपरागत ताप प्रवाह | परंपरागत ताप प्रवाह ऊष्मामापी में, प्रतिक्रिया का पूर्ण रूपांतरण प्राप्त करने के लिए, अर्ध-बैच प्रक्रिया के समान, एक प्रतिक्रियाशील को छोटी मात्रा में लगातार जोड़ा जाता है। ट्यूबलर रिएक्टर के विपरीत, यह लंबे समय तक निवास समय, विभिन्न पदार्थ सांद्रता और चापलूसी तापमान प्रोफाइल की ओर जाता है। इस प्रकार, अच्छी तरह से परिभाषित प्रतिक्रियाओं की चयनात्मकता प्रभावित नहीं हो सकती है। इससे उप-उत्पादों या लगातार उत्पादों का निर्माण हो सकता है जो प्रतिक्रिया की मापा ऊष्मा को बदलते हैं, क्योंकि अन्य बांड बनते हैं। वांछित उत्पाद की उपज की गणना करके उप-उत्पाद या द्वितीयक उत्पाद की मात्रा पाई जा सकती है। | ||
यदि HFC (ऊष्मा फ्लो कैलोरीमेट्री) और PFR | यदि HFC (ऊष्मा फ्लो कैलोरीमेट्री) और PFR ऊष्मामापी में मापी गई प्रतिक्रिया की ऊष्मा अलग-अलग होती है, तो संभवत: कुछ साइड प्रतिक्रिया हुए हैं। उदाहरण के लिए वे अलग-अलग तापमान और रहने के समय के कारण हो सकते हैं। पूरी तरह से मापी गई Qr आंशिक रूप से ओवरलैप्ड प्रतिक्रिया एन्थैल्पी (ΔHr) मुख्य और पार्श्व प्रतिक्रियाओं से बनी होती है, जो उनके रूपांतरण की डिग्री (U) पर निर्भर करती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 157: | Line 161: | ||
* [[कैलोरी]] | * [[कैलोरी]] | ||
* [[ज्वलन की ऊष्मा]] | * [[ज्वलन की ऊष्मा]] | ||
* [[कैलोरीमीटर स्थिरांक]] | * [[कैलोरीमीटर स्थिरांक|ऊष्मामापी स्थिरांक]] | ||
* [[प्रतिक्रिया कैलोरीमीटर]] | * [[प्रतिक्रिया कैलोरीमीटर]] | ||
* [[कैलोरीमीटर (कण भौतिकी)]] | * [[कैलोरीमीटर (कण भौतिकी)|ऊष्मामापी (कण भौतिकी)]] | ||
==संदर्भ== | ==संदर्भ== | ||
Revision as of 23:34, 19 March 2023
एक ऊष्मामापी कैलोरीमेट्री के लिए उपयोग की जाने वाली वस्तु है, या रासायनिक प्रतिक्रियाओं या भौतिक परिवर्तनों के साथ-साथ ताप क्षमता को मापने की प्रक्रिया है। डिफरेंशियल अवलोकन कैलोरीमीटर, समतापीय सूक्ष्म कैलोरीमीटर, अनुमापन ऊष्मामापी और त्वरित दर ऊष्मामापी सबसे सामान्य प्रकारों में से हैं। एक साधारण ऊष्मामापी में दहन कक्ष के ऊपर निलंबित पानी से भरे धातु के कंटेनर से जुड़ा एक थर्मामीटर होता है। यह ऊष्मप्रवैगिकी, रसायन विज्ञान और जैव रसायन के अध्ययन में उपयोग किए जाने वाले माप उपकरणों में से एक है।
दो पदार्थ A और B के बीच प्रतिक्रिया में पदार्थ A के प्रति तिल (यूनिट) तापीय धारिता परिवर्तन को खोजने के लिए, पदार्थों को अलग-अलग एक ऊष्मामापी में जोड़ा जाता है प्रारंभिक और अंतिम तापमान (प्रतिक्रिया प्रारंभिक होने से पहले और समाप्त होने के बाद) नोट किया जाता है। पदार्थ के द्रव्यमान और विशिष्ट ताप क्षमता द्वारा तापमान परिवर्तन को गुणा करने से प्रतिक्रिया के समय दी गई या अवशोषित ऊर्जा के लिए एक मूल्य मिलता है। A के कितने मोल उपस्थित थे, ऊर्जा परिवर्तन को विभाजित करने से इसकी प्रतिक्रिया में एन्थैल्पी परिवर्तन होता है।
जहाँ q जूल और में मापे गए तापमान में परिवर्तन के अनुसार ऊष्मा की मात्रा है Cv ऊष्मामापी की उष्मा क्षमता है जो प्रति तापमान (जूल/केल्विन) ऊर्जा की इकाइयों में प्रत्येक व्यक्तिगत उपकरण से जुड़ा मूल्य है।
इतिहास
1761 में जोसेफ ब्लैक ने अव्यक्त ऊष्मा का विचार प्रस्तुत किया जिसके कारण पहले बर्फ ऊष्मामापी का निर्माण हुआ।[1] 1780 में, एंटोनी लैवॉज़ियर ने गिनी पिग के श्वसन से ऊष्मा का उपयोग अपने उपकरण के आसपास बर्फ को पिघलाने के लिए किया, यह दिखाते हुए कि श्वसन गैस मोमबत्ती जलने के समान विनिमय दहन है।[2] लैवोज़ियर ने ग्रीक और लैटिन दोनों मूलों के आधार पर इस उपकरण को ऊष्मामापी करार दिया। 1782 की सर्दियों में लेवोज़ियर और पियरे-साइमन लाप्लास द्वारा पहली बर्फ ऊष्मामापी का उपयोग किया गया था, जो रासायनिक प्रतिक्रियाओं से जारी ऊष्मा को मापने के लिए बर्फ को पानी में पिघलाने के लिए आवश्यक ऊष्मा पर निर्भर था।[3]
रुद्धोष्म कैलोरीमीटर
एक रुद्धोष्म प्रक्रिया ऊष्मामापी एक ऊष्मामापी है जिसका उपयोग भागा हुआ प्रतिक्रिया की जांच करने के लिए किया जाता है। चूँकि ऊष्मामापी रुद्धोष्म वातावरण में चलता है, परीक्षण के अनुसार सामग्री के नमूने द्वारा उत्पन्न किसी भी ऊष्मा के कारण नमूना तापमान में वृद्धि करता है, इस प्रकार प्रतिक्रिया को बढ़ावा देता है।
कोई रुद्धोष्म ऊष्मामापी पूरी तरह से रुद्धोष्म नहीं है - नमूना द्वारा नमूना धारक को कुछ ऊष्मा खो जाएगी। एक गणितीय सुधार कारक, जिसे फाई-कारक के रूप में जाना जाता है, का उपयोग इन ऊष्मा के हानि के लिए कैलोरीमेट्रिक परिणाम को समायोजित करने के लिए किया जा सकता है। फाई-कारक नमूना और नमूना धारक के थर्मल द्रव्यमान का अनुपात अकेले नमूने के थर्मल द्रव्यमान का अनुपात है।
प्रतिक्रिया कैलोरीमीटर
एक प्रतिक्रिया ऊष्मामापी एक ऊष्मामापी है जिसमें एक बंद रोधित कंटेनर के अंदर एक रासायनिक प्रतिक्रिया प्रारंभिक की जाती है। प्रतिक्रिया ऊष्मा को मापा जाता है और ऊष्मा का प्रवाह बनाम समय को एकीकृत करके कुल ऊष्मा प्राप्त की जाती है। यह उद्योग में ऊष्मा को मापने के लिए उपयोग किया जाने वाला मानक है क्योंकि औद्योगिक प्रक्रियाओं को निरंतर तापमान पर चलाने के लिए इंजीनियर किया जाता है। रासायनिक प्रक्रिया इंजीनियरिंग के लिए और प्रतिक्रियाओं के वैश्विक कैनेटीक्स को ट्रैक करने के लिए अधिकतम ऊष्मा रिलीज दर निर्धारित करने के लिए प्रतिक्रिया कैलोरीमेट्री का भी उपयोग किया जा सकता है। प्रतिक्रिया ऊष्मामापी में ऊष्मा को मापने के लिए चार मुख्य विधियाँ हैं:
ऊष्मा प्रवाह कैलोरीमीटर
कूलिंग/हीटिंग जैकेट या तो प्रक्रिया के तापमान या जैकेट के तापमान को नियंत्रित करता है।ऊष्मा अंतरण द्रव और प्रक्रिया द्रव के बीच तापमान के अंतर की निगरानी करके ऊष्मा को मापा जाता है। इसके अतिरिक्त भरने की मात्रा (अर्थात गीला क्षेत्र) विशिष्ट गर्मी हस्तांतरण गुणांक को एक सही मूल्य पर पहुंचने के लिए निर्धारित किया जाना है। इस प्रकार के ऊष्मामापी से भाटा पर प्रतिक्रिया करना संभव है, चूंकि यह बहुत कम स्पष्ट है।
ऊष्मा संतुलन कैलोरीमीटर
कूलिंग/हीटिंग जैकेट प्रक्रिया के तापमान को नियंत्रित करता है। ऊष्मा हस्तांतरण द्रव द्वारा प्राप्त या खोई हुई ऊष्मा की निगरानी के द्वारा ऊष्मा को मापा जाता है।
बिजली मुआवजा
बिजली मुआवजा एक स्थिर तापमान बनाए रखने के लिए बर्तन के अंदर रखे हीटर का उपयोग करता है। इस हीटर को आपूर्ति की जाने वाली ऊर्जा भिन्न हो सकती है क्योंकि प्रतिक्रियाओं की आवश्यकता होती है और कैलोरीमेट्री संकेत पूरी तरह से इस विद्युत शक्ति से प्राप्त होता है।
निरंतर प्रवाह
निरंतर प्रवाह कैलोरीमेट्री (या COFLUX जैसा कि इसे अधिकांशतः कहा जाता है) ऊष्मा संतुलन कैलोरीमेट्री से प्राप्त होता है और पोत की दीवार में निरंतर ऊष्मा प्रवाह (या प्रवाह) को बनाए रखने के लिए विशेष नियंत्रण तंत्र का उपयोग करता है।
बम कैलोरीमीटर
एक बम ऊष्मामापी एक प्रकार का निरंतर-मात्रा ऊष्मामापी है जिसका उपयोग किसी विशेष प्रतिक्रिया के दहन की ऊष्मा को मापने में किया जाता है। बम ऊष्मामापी को ऊष्मामापी के अंदर बड़े दबाव का सामना करना पड़ता है क्योंकि प्रतिक्रिया को मापा जा रहा है। ईंधन को प्रज्वलित करने के लिए विद्युत ऊर्जा का उपयोग किया जाता है; चूंकि ईंधन जल रहा है, यह आसपास की हवा को गर्म करेगा, जो एक ट्यूब के माध्यम से फैलती और निकलती है जो हवा को ऊष्मामापी से बाहर ले जाती है। जब हवा तांबे की नली से बाहर निकल रही होती है तो वह नली के बाहर के पानी को भी गर्म कर देगी। पानी के तापमान में परिवर्तन ईंधन की कैलोरी सामग्री की गणना करने की अनुमति देता है।
अधिक हाल के ऊष्मामापी डिजाइनों में, पूरे बम को अतिरिक्त शुद्ध ऑक्सीजन (सामान्यतः 30 मानक वायुमंडल (3,000 kPa) ) के साथ दबाव डाला जाता है और इसमें एक नमूने का भारित द्रव्यमान (सामान्यतः 1-1.5 ग्राम) और पानी की एक छोटी निश्चित मात्रा (आंतरिक वातावरण को संतृप्त करने के लिए, इस प्रकार यह सुनिश्चित करना कि उत्पादित सभी पानी तरल है, और वाष्पीकरण की तापीय धारिता को सम्मिलित करने की आवश्यकता को हटाते हुए) चार्ज के विद्युत रूप से प्रज्वलित होने से पहले पानी की एक ज्ञात मात्रा (लगभग 2000 मिली) के नीचे डूबा हुआ है। नमूना और ऑक्सीजन के ज्ञात द्रव्यमान वाला बम एक बंद प्रणाली बनाता है — प्रतिक्रिया के समय कोई गैस नहीं निकलती है। स्टील के कंटेनर के अंदर रखे वजनी अभिकारक को तब प्रज्वलित किया जाता है। दहन द्वारा ऊर्जा जारी की जाती है और इससे निकलने वाली ऊष्मा स्टेनलेस स्टील की दीवार को पार करती है, इस प्रकार स्टील बम, इसकी सामग्री और आसपास के पानी के जैकेट का तापमान बढ़ जाता है। पानी में तापमान परिवर्तन को तब थर्मामीटर से स्पष्ट रूप से मापा जाता है। एक बम कारक (जो धातु बम भागों की ताप क्षमता पर निर्भर है) के साथ यह पढने, नमूना द्वारा जला दी गई ऊर्जा की गणना करने के लिए उपयोग की जाती है। विद्युत ऊर्जा इनपुट, जलते हुए फ्यूज, और एसिड उत्पादन (अवशिष्ट तरल के अनुमापन द्वारा) को ध्यान में रखते हुए एक छोटा सुधार किया जाता है। तापमान वृद्धि को मापने के बाद, बम में अतिरिक्त दबाव जारी किया जाता है।
मूल रूप से, एक बम ऊष्मामापी में एक छोटा कप होता है जिसमें नमूना, ऑक्सीजन, एक स्टेनलेस स्टील बम, पानी, एक स्टिरर, एक थर्मामीटर, देवर या इन्सुलेट कंटेनर (ऊष्मामापी से आसपास के क्षेत्र में ऊष्मा के प्रवाह को रोकने के लिए) और बम से जुड़ा इग्निशन परिपथ होता है। बम के लिए स्टेनलेस स्टील का उपयोग करके, प्रतिक्रिया बिना किसी मात्रा परिवर्तन के देखी जाएगी।
चूँकि ऊष्मामापी और परिवेश (Q = 0) (रुद्धोष्म ) के बीच कोई ऊष्मा विनिमय नहीं होता है, कोई कार्य नहीं किया जाता है (W = 0)
इस प्रकार, कुल आंतरिक ऊर्जा परिवर्तन
इसके अतिरिक्त , कुल आंतरिक ऊर्जा परिवर्तन
-
- (निरंतर मात्रा )
जहाँ बम की ताप क्षमता है
किसी भी यौगिक के दहन की ऊष्मा निर्धारित करने के लिए बम का उपयोग करने से पहले, इसे जांच किया जाना चाहिए। के मान का अनुमान लगाया जा सकता है
- और मापा जा सकता है;
प्रयोगशाला में, दहन मान की ज्ञात ऊष्मा के साथ एक यौगिक चलाकर निर्धारित किया जाता है:
आम यौगिक बेंज़ोइक एसिड हैं () या पी-मिथाइल बेंजोइक एसिड ().
तापमान (T) हर मिनट रिकॉर्ड किया जाता है और
दहन की कुल ऊष्मा के सुधार में योगदान देने वाला एक छोटा कारक फ्यूज वायर है। निकेल फ्यूज तार का अधिकांशतः उपयोग किया जाता है और दहन की ऊष्मा होती है: 981.2कैल/जी.
बम को कैलिब्रेट करने के लिए, एक छोटी राशि (~ 1g) बेंजोइक एसिड, या पी-मिथाइल बेंजोइक एसिड का वजन किया जाता है। दहन प्रक्रिया से पहले और बाद में निकेल फ्यूज वायर (~ 10 सेमी) की लंबाई का वजन किया जाता है। फ्यूज तार का द्रव्यमान जल गया
बम के अंदर नमूना (बेंजोइक एसिड) का दहन
एक बार बम का मूल्य निर्धारित किया जाता है, बम किसी भी यौगिक के दहन की ऊष्मा की गणना करने के लिए उपयोग करने के लिए तैयार है
गैर-ज्वलनशील पदार्थों का दहन
बम प्रणाली में O
2 का उच्च दबाव और एकाग्रता दहनशील कुछ यौगिक प्रदान कर सकते हैं जो सामान्य रूप से ज्वलनशील नहीं होते हैं। कुछ पदार्थ पूरी तरह से नहीं जलते हैं, जिससे गणना कठिन हो जाती है क्योंकि शेष द्रव्यमान को ध्यान में रखा जाता है, जिससे संभावित त्रुटि अधिक बड़ी हो जाती है और डेटा से समझौता हो जाता है।
यौगिकों के साथ काम करते समय जो ज्वलनशील नहीं होते हैं (जो पूरी तरह से दहन नहीं कर सकते हैं) एक समाधान यौगिक को कुछ ज्वलनशील यौगिकों के साथ दहन की ज्ञात ऊष्मा के साथ मिलाकर मिश्रण के साथ एक फूस बनाना होगा। एक बार बम के तार के ज्वलनशील यौगिकCFC के दहन की ऊष्मा,CW और द्रव्यमान (mFC और mW), और तापमान परिवर्तन (ΔT), ज्ञात हो जाता है कम ज्वलनशील यौगिक के दहन की ऊष्मा (CLFC) के साथ गणना की जा सकती है:
CLFC = Cv ΔT − CFC mFC − CW mW[6]
काल्वेट-प्रकार कैलोरीमीटर
पहचान त्रि-आयामी फ्लक्समीटर सेंसर पर आधारित है। फ्लक्समीटर तत्व में श्रृंखला में कई थर्माकोपल्स की अंगूठी होती है। उच्च तापीय चालकता के संबंधित थर्मापाइल प्रायोगिक स्थान को कैलोरीमेट्रिक ब्लॉक के अंदर घेर लेते हैं। थर्मोकपल्स की रेडियल व्यवस्था ऊष्मा के लगभग पूर्ण एकीकरण की गारंटी देती है। यह दक्षता अनुपात की गणना द्वारा सत्यापित किया गया है जो इंगित करता है कि कैल्वेट-प्रकार ऊष्मामापी के तापमान की पूरी श्रृंखला पर सेंसर के माध्यम से 94% ± 1% ऊष्मा का औसत मूल्य प्रेषित होता है। इस सेटअप में, ऊष्मामापी की संवेदनशीलता क्रूसिबल, पर्जगैस के प्रकार, या प्रवाह दर से प्रभावित नहीं होती है। सेटअप का मुख्य लाभ कैलोरीमेट्रिक माप की स्पष्ट ता को प्रभावित किए बिना प्रयोगात्मक पोत के आकार और परिणामस्वरूप नमूने के आकार में वृद्धि है।
कैलोरीमेट्रिक डिटेक्टरों का अंशांकन एक प्रमुख पैरामीटर है और इसे बहुत सावधानी से किया जाना है। कैल्वेट-प्रकार ऊष्मामापी के लिए, मानक सामग्री के साथ किए गए अंशांकन द्वारा सामना की जाने वाली सभी समस्याओं को दूर करने के लिए एक विशिष्ट अंशांकन, जिसे जौल ताप या विद्युत अंशांकन कहा जाता है, विकसित किया गया है। इस प्रकार के अंशांकन के मुख्य लाभ इस प्रकार हैं:
- यह एक पूर्ण अंशांकन है।
- अंशांकन के लिए मानक सामग्री का उपयोग आवश्यक नहीं है। अंशांकन एक स्थिर तापमान पर, हीटिंग मोड में और कूलिंग मोड में किया जा सकता है।
- इसे किसी भी प्रयोगात्मक पोत मात्रा पर प्रयुक्त किया जा सकता है।
- यह एक बहुत ही स्पष्ट अंशांकन है।
Calvet-type ऊष्मामापी का एक उदाहरण C80 ऊष्मामापी (प्रतिक्रिया, इज़ोटेर्मल और अवलोकन कैलोरीमीटर) है।[7]
रुद्धोष्म और आइसोपेरिबोल कैलोरीमीटर
कभी-कभी स्थिर-दबाव ऊष्मामापी के रूप में संदर्भित, रुद्धोष्म ऊष्मामापी विलयन (रसायन विज्ञान) में होने वाली प्रतिक्रिया की एन्थैल्पी में परिवर्तन को मापते हैं, जिसके समय परिवेश के साथ कोई ताप विनिमय की अनुमति नहीं है (स्थिरोष्म ) और वायुमंडलीय दबाव स्थिर रहता है।
एक उदाहरण एक कॉफी-कप ऊष्मामापी है, जो दो नेस्टेड स्टायरोफोम कपों से निर्मित होता है, जो परिवेश से इन्सुलेशन प्रदान करता है, और दो छेदों वाला एक ढक्कन होता है, जिससे थर्मामीटर और एक सरऊष्मा रॉड को सम्मिलित किया जा सकता है। आंतरिक कप में एक ज्ञात मात्रा में विलायक होता है, सामान्यतः पानी, जो प्रतिक्रिया से ऊष्मा को अवशोषित करता है। जब प्रतिक्रिया होती है, बाहरी कप थर्मल इन्सुलेशन प्रदान करता है। तब
कहाँ
- , निरंतर दबाव पर विशिष्ट गर्मी
- , समाधान की तापीय धारिता
- , तापमान में बदलाव
- , विलायक का द्रव्यमान
- , विलायक का आणविक द्रव्यमान
कॉफी कप ऊष्मामापी की तरह एक साधारण ऊष्मामापी का उपयोग करके ऊष्मा का मापन निरंतर-दबाव ऊष्मामापी का एक उदाहरण है, क्योंकि प्रक्रिया के समय दबाव (वायुमंडलीय दबाव) स्थिर रहता है। घोल में होने वाली एन्थैल्पी में होने वाले परिवर्तनों को निर्धारित करने के लिए निरंतर-दबाव कैलोरीमेट्री का उपयोग किया जाता है। इन परिस्थितियों में तापीय धारिता में परिवर्तन ऊष्मा के बराबर होती है।
वाणिज्यिक ऊष्मामापी इसी तरह काम करते हैं। अर्ध-रुद्धोष्म (आइसोपेरिबोल) ऊष्मामापी माप तापमान 10 तक बदलता है−6 डिग्री सेल्सियस और प्रतिक्रिया पोत की दीवारों के माध्यम से पर्यावरण के लिए ऊष्मा के हानि के लिए जिम्मेदार है, इसलिए, अर्ध-एडियाबेटिक। प्रतिक्रिया पोत एक देवर फ्लास्क है जो एक स्थिर तापमान स्नान में डूबा हुआ है। यह एक निरंतर ताप रिसाव दर प्रदान करता है जिसे सॉफ्टवेयर के माध्यम से ठीक किया जा सकता है। अभिकारकों (और पोत) की ताप क्षमता को एक हीटर तत्व (वोल्टेज और करंट) का उपयोग करके और तापमान परिवर्तन को मापने के लिए ज्ञात मात्रा में ऊष्मा प्रारंभिक करके मापा जाता है।
विभेदक अवलोकन कैलोरीमीटर
डिफरेंशियल अवलोकन ऊष्मामापी (डीएससी) में, एक नमूने में [[ऊष्मा का प्रवाह]] - सामान्यतः एक छोटे अल्युमीनियम कैप्सूल या 'पैन' में निहित होता है - इसे एक खाली संदर्भ पैन में प्रवाह की तुलना करके अलग-अलग मापा जाता है।
ऊष्मा प्रवाह डीएससी में, दोनों पलड़े एक ज्ञात (अंशांकित) ऊष्मा प्रतिरोध K के साथ सामग्री के एक छोटे से स्लैब पर बैठते हैं। ऊष्मामापी का तापमान समय के साथ रैखिक रूप से बढ़ाया जाता है (स्कैन किया जाता है), अर्थात, ताप दर
- डीटी/डीटी = β
स्थिर रखा जाता है। इस बार रैखिकता के लिए अच्छे डिजाइन और अच्छे (कम्प्यूटरीकृत) तापमान नियंत्रण की आवश्यकता होती है। बेशक, नियंत्रित शीतलन और इज़ोटेर्मल प्रयोग भी संभव हैं।
चालन द्वारा ऊष्मा दो पैनों में प्रवाहित होती है। नमूने में ऊष्मा का प्रवाह इसकी ऊष्मा क्षमता C के कारण बड़ा होता हैp. प्रवाह dq/dt में अंतर स्लैब में एक छोटे से तापमान अंतर ΔT को प्रेरित करता है। इस तापमान अंतर को थर्मोकूपल का उपयोग करके मापा जाता है। इस संकेत से सिद्धांत रूप में ताप क्षमता निर्धारित की जा सकती है:
ध्यान दें कि यह सूत्र (ऊष्मा चालन के नियम | न्यूटन के ऊष्मा प्रवाह के नियम के समतुल्य) ओम के विद्युत प्रवाह के नियम के अनुरूप और उससे बहुत पुराना है:
- ΔV = RdQ/dt = RI.
जब अचानक नमूने द्वारा ऊष्मा अवशोषित की जाती है (उदाहरण के लिए, जब नमूना पिघलता है), तो संकेत प्रतिक्रिया देगा और एक शिखर प्रदर्शित करेगा।
इस शिखर के अभिन्न अंग से पिघलने की तापीय धारिता निर्धारित की जा सकती है, और इसकी प्रारंभिक से पिघलने का तापमान।
डिफरेंशियल अवलोकन कैलोरीमेट्री कई क्षेत्रों में एक वर्कहॉर्स विधि है, विशेष रूप से बहुलक लक्षण वर्णन में।
एक संशोधित तापमान अंतर अवलोकन ऊष्मामापी (एमटीडीएससी) एक प्रकार का डीएससी है जिसमें अन्यथा रैखिक ताप दर पर एक छोटा दोलन लगाया जाता है।
इसके कई लाभ हैं। यह (अर्ध-) इज़ोटेर्मल स्थितियों में भी, एक माप में ताप क्षमता के प्रत्यक्ष माप की सुविधा प्रदान करता है। यह ऊष्मा के प्रभावों के एक साथ माप की अनुमति देता है जो बदलती हीटिंग दर (रिवर्सिंग) पर प्रतिक्रिया करता है और जो बदलती हीटिंग दर (गैर-रिवर्सिंग) पर प्रतिक्रिया नहीं देता है। यह धीमी औसत ताप दर (इष्टतमीकरण संकल्प) और तेजी से बदलती ताप दर (अनुकूलन संवेदनशीलता) की अनुमति देकर एकल परीक्षण में संवेदनशीलता और संकल्प दोनों के अनुकूलन की अनुमति देता है।[8] सुरक्षा जांच:- DSC का उपयोग प्रारंभिक सुरक्षा जांच उपकरण के रूप में भी किया जा सकता है। इस मोड में नमूना एक गैर-प्रतिक्रियाशील क्रूसिबल (अधिकांशतः सोना, या सोना चढ़ाया हुआ स्टील) में रखा जाएगा, और जो दबाव (सामान्यतः 100 बार (इकाई) तक) का सामना करने में सक्षम होगा। एक एक्ज़ोथिर्मिक घटना की उपस्थिति का उपयोग किसी पदार्थ की ऊष्मा की रासायनिक स्थिरता का आकलन करने के लिए किया जा सकता है। चूंकि , अपेक्षाकृत कम संवेदनशीलता, सामान्य स्कैन दरों की तुलना में धीमी (सामान्यतः 2–3°/मिनट - बहुत भारी क्रूसिबल के कारण) और अज्ञात सक्रियण ऊर्जा के संयोजन के कारण, प्रारंभिक से लगभग 75–100 डिग्री सेल्सियस घटाना आवश्यक है सामग्री के लिए अधिकतम तापमान का सुझाव देने के लिए देखे गए एक्सोथर्म की प्रारंभिक । रुद्धोष्म ऊष्मामापी से अधिक स्पष्ट डेटा सेट प्राप्त किया जा सकता है, किन्तु इस तरह के परीक्षण में परिवेश के तापमान से प्रति आधे घंटे में 3 डिग्री सेल्सियस की वृद्धि की दर से 2-3 दिन लग सकते हैं।
समतापी अनुमापन कैलोरीमीटर
एक इज़ोटेर्माल अनुमापन ऊष्मामापी में, अनुमापन प्रयोग का पालन करने के लिए प्रतिक्रिया की ऊष्मा का उपयोग किया जाता है। यह एक प्रतिक्रिया के मध्य बिंदु (स्तुईचिओमेटरी) (एन) के साथ-साथ इसकी एन्थैल्पी (डेल्टा एच), एंट्रॉपी (डेल्टा एस) और प्राथमिक चिंता बाध्यकारी संबंध (केए) के निर्धारण की अनुमति देता है।
विधि विशेष रूप से जैव रसायन के क्षेत्र में महत्व प्राप्त कर रही है, क्योंकि यह एंजाइमों के लिए बाध्यकारी सब्सट्रेट के निर्धारण की सुविधा प्रदान करती है। संभावित दवा उम्मीदवारों को चिह्नित करने के लिए विधि का उपयोग सामान्यतः दवा उद्योग में किया जाता है।
सतत प्रतिक्रिया कैलोरीमीटर
ट्यूबलर रिएक्टरों में निरंतर प्रक्रियाओं के स्केल-अप के लिए थर्मोडायनामिक जानकारी प्राप्त करने के लिए सतत प्रतिक्रिया ऊष्मामापी विशेष रूप से उपयुक्त है। यह उपयोगी है क्योंकि जारी ऊष्मा विशेष रूप से गैर-चयनात्मक प्रतिक्रियाओं के लिए प्रतिक्रिया नियंत्रण पर दृढ़ता से निर्भर कर सकती है। सतत प्रतिक्रिया ऊष्मामापी के साथ ट्यूब रिएक्टर के साथ एक अक्षीय तापमान प्रोफ़ाइल अंकित की जा सकती है और प्रतिक्रिया की विशिष्ट ऊष्मा को ऊष्मा संतुलन और खंडीय गतिशील मापदंडों के माध्यम से निर्धारित किया जा सकता है। प्रणाली में एक ट्यूबलर रिएक्टर, डोजिंग सिस्टम, प्रीहीटर्स, तापमान सेंसर और फ्लो मीटर सम्मिलित होने चाहिए।
परंपरागत ताप प्रवाह ऊष्मामापी में, प्रतिक्रिया का पूर्ण रूपांतरण प्राप्त करने के लिए, अर्ध-बैच प्रक्रिया के समान, एक प्रतिक्रियाशील को छोटी मात्रा में लगातार जोड़ा जाता है। ट्यूबलर रिएक्टर के विपरीत, यह लंबे समय तक निवास समय, विभिन्न पदार्थ सांद्रता और चापलूसी तापमान प्रोफाइल की ओर जाता है। इस प्रकार, अच्छी तरह से परिभाषित प्रतिक्रियाओं की चयनात्मकता प्रभावित नहीं हो सकती है। इससे उप-उत्पादों या लगातार उत्पादों का निर्माण हो सकता है जो प्रतिक्रिया की मापा ऊष्मा को बदलते हैं, क्योंकि अन्य बांड बनते हैं। वांछित उत्पाद की उपज की गणना करके उप-उत्पाद या द्वितीयक उत्पाद की मात्रा पाई जा सकती है।
यदि HFC (ऊष्मा फ्लो कैलोरीमेट्री) और PFR ऊष्मामापी में मापी गई प्रतिक्रिया की ऊष्मा अलग-अलग होती है, तो संभवत: कुछ साइड प्रतिक्रिया हुए हैं। उदाहरण के लिए वे अलग-अलग तापमान और रहने के समय के कारण हो सकते हैं। पूरी तरह से मापी गई Qr आंशिक रूप से ओवरलैप्ड प्रतिक्रिया एन्थैल्पी (ΔHr) मुख्य और पार्श्व प्रतिक्रियाओं से बनी होती है, जो उनके रूपांतरण की डिग्री (U) पर निर्भर करती है।
यह भी देखें
- तापीय धारिता
- गर्मी
- कैलोरी
- ज्वलन की ऊष्मा
- ऊष्मामापी स्थिरांक
- प्रतिक्रिया कैलोरीमीटर
- ऊष्मामापी (कण भौतिकी)
संदर्भ
- ↑ Chisholm, Hugh, ed. (1911). "Black, Joseph". Encyclopædia Britannica. 4 (11th ed.). Cambridge University Press.
- ↑ Antoine Laurent Lavoisier, Elements of Chemistry: In a New Systematic Order; Containing All the Modern Discoveries, 1789: "I acknowledge the name of Calorimeter, which I have given it, as derived partly from Greek and partly from Latin, is in some degree open to criticism; but in matters of science, a slight deviation from strict etymology, for the sake of giving distinctness of idea, is excusable; and I could not derive the name entirely from Greek without approaching too near to the names of known instruments employed for other purposes."
- ↑ Buchholz, Andrea C; Schoeller, Dale A. (2004). "Is a Calorie a Calorie?". American Journal of Clinical Nutrition. 79 (5): 899S–906S. doi:10.1093/ajcn/79.5.899S. PMID 15113737. Retrieved 2007-03-12.
- ↑ Polik, W. (1997). Bomb Calorimetery. Retrieved from http://www.chem.hope.edu/~polik/Chem345-2000/bombcalorimetry.htm Archived 2015-10-06 at the Wayback Machine
- ↑ Bozzelli, J. (2010). Heat of Combustion via Calorimetry: Detailed Procedures. Chem 339-Physical Chemistry Lab for Chemical Engineers –Lab Manual.
- ↑ Bech, N., Jensen, P. A., & Dam-Johansen, K. (2009). Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition. Biomass & Bioenergy, 33(3), 534-537. 10.1016/j.biombioe.2008.08.015
- ↑ "C80 Calorimeter from Setaram Instrumentation". Archived from the original on 2010-05-31. Retrieved 2010-07-12.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2014-07-29. Retrieved 2014-07-25.
बाहरी संबंध
- Isothermal Battery Calorimeters - National Renewable Energy Laboratory
- Fact Sheet: Isothermal Battery Calorimeters, National Renewable Energy Laboratory, March 2015
- Fluitec Contiplant Continuous Reactors
- Continuous milli‑scale reaction calorimeter for direct scale‑up of flow chemistry Journal of Flow Chemistry https://doi.org/10.1007/s41981-021-00204-y
- Reaction Calorimetry in continuous flow mode. A new approach for the thermal characterization of high energetic and fast reactions https://doi.org/10.1021/acs.oprd.0c00117