निक्टोजन: Difference between revisions
No edit summary |
No edit summary |
||
| Line 36: | Line 36: | ||
इस समूह की परिभाषित विशेषता यह है कि सभी घटक तत्वों के सबसे बाहरी [[इलेक्ट्रॉन कवच|इलेक्ट्रॉन कक्ष]] में 5 इलेक्ट्रॉन होते हैं, जिसमे उपकोश में 2 इलेक्ट्रॉन और 3 इलेक्ट्रॉन अयुग्मित होते हैं I {{relevance inline|date=August 2019}} पी उपकोश में इलेक्ट्रॉन अपने अन्य [[आयन|आयनीकृत]] अवस्था में सबसे बाहरी इलेक्ट्रॉन कक्ष को 3 इलेक्ट्रॉन भरने से अल्प हैं। समूह में सभी तत्वों की स्थिति का रसेल-सॉन्डर्स शब्द प्रतीक <sup>4</sup>S<sub>3⁄2</sub> है I | इस समूह की परिभाषित विशेषता यह है कि सभी घटक तत्वों के सबसे बाहरी [[इलेक्ट्रॉन कवच|इलेक्ट्रॉन कक्ष]] में 5 इलेक्ट्रॉन होते हैं, जिसमे उपकोश में 2 इलेक्ट्रॉन और 3 इलेक्ट्रॉन अयुग्मित होते हैं I {{relevance inline|date=August 2019}} पी उपकोश में इलेक्ट्रॉन अपने अन्य [[आयन|आयनीकृत]] अवस्था में सबसे बाहरी इलेक्ट्रॉन कक्ष को 3 इलेक्ट्रॉन भरने से अल्प हैं। समूह में सभी तत्वों की स्थिति का रसेल-सॉन्डर्स शब्द प्रतीक <sup>4</sup>S<sub>3⁄2</sub> है I | ||
पृथ्वी पर जीवन के लिए इस समूह के सबसे महत्वपूर्ण तत्व नाइट्रोजन (N) होता हैं, जो इसके डायटोमिक रूप में | पृथ्वी पर जीवन के लिए इस समूह के सबसे महत्वपूर्ण तत्व नाइट्रोजन (N) होता हैं, जो इसके डायटोमिक रूप में वायु का प्रमुख घटक है, और फास्फोरस (P), जो नाइट्रोजन की जैसे, जीवन के सभी ज्ञात रूपों के लिए आवश्यक है। | ||
==== यौगिक ==== | ==== यौगिक ==== | ||
| Line 80: | Line 80: | ||
नाइट्रोजन की क्रिस्टल संरचना [[हेक्सागोनल क्रिस्टल प्रणाली]] होती है। फास्फोरस की क्रिस्टल संरचना [[घन क्रिस्टल प्रणाली]] होती है। आर्सेनिक, एंटीमनी और बिस्मथ सभी में [[rhombohedral जाली प्रणाली|रहोबोहेड्राल प्रणाली]] क्रिस्टल संरचनाएं होती हैं।<ref name="Periodic Table Advanced"/> | नाइट्रोजन की क्रिस्टल संरचना [[हेक्सागोनल क्रिस्टल प्रणाली]] होती है। फास्फोरस की क्रिस्टल संरचना [[घन क्रिस्टल प्रणाली]] होती है। आर्सेनिक, एंटीमनी और बिस्मथ सभी में [[rhombohedral जाली प्रणाली|रहोबोहेड्राल प्रणाली]] क्रिस्टल संरचनाएं होती हैं।<ref name="Periodic Table Advanced"/> | ||
== इतिहास == | == इतिहास == | ||
नाइट्रोजन यौगिक [[साल अमोनिया|नमक अमोनियाक]] (अमोनियम क्लोराइड) प्राचीन मिस्रवासियों के समय से जाना जाता है। 1760 के दशक में दो वैज्ञानिकों, [[हेनरी कैवेंडिश]] और [[जोसेफ प्रिस्टले]] ने | नाइट्रोजन यौगिक [[साल अमोनिया|नमक अमोनियाक]] (अमोनियम क्लोराइड) प्राचीन मिस्रवासियों के समय से जाना जाता है। 1760 के दशक में दो वैज्ञानिकों, [[हेनरी कैवेंडिश]] और [[जोसेफ प्रिस्टले]] ने वायु में नाइट्रोजन को विभक्त किया, किन्तु किसी अनदेखे तत्व की उपस्थिति का अनुभव नहीं हुआ। कई वर्षों बाद, 1772 में, [[डेनियल रदरफोर्ड]] को एहसास हुआ कि गैस वास्तव में नाइट्रोजन थी।<ref name="Emsley">{{citation |last=Emsley |first=John |title=Nature's Building Blocks |year=2011 |isbn=978-0-19-960563-7}}</ref> | ||
कीमिया [[हेनरी ब्रांट]] ने पहली बार 1669 में हैम्बर्ग में फास्फोरस की खोज की थी। ब्रांट ने वाष्पित यूरिन को गर्म करके और द्रव में परिणामी फास्फोरस वाष्प को संघनित करके तत्व का उत्पादन किया था। ब्रांट ने प्रारम्भ में विचार किया था, कि उन्होंने पारस पत्थर की शोध किया था, लेकिन अंततः अनुभव किया कि ऐसा नहीं था।<ref name=Emsley/> | कीमिया [[हेनरी ब्रांट]] ने पहली बार 1669 में हैम्बर्ग में फास्फोरस की खोज की थी। ब्रांट ने वाष्पित यूरिन को गर्म करके और द्रव में परिणामी फास्फोरस वाष्प को संघनित करके तत्व का उत्पादन किया था। ब्रांट ने प्रारम्भ में विचार किया था, कि उन्होंने पारस पत्थर की शोध किया था, लेकिन अंततः अनुभव किया कि ऐसा नहीं था।<ref name=Emsley/> | ||
| Line 93: | Line 93: | ||
शब्द निक्टोजन प्राचीन ग्रीक शब्द से लिया गया है, {{Lang|grc|πνίγειν}} ({{Lang|grc-Latn|pnígein}}) का अर्थ चोक करना, नाइट्रोजन गैस के चोकिंग या दमघोंटू गुण को संदर्भित करना है।<ref name="pnictogen-origin"/> यह दो सामान्य सदस्यों, पी और एन के लिए स्मरक के रूप में भी प्रयोग किया जा सकता है। 1950 के दशक के प्रारम्भ में डच रसायनज्ञ [[एंटोन एडुआर्ड वैन अर्केल]] द्वारा शब्द निक्टोजन का सुझाव दिया गया था। इसे पनिकोजीन या निक्टोजन भी लिखा जाता है। पनिकोजीन शब्द निक्टोजन शब्द की तुलना में दुर्लभ है,और पनिकोजीन का उपयोग करने वाले शैक्षणिक शोध पत्रों का अनुपात 2.5 से 1 है।<ref name="chm.bris.ac.uk"/> यह [[ग्रीक भाषा]] की [[जड़ (भाषाविज्ञान)]] से आता है I {{Lang|grc|πνιγ-}} (चोक, गला घोंटना) और इस प्रकार निक्टोजन शब्द भी नाइट्रोजन के लिए डच और जर्मन नामों का संदर्भ है। निक्टोजन को घुटन निर्माता के रूप में अनुवादित किया जा सकता है। पेनिक्टाइड शब्द भी इसी मूल से आया है।<ref name="pnictogen-origin">{{cite journal |last1=Girolami |first1=Gregory S. |year=2009 |title=Pnictogen और Pnictide शब्दों की उत्पत्ति|journal=Journal of Chemical Education |volume=86 |issue=10 |pages=1200 |publisher=[[American Chemical Society]] |doi=10.1021/ed086p1200 |bibcode=2009JChEd..86.1200G}}</ref> नाम पेंटेल्स (ग्रीक से {{Lang|grc|πέντε}}, {{Lang|grc-Latn|pénte}}, पाँच) भी इस समूह के लिए चयनित किया गया था।<ref name=Holleman>{{Holleman&Wiberg|page=586}}</ref> | शब्द निक्टोजन प्राचीन ग्रीक शब्द से लिया गया है, {{Lang|grc|πνίγειν}} ({{Lang|grc-Latn|pnígein}}) का अर्थ चोक करना, नाइट्रोजन गैस के चोकिंग या दमघोंटू गुण को संदर्भित करना है।<ref name="pnictogen-origin"/> यह दो सामान्य सदस्यों, पी और एन के लिए स्मरक के रूप में भी प्रयोग किया जा सकता है। 1950 के दशक के प्रारम्भ में डच रसायनज्ञ [[एंटोन एडुआर्ड वैन अर्केल]] द्वारा शब्द निक्टोजन का सुझाव दिया गया था। इसे पनिकोजीन या निक्टोजन भी लिखा जाता है। पनिकोजीन शब्द निक्टोजन शब्द की तुलना में दुर्लभ है,और पनिकोजीन का उपयोग करने वाले शैक्षणिक शोध पत्रों का अनुपात 2.5 से 1 है।<ref name="chm.bris.ac.uk"/> यह [[ग्रीक भाषा]] की [[जड़ (भाषाविज्ञान)]] से आता है I {{Lang|grc|πνιγ-}} (चोक, गला घोंटना) और इस प्रकार निक्टोजन शब्द भी नाइट्रोजन के लिए डच और जर्मन नामों का संदर्भ है। निक्टोजन को घुटन निर्माता के रूप में अनुवादित किया जा सकता है। पेनिक्टाइड शब्द भी इसी मूल से आया है।<ref name="pnictogen-origin">{{cite journal |last1=Girolami |first1=Gregory S. |year=2009 |title=Pnictogen और Pnictide शब्दों की उत्पत्ति|journal=Journal of Chemical Education |volume=86 |issue=10 |pages=1200 |publisher=[[American Chemical Society]] |doi=10.1021/ed086p1200 |bibcode=2009JChEd..86.1200G}}</ref> नाम पेंटेल्स (ग्रीक से {{Lang|grc|πέντε}}, {{Lang|grc-Latn|pénte}}, पाँच) भी इस समूह के लिए चयनित किया गया था।<ref name=Holleman>{{Holleman&Wiberg|page=586}}</ref> | ||
== घटना == | == घटना == | ||
[[File:Stickstoff-gruppe.jpg|right|thumb|निक्टोजन प्रारूपों का संग्रह]]नाइट्रोजन पृथ्वी के 25 भागों प्रति मिलियन, औसतन 5 भाग प्रति मिलियन मिट्टी, 100 से 500 भागों प्रति ट्रिलियन समुद्री जल और 78% शुष्क | [[File:Stickstoff-gruppe.jpg|right|thumb|निक्टोजन प्रारूपों का संग्रह]]नाइट्रोजन पृथ्वी के 25 भागों प्रति मिलियन, औसतन 5 भाग प्रति मिलियन मिट्टी, 100 से 500 भागों प्रति ट्रिलियन समुद्री जल और 78% शुष्क वायु का निर्माण करती है। पृथ्वी पर अधिकांश नाइट्रोजन, गैस के रूप में होते है, लेकिन कुछ [[नाइट्रेट खनिज]] उपस्तिथ हैं। सामान्य मानव का 2.5% नाइट्रोजन भार के अनुसार होता है।<ref name=Emsley/> | ||
फास्फोरस पृथ्वी | फास्फोरस पृथ्वी में प्रति मिलियन 0.1% भाग निर्मित करता है, जिससे यह पृथ्वी में तत्वों की 11 वीं बहुतायत बन जाता है। फास्फोरस 0.65 भाग प्रति मिलियन मिट्टी और 15 से 60 भाग प्रति बिलियन समुद्री जल बनाता है। पृथ्वी पर 200 [[मेगाटन]] सुलभ [[ फास्फेट |फास्फेट]] हैं। फास्फोरस भार के अनुसार सामान्य मानव का 1.1% बनाता है।<ref name=Emsley/>फास्फोरस [[एपेटाइट]] समूह के खनिजों में होता है, जो फॉस्फेट चट्टानों के मुख्य घटक होते हैं। | ||
आर्सेनिक पृथ्वी | आर्सेनिक पृथ्वी में प्रति मिलियन 1.5 भाग निर्मित करता है, जिससे यह वहां 53वां प्रचुर तत्व बन जाता है। मिट्टी में 1 से 10 भाग प्रति मिलियन आर्सेनिक होता है, और समुद्री जल में 1.6 भाग प्रति बिलियन आर्सेनिक होता है। आर्सेनिक भार के अनुसार सामान्य मानव के 100 भाग प्रति बिलियन बनाता है। कुछ आर्सेनिक तात्विक रूप में उपस्तिथ हैं, लेकिन अधिकांश आर्सेनिक खनिज ऑरपिमेंट, रियलगर, [[ आर्सेनोफोरस |आर्सेनोफोरस]] और [[ergite|एरगिटे]] में पाए जाते हैं।<ref name=Emsley/> | ||
एंटीमोनी पृथ्वी | एंटीमोनी पृथ्वी प्रति मिलियन 0.2 भाग निर्मित करता है, जिससे यह वहां 63वां सबसे प्रचुर तत्व बन जाता है। मिट्टी में औसतन 1 भाग प्रति मिलियन एंटीमनी होता है, और समुद्री जल में औसतन 300 भाग प्रति खरब एंटीमनी होता है। विशिष्ट मानव में भार के अनुसार 28 भाग प्रति अरब एंटीमनी होता है। चांदी के निक्षेपों में कुछ तात्विक एंटीमनी होता है।<ref name=Emsley/> | ||
बिस्मथ पृथ्वी | बिस्मथ पृथ्वी के प्रति अरब 48 भागों को निर्मित करता है, जिससे यह वहां 70वां सबसे प्रचुर तत्व बन जाता है। मिट्टी में लगभग 0.25 भाग प्रति मिलियन बिस्मथ होते हैं, और समुद्री जल में बिस्मथ के प्रति ट्रिलियन में 400 भाग होते हैं। बिस्मुथ सामान्यतः खनिज [[ बिस्मथनाइट |बिस्मथनाइट]] के रूप में होता है, लेकिन बिस्मुथ भी मौलिक रूप में या सल्फाइड अयस्कों में होता है।<ref name=Emsley/> | ||
कण त्वरक में मोस्कोवियम | कण त्वरक में मोस्कोवियम समय में कई परमाणुओं का उत्पादन करता है।<ref name=Emsley/> | ||
== उत्पादन == | == उत्पादन == | ||
| Line 109: | Line 109: | ||
वायु के [[आंशिक आसवन]] द्वारा नाइट्रोजन का उत्पादन किया जा सकता है।<ref name=BritannicaN>{{cite encyclopedia |first=R. Thomas |last=Sanderson |url=https://www.britannica.com/science/nitrogen |title=nitrogen – Definition, Symbol, Uses, Properties, Atomic Number, and Facts |encyclopedia=Encyclopædia Britannica |date=February 1, 2019}}</ref> | वायु के [[आंशिक आसवन]] द्वारा नाइट्रोजन का उत्पादन किया जा सकता है।<ref name=BritannicaN>{{cite encyclopedia |first=R. Thomas |last=Sanderson |url=https://www.britannica.com/science/nitrogen |title=nitrogen – Definition, Symbol, Uses, Properties, Atomic Number, and Facts |encyclopedia=Encyclopædia Britannica |date=February 1, 2019}}</ref> | ||
=== फास्फोरस === | === फास्फोरस === | ||
फॉस्फोरस के उत्पादन की मुख्य विधि | फॉस्फोरस के उत्पादन की मुख्य विधि [[इलेक्ट्रिक आर्क फर्नेस]] में कार्बन के साथ फॉस्फेट को अल्प करना (रसायन विज्ञान) है।<ref name=BritannicaP>{{cite encyclopedia |url=https://www.britannica.com/science/phosphorus-chemical-element |title=फास्फोरस (रासायनिक तत्व)|encyclopedia=Encyclopædia Britannica |date=11 October 2019}}</ref> | ||
=== आर्सेनिक === | === आर्सेनिक === | ||
अधिकांश आर्सेनिक वायु की उपस्थिति में खनिज आर्सेनोपाइराइट को गर्म करके तैयार किया जाता है। यह आर्सेनिक ट्राइऑक्साइड | अधिकांश आर्सेनिक वायु की उपस्थिति में खनिज आर्सेनोपाइराइट को गर्म करके तैयार किया जाता है। यह आर्सेनिक ट्राइऑक्साइड As<sub>4</sub>O<sub>6</sub> बनाता है I जिससे आर्सेनिक को कार्बन रिडक्शन के जरिए निकाला जा सकता है। चूँकि, ऑक्सीजन के बिना 650 से 700 डिग्री सेल्सियस पर आर्सेनोपाइराइट को गर्म करके धात्विक आर्सेनिक बनाना भी संभव है।<ref name=BritannicaAs>{{cite encyclopedia |url=https://www.britannica.com/science/arsenic |title=आर्सेनिक (रासायनिक तत्व)|encyclopedia=Encyclopædia Britannica |date=11 October 2019}}</ref> | ||
=== एंटीमनी === | === एंटीमनी === | ||
सल्फाइड अयस्कों के साथ, एंटीमनी | सल्फाइड अयस्कों के साथ, एंटीमनी का उत्पादन करने की विधि कच्चे अयस्क में एंटीमनी की मात्रा पर निर्भर करती है। यदि अयस्क में भार के अनुसार 25% से 45% एंटीमनी होता है, तो [[ वात भट्टी |वात भट्टी]] में अयस्क को गलाने से कच्चे एंटीमनी का उत्पादन होता है। यदि अयस्क में भार के अनुसार 45% से 60% एंटीमनी होता है, तो अयस्क को गर्म करके एंटीमनी प्राप्त किया जाता है, जिसे परिसमापन भी कहा जाता है। भार के अनुसार 60% से अधिक एंटीमनी वाले अयस्कों को पिघले हुए अयस्क से लोहे की छीलन के साथ रासायनिक रूप से विस्थापित किया जाता है, जिसके परिणामस्वरूप अशुद्ध धातु प्राप्त होती है। | ||
यदि ऐन्टिमनी के ऑक्साइड अयस्क में वजन के हिसाब से 30% से कम ऐंटीमनी है, तो अयस्क को ब्लास्ट फर्नेस में कम किया जाता है। यदि अयस्क में वजन के हिसाब से 50% एंटीमनी होता है, तो अयस्क को एक परावर्तनी भट्टी में कम किया जाता है। | यदि ऐन्टिमनी के ऑक्साइड अयस्क में वजन के हिसाब से 30% से कम ऐंटीमनी है, तो अयस्क को ब्लास्ट फर्नेस में कम किया जाता है। यदि अयस्क में वजन के हिसाब से 50% एंटीमनी होता है, तो अयस्क को एक परावर्तनी भट्टी में कम किया जाता है। | ||
| Line 119: | Line 119: | ||
मिश्रित सल्फाइड और ऑक्साइड के साथ एंटीमनी अयस्कों को ब्लास्ट फर्नेस में प्रगलित किया जाता है।<ref name=Butterman2003>Butterman, C.; Carlin, Jr., J.F. (2003). [https://pubs.usgs.gov/of/2003/of03-019/ Mineral Commodity Profiles: Antimony]. United States Geological Survey.</ref> | मिश्रित सल्फाइड और ऑक्साइड के साथ एंटीमनी अयस्कों को ब्लास्ट फर्नेस में प्रगलित किया जाता है।<ref name=Butterman2003>Butterman, C.; Carlin, Jr., J.F. (2003). [https://pubs.usgs.gov/of/2003/of03-019/ Mineral Commodity Profiles: Antimony]. United States Geological Survey.</ref> | ||
=== बिस्मथ === | === बिस्मथ === | ||
बिस्मथ खनिज विशेष रूप से सल्फाइड और ऑक्साइड के रूप में | बिस्मथ खनिज विशेष रूप से सल्फाइड और ऑक्साइड के रूप में प्राप्त किये जाते हैं, लेकिन बिस्मथ का उत्पादन लेड अयस्कों के गलाने के उप-उत्पाद के रूप में या चीन में टंगस्टन और जस्ता अयस्कों के रूप में करना अधिक आर्थिक है।<ref name=Bell>{{cite web |last=Bell |first=Terence |url=http://metals.about.com/od/properties/a/Metal-Profile-Bismuth.htm |title=Metal Profile: Bismuth |work=About.com |archive-url=https://web.archive.org/web/20120705043004/http://metals.about.com/od/properties/a/Metal-Profile-Bismuth.htm |archive-date=5 July 2012}}</ref> | ||
=== मोस्कोवियम === | === मोस्कोवियम === | ||
मोस्कोवियम | मोस्कोवियम समय में [[कण त्वरक]] के कुछ परमाणुओं का उत्पादन करता है, जब तक कि अमेरिकाियम में कैल्शियम -48 आयनों का बीम फायरिंग नहीं हो जाता, जब तक कि नाभिक फ्यूज न हो जाए।<ref name="Superheavy Element Research">{{cite journal |last1=Oganessian |first1=Yu Ts |last2=Utyonkov |first2=V K |title=अतिभारी तत्व अनुसंधान|journal=Reports on Progress in Physics |date=9 March 2015 |volume=78 |issue=3 |page=3 |doi=10.1088/0034-4885/78/3/036301 |pmid=25746203|bibcode=2015RPPh...78c6301O }}</ref> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
* [[तरल नाइट्रोजन]] | * [[तरल नाइट्रोजन]] सामान्यतः प्रयोग किया जाने वाला [[क्रायोजेनिक]] तरल होता है।<ref name="The Elements" />*अमोनिया के रूप में नाइट्रोजन अधिकांश पौधों के जीवित रहने के लिए महत्वपूर्ण पोषक तत्व है।<ref name="The Elements"/> [[हैबर प्रक्रिया]] दुनिया की ऊर्जा खपत का लगभग 1-2% और भोजन में अल्प नाइट्रोजन का बहुमत है। | ||
*फॉस्फोरस का उपयोग माचिस और आग लगाने वाले बमों में किया जाता है।<ref name="The Elements"/> | *फॉस्फोरस का उपयोग माचिस और आग लगाने वाले बमों में किया जाता है।<ref name="The Elements"/> फास्फेट उर्वरक दुनिया के अधिकतर भाग को खिलाने में सहायता करता है।<ref name="The Elements"/> आर्सेनिक को ऐतिहासिक रूप से [[ पेरिस हरा |पेरिस हरा]] पिगमेंट के रूप में उपयोग किया जाता था, लेकिन इसकी अत्यधिक विषाक्तता के कारण अब इसका उपयोग नहीं किया जाता है।<ref name="The Elements"/>*ऑर्गेनोआर्सेनिक रसायन के रूप में आर्सेनिक का उपयोग कभी-कभी चिकन फीड में किया जाता है।<ref name="The Elements"/>* कुछ गोलियां निर्मित करने के लिए एंटीमनी में सीसे की मिश्रधातु होती है।<ref name="The Elements"/>* चीन के कुछ भागो में 1930 के दशक में एंटीमनी मुद्रा का संक्षिप्त रूप से उपयोग किया गया था, लेकिन इस उपयोग को बंद कर दिया गया था, क्योंकि एंटीमनी नरम और जहरीली दोनों है।<ref name="The Disappearing Spoon">{{citation |last=Kean |first=Sam |title=The Disappearing Spoon |year=2011 |isbn=9781446437650 |publisher=Transworld}}</ref> | ||
*[[ पपता-बिस्मल ]] में [[बिस्मथ सबसालिसिलेट]] सक्रिय संघटक है।<ref name="The Elements"/>*मानव कैंसर रोगियों में [[विकिरण चिकित्सा]] में सुधार के लिए उम्मीदवार के रूप में बिस्मथ चॉकोजेनाइड्स का अध्ययन कैंसरग्रस्त चूहों में किया जा रहा है।<ref>{{cite journal |last1=Huang |first1=Jia |last2=Huang |first2=Qiong |last3=Liu |first3=Min |last4=Chen |first4=Qiaohui |last5=Ai |first5=Kelong |date=February 2022 |title=कैंसर रेडियोथेरेपी के लिए इमर्जिंग बिस्मथ चाल्कोजेनाइड्स आधारित नैनोड्रग्स|journal=Frontiers in Pharmacology |volume=13 |pages=844037 |doi=10.3389/fphar.2022.844037 |pmid=35250594 |pmc=8894845 |doi-access=free}}</ref> | *[[ पपता-बिस्मल ]] में [[बिस्मथ सबसालिसिलेट]] सक्रिय संघटक है।<ref name="The Elements"/>*मानव कैंसर रोगियों में [[विकिरण चिकित्सा]] में सुधार के लिए उम्मीदवार के रूप में बिस्मथ चॉकोजेनाइड्स का अध्ययन कैंसरग्रस्त चूहों में किया जा रहा है।<ref>{{cite journal |last1=Huang |first1=Jia |last2=Huang |first2=Qiong |last3=Liu |first3=Min |last4=Chen |first4=Qiaohui |last5=Ai |first5=Kelong |date=February 2022 |title=कैंसर रेडियोथेरेपी के लिए इमर्जिंग बिस्मथ चाल्कोजेनाइड्स आधारित नैनोड्रग्स|journal=Frontiers in Pharmacology |volume=13 |pages=844037 |doi=10.3389/fphar.2022.844037 |pmid=35250594 |pmc=8894845 |doi-access=free}}</ref> | ||
== जैविक भूमिका == | == जैविक भूमिका == | ||
नाइट्रोजन पृथ्वी पर जीवन के लिए महत्वपूर्ण अणुओं का | नाइट्रोजन पृथ्वी पर जीवन के लिए महत्वपूर्ण अणुओं का घटक है, जैसे [[डीएनए]] और [[अमीनो अम्ल]] कुछ पौधों में [[नाइट्रेट]] पौधों की गांठों में उपस्थित जीवाणुओं के कारण होता है। यह मटर जैसे फलीदार पौधों में देखा जाता है {{clarify|date=October 2015}} या पालक और सलाद के रूप में देखा जाता है।{{citation needed|date=October 2015}} 70 [[किलोग्राम|किलो]] के मानव में 1.8 किलोग्राम नाइट्रोजन होता है।<ref name=Emsley/> | ||
फॉस्फेट के रूप में फास्फोरस जीवन के लिए महत्वपूर्ण यौगिकों में पाया जाता है, जैसे कि डीएनए और [[एडेनोसाइन ट्रायफ़ोस्फेट]] मनुष्य प्रतिदिन लगभग 1 ग्राम फॉस्फोरस का उपभोग करते हैं।<ref name=NLM002424>{{cite web |url=https://medlineplus.gov/ency/article/002424.htm |title=आहार में फास्फोरस|publisher=NIH–National Library of Medicine |work=MedlinePlus |date=9 April 2020}}</ref> फास्फोरस मछली, जिगर, टर्की, चिकन और अंडे जैसे खाद्य पदार्थों में पाया जाता है। फॉस्फेट की | फॉस्फेट के रूप में फास्फोरस जीवन के लिए महत्वपूर्ण यौगिकों में पाया जाता है, जैसे कि डीएनए और [[एडेनोसाइन ट्रायफ़ोस्फेट]] मनुष्य प्रतिदिन लगभग 1 ग्राम फॉस्फोरस का उपभोग करते हैं।<ref name=NLM002424>{{cite web |url=https://medlineplus.gov/ency/article/002424.htm |title=आहार में फास्फोरस|publisher=NIH–National Library of Medicine |work=MedlinePlus |date=9 April 2020}}</ref> फास्फोरस मछली, जिगर, टर्की, चिकन और अंडे जैसे खाद्य पदार्थों में पाया जाता है। फॉस्फेट की अल्पता ऐसी समस्या है जिसे [[हाइपोफोस्फेटेमिया]] कहा जाता है। 70 किलो के मानव में 480 ग्राम फॉस्फोरस होता है।<ref name=Emsley/> | ||
आर्सेनिक मुर्गियों और चूहों में वृद्धि को बढ़ावा देता है, और सूक्ष्म पोषक तत्व हो सकता है। आर्सेनिक को अमीनो एसिड [[ arginine ]] के चयापचय में | आर्सेनिक मुर्गियों और चूहों में वृद्धि को बढ़ावा देता है, और सूक्ष्म पोषक तत्व हो सकता है। आर्सेनिक को अमीनो एसिड [[ arginine |अर्गिनीने]] के चयापचय में दिखाया गया है। 70 किलो के इंसान में 7 मिलीग्राम आर्सेनिक होता है।<ref name=Emsley/> | ||
एंटीमोनी को जैविक भूमिका के लिए नहीं जाना जाता है। पौधे केवल एंटीमनी | एंटीमोनी को जैविक भूमिका के लिए नहीं जाना जाता है। पौधे केवल एंटीमनी की मात्रा का पता लगाते हैं। 70 किलो के मानव में लगभग 2 मिलीग्राम एंटीमनी होता है।<ref name=Emsley/> | ||
बिस्मथ को जैविक भूमिका के लिए नहीं जाना जाता है। मनुष्य प्रति दिन औसतन 20 μg से | बिस्मथ को जैविक भूमिका के लिए नहीं जाना जाता है। मनुष्य प्रति दिन औसतन 20 μg से निम्न बिस्मथ ग्रहण करते हैं। 70 किलो के भार वाले इंसान में बिस्मथ की मात्रा 500 माइक्रोग्राम से अल्प होती है।<ref name=Emsley/> | ||
=== विषाक्तता === | === विषाक्तता === | ||
नाइट्रोजन गैस | नाइट्रोजन गैस पूर्ण रूप से जहरीली नहीं होती है, लेकिन शुद्ध नाइट्रोजन गैस में सांस लेना घातक होता है, क्योंकि यह [[नाइट्रोजन श्वासावरोध]] का कारण बनती है।<ref name="The Disappearing Spoon"/> रक्त में नाइट्रोजन के बुलबुले का निर्माण, जैसे कि [[स्कूबा डाइविंग]] के समय में हो सकता है, स्थिति उत्त्पन्न कर सकता है, जिसे बेंड्स के रूप में जाना जाता है। कई नाइट्रोजन यौगिक जैसे [[हाइड्रोजन साइनाइड]] और नाइट्रोजन आधारित [[विस्फोटक]] भी अत्यधिक खतरनाक होते हैं।<ref name=Emsley/> | ||
[[सफेद फास्फोरस]] | [[सफेद फास्फोरस]] विषैला होता है, जिसमें 1 मिलीग्राम प्रति किलोग्राम शरीर के भार के लिए घातक खुराक होती है।<ref name="The Elements"/>सफेद फास्फोरस सामान्यतः [[जिगर|लीवर]] पर वार करता है जिसके परिणाम स्वरुप सप्ताह के अंदर मनुष्यों की मृत्यु हो जाती है। अपने गैसीय रूप में फॉस्फोरस में सांस लेने से औद्योगिक बीमारी हो सकती है, जिसे [[फोसी जबड़ा|फॉसी जॉ]] कहा जाता है, जो जबड़े की हड्डी को खा जाती है। सफेद फास्फोरस भी अत्यधिक ज्वलनशील होता है। कुछ ऑर्गनोफॉस्फोरस यौगिक मानव शरीर में [[एंजाइम|एंजाइमों]] को घातक रूप से अवरुद्ध कर सकते हैं।<ref name=Emsley/> | ||
एलिमेंटल आर्सेनिक विषैला होता है, जैसा कि इसके कई [[अकार्बनिक यौगिक]] होते हैं; | एलिमेंटल आर्सेनिक विषैला होता है, जैसा कि इसके कई [[अकार्बनिक यौगिक]] होते हैं; चूँकि इसके कुछ कार्बनिक यौगिक मुर्गियों में वृद्धि को बढ़ावा दे सकते हैं।<ref name="The Elements"/> सामान्य वयस्क के लिए आर्सेनिक की घातक खुराक 200 मिलीग्राम है और इससे दस्त, उल्टी, शूल, निर्जलीकरण और कोमा हो सकता है। आर्सेनिक विषाक्तता से मृत्यु सामान्यतः दिन के अंदर होती है।<ref name=Emsley/> | ||
एंटीमनी | एंटीमनी हल्का विषैला होता है।<ref name="The Disappearing Spoon"/>इसके अतिरिक्त, एंटीमनी के कंटेनरों में डूबी [[शराब]] उल्टी कर सकती है।<ref name="The Elements"/> जब बड़ी मात्रा में लिया जाता है, तो एंटीमनी पीड़ित में उल्टी का कारण बनता है, जो कई दिनों पश्चात मृत्यु से पूर्व ठीक हो जाता है। एंटीमनी स्वयं को कुछ एंजाइमों से जोड़ लेता है और इसे हटाना कठिन होता है। [[स्टिबाइन]], या SbH<sub>3</sub>, शुद्ध एंटीमनी से कहीं अधिक विषैला होता है।<ref name=Emsley/> | ||
बिस्मथ स्वयं | बिस्मथ स्वयं अधिक सीमा तक अन्य-विषैला होता है | चूँकि, इसका बहुत अधिक सेवन करने से लीवर को हानि हो सकती है। बिस्मथ विषाक्तता से व्यक्ति के मृत्यु की सूचना मिली है।<ref name=Emsley/>चूँकि, घुलनशील बिस्मथ लवण के सेवन से व्यक्ति के मसूड़े काले हो सकते हैं।<ref name="The Elements">{{cite book |last=Gray |first=Theodore |title=अवयव|year=2010}}</ref> | ||
किसी भी विषाक्तता रसायन का संचालन करने के लिए मोस्कोवियम | किसी भी विषाक्तता रसायन का संचालन करने के लिए मोस्कोवियम अधिक अस्थिर है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 14:07, 19 March 2023
| Pnictogens | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
| ↓ Period | |||||||||||
| 2 | Nitrogen (N) 7 Other nonmetal | ||||||||||
| 3 | Phosphorus (P) 15 Other nonmetal | ||||||||||
| 4 | Arsenic (As) 33 Metalloid | ||||||||||
| 5 | Antimony (Sb) 51 Metalloid | ||||||||||
| 6 | Bismuth (Bi) 83 Other metal | ||||||||||
| 7 | Moscovium (Mc) 115 other metal | ||||||||||
|
Legend
| |||||||||||
एक निक्टोजन[1] (/ˈpnɪktədʒən/ या /ˈnɪktədʒən/; से Ancient Greek: πνῑ́γω चोक एंड विकट:-gen#English|-gen, जनरेटर ) आवर्त सारणी के समूह (आवर्त सारणी) 15 में कोई भी रासायनिक तत्व है। समूह 15 को नाइट्रोजन समूह या नाइट्रोजन परिवार के रूप में भी जाना जाता है। समूह 15 में नाइट्रोजन (N), फास्फोरस (P), हरताल (As), एंटीमनी (Sb), विस्मुट (Bi) और मोस्कोवियम (Mc) तत्व शामिल हैं।
1988 से शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ इसे ग्रुप 15 कहती है। इससे पहले अमेरिका में इसे ग्रुप V कहा जाता था।A, एच. सी. डेमिंग और सार्जेंट-वेल्च वैज्ञानिक कंपनी के एक पाठ के कारण, जबकि यूरोप में इसे ग्रुप V कहा जाता थाBऔर IUPAC ने सिफारिश की कि 1970 में।[2] (उच्चारण समूह पांच ए और समूह पांच बी; वी रोमन अंक 5 है)। अर्धचालक भौतिकी में, इसे अभी भी आमतौर पर ग्रुप वी कहा जाता है।[3] ऐतिहासिक नामों में पाँच (V) नाइट्रोजन की वैलेंस (रसायन विज्ञान) से आते हैं, जो डाइनाइट्रोजन पेंटोक्साइड जैसे रासायनिक यौगिक के स्तुईचिओमेटरी द्वारा परिलक्षित होते हैं।2O5. उन्हें पेन्टल्स भी कहा गया है।
विशेषताएं
रासायनिक
अन्य समूहों के जैसे, इस समूह के सदस्य इलेक्ट्रॉन विन्यास में समान स्वरूप प्रदर्शित करते हैं, विशेष रूप से सबसे बाहरी कक्ष में, जिसके परिणामस्वरूप रासायनिक व्यवहार में सुविधा होती है।
| Z | तत्व | प्रति कक्ष इलेक्ट्रॉन |
|---|---|---|
| 7 | नाइट्रोजन | 2, 5 |
| 15 | फास्फोरस | 2, 8, 5 |
| 33 | आर्सेनिक | 2, 8, 18, 5 |
| 51 | एंटीमनी | 2, 8, 18, 18, 5 |
| 83 | बिस्मिथ | 2, 8, 18, 32, 18, 5 |
| 115 | मोस्कोवियम | 2, 8, 18, 32, 32, 18, 5
(predicted)
|
इस समूह की परिभाषित विशेषता यह है कि सभी घटक तत्वों के सबसे बाहरी इलेक्ट्रॉन कक्ष में 5 इलेक्ट्रॉन होते हैं, जिसमे उपकोश में 2 इलेक्ट्रॉन और 3 इलेक्ट्रॉन अयुग्मित होते हैं I[relevant?] पी उपकोश में इलेक्ट्रॉन अपने अन्य आयनीकृत अवस्था में सबसे बाहरी इलेक्ट्रॉन कक्ष को 3 इलेक्ट्रॉन भरने से अल्प हैं। समूह में सभी तत्वों की स्थिति का रसेल-सॉन्डर्स शब्द प्रतीक 4S3⁄2 है I
पृथ्वी पर जीवन के लिए इस समूह के सबसे महत्वपूर्ण तत्व नाइट्रोजन (N) होता हैं, जो इसके डायटोमिक रूप में वायु का प्रमुख घटक है, और फास्फोरस (P), जो नाइट्रोजन की जैसे, जीवन के सभी ज्ञात रूपों के लिए आवश्यक है।
यौगिक
समूह के द्विआधारी यौगिकों को सामूहिक रूप से निक्टाइड्स के रूप में संदर्भित किया जा सकता है। पैनिक्टाइड यौगिकों में अन्यस्थानीय गुण होते हैं, जैसे कि कमरे के तापमान पर प्रति-चुंबकीय और पैरामैग्नेटिक होना, पारदर्शी होना या गर्म होने पर विद्युत् उत्पन्न करना आदि। अन्य पैनिक्टाइड में त्रिगुट दुर्लभ-पृथ्वी तत्व (आरई) मुख्य-समूह के पैनिक्टाइड सम्मिलित होते हैं। ये REaMbPnc के रूप में होते हैं, जहाँ M कार्बन समूह या बोरॉन समूह तत्व है, और Pn नाइट्रोजन के अतिरिक्त कोई भी निक्टोजन है। ये यौगिक आयनिक बंधन और सहसंयोजक बंधन यौगिकों के मध्य होते हैं, और इस प्रकार असामान्य बंधन गुण होते हैं।[4] इन तत्वों को यौगिकों में उनकी रासायनिक स्थिरता के लिए सहसंयोजक बंधन डबल बांड और ट्रिपल बंधन बनाने की प्रवृत्ति के कारण भी जाना जाता है। इन तत्वों की यह संपत्ति उनकी संभावित विषाक्तता की ओर ले जाती है, जो फास्फोरस, आर्सेनिक और एंटीमनी में सबसे अधिक स्पष्ट है। जब ये पदार्थ शरीर के विभिन्न रसायनों के साथ प्रतिक्रिया करते हैं, तो वे मुक्त कण बनाते हैं, जिन्हें यकृत द्वारा सरलता से संसाधित नहीं किया जाता है, जहां वे एकत्रित होते हैं। विरोधाभासी रूप से, यही बंधन नाइट्रोजन और बिस्मथ की निम्न विषाक्तता का कारण होता है, क्योंकि अन्य परमाणुओं के साथ इन बंधनों को विभाजित करना कठिन होता है, जिससे अधिक अक्रिय अणु उत्पन्न होते हैं। उदाहरण के लिए, N2 नाइट्रोजन के डायटोमिक रूप, का उपयोग उन स्थितियों में अक्रिय गैस के रूप में किया जाता है, जहां आर्गन या अन्य नोबल गैस का उपयोग करना अधिक मूल्यवान होता है।
उनके पांच वैलेंस इलेक्ट्रॉनों द्वारा कई बांडों का निर्माण किया जाता है, जबकि ऑक्टेट नियम सहसंयोजक बंधन पर तीन इलेक्ट्रॉनों को स्वीकार करने के लिए एक निक्टोजन की अनुमति देता है। क्योंकि 5> 3, यह अप्रयुक्त दो इलेक्ट्रॉनों को अकेले जोड़े में छोड़ देता है, जब तक कि निकट कोई सकारात्मक चार्ज न हो (जैसे अमोनियम में NH+4 ) जब निक्टोजन केवल तीन एकल बांड निर्मित करता है, एकल जोड़ी के प्रभाव का परिणाम सामान्यतः त्रिकोणीय पिरामिडल आणविक ज्यामिति में होता है।
ऑक्सीकरण अवस्था
हल्के निक्टोजन (नाइट्रोजन, फॉस्फोरस और आर्सेनिक) निम्न होने पर -3 आवेश उत्पन्न करते हैं, जिससे उनका अष्टक पूरा हो जाता है। ऑक्सीकृत या आयनित होने पर, पनिस्टोगेंस सामान्यतः +3 या +5 की ऑक्सीकरण स्थिति लेते हैं। चूँकि, एस-कक्ष के इलेक्ट्रॉनों के अधिक स्थिर होने के कारण भारी पनिस्टोगेंस हल्के +3 ऑक्सीकरण अवस्था निर्मित करने की अधिक संभावना रखते हैं।[5]
−3 ऑक्सीकरण अवस्था
पनिस्टोगेंस अमोनिया, पनिस्टोगेंस हाइड्राइड निर्मित करने के लिए हाइड्रोजन के साथ प्रतिक्रिया कर सकते हैं। फॉस्फेन, आर्सेन, स्टेबेन और अंत में बिस्मुथेन के समूह में जाने पर, प्रत्येक निक्टोजन हाइड्राइड उत्तरोत्तर निम्न स्थिर, अधिक विषैला और इसमें छोटा हाइड्रोजन-हाइड्रोजन होता है। कोण (अमोनिया में 107.8° से[6] बिस्मुथेन में 90.48° तक)।[7] (इसके अतिरिक्त, तकनीकी रूप से, केवल अमोनिया और फॉस्फेन में -3 ऑक्सीकरण अवस्था में निक्टोजन होता है, क्योंकि शेष के लिए, निक्टोजन हाइड्रोजन की तुलना में निम्न विद्युतीय होता है।)
पूर्ण रूप से निम्न किए गए पनिस्टोगेंस वाले क्रिस्टलीय ठोस में यत्रियम नाइट्राइड, कैल्शियम फास्फाइड, सोडियम आर्सेनाइड, इंडियम एंटीमोनाइड और यहां तक कि एल्यूमीनियम गैलियम इंडियम फास्फाइड जैसे दोहरे लवण सम्मिलित होते हैं। इनमें गैलियम आर्सेनाइड सहित III-V अर्धचालक सम्मिलित होते हैं, जो सिलिकॉन के पश्चात् दूसरा सबसे व्यापक रूप से उपयोग किया जाने वाला अर्धचालक है।
+3 ऑक्सीकरण अवस्था
नाइट्रोजन सीमित संख्या में स्थिर III यौगिक निर्मित करती है। नाइट्रोजन (III) ऑक्साइड को केवल निम्न तापमान पर विभक्त किया जा सकता है, और नाइट्रस तेजाब अस्थिर होता है। नाइट्रोजन ट्राइफ्लोराइड एकमात्र स्थिर नाइट्रोजन ट्राइहैलाइड है, जिसमें नाइट्रोजन ट्राइक्लोराइड, नाइट्रोजन ट्राइब्रोमाइड, और नाइट्रोजन ट्रायोडाइड विस्फोटक होते हैं I नाइट्रोजन ट्रायोडाइड इतना शॉक-सेंसिटिव होता है कि पंख का स्पर्श इसे विस्फोट कर देता है (अंतिम तीन वास्तव में -3 ऑक्सीकरण स्थिति में नाइट्रोजन की विशेषता है ) I फॉस्फोरस, फास्फोरस ट्राइऑक्साइड ए +III ऑक्साइड निर्मित करता है, जो कमरे के तापमान, फास्फोरस एसिड और फॉस्फोरस हैलाइड ऑक्सीकरण अवस्था +3 (PX3) पर स्थिर होता है, चूँकि ट्रायोडाइड अस्थिर होता है। आर्सेनिक, आर्सेनाइट, आर्सेनिक एसिड और आर्सेनिक (III) ऑक्साइड के रूप में ऑक्सीजन के साथ +III यौगिक निर्मित करता है, और यह सभी चार ट्राइहैलाइड बनाता है। एंटीमनी एंटीमनी ट्राइऑक्साइड और एंटीमोनिट निर्मित करता है, किन्तु ऑक्सीकाइड्स नहीं निर्मित करता है। इसके ट्राइहैलाइड्स, एंटीमनी ट्राइफ्लोराइड, एंटीमनी ट्राइक्लोराइड, एंटीमनी ट्राइब्रोमाइड और एंटीमनी ट्रायोडाइड, सभी निक्टोजन ट्राइहैलाइड्स के जैसे, प्रत्येक में ट्राइगोनल पिरामिडल आणविक ज्यामिति होती है।
+3 ऑक्सीकरण अवस्था बिस्मथ की सामान्य ऑक्सीकरण स्थिति है, क्योंकि इसकी +5 ऑक्सीकरण स्थिति निर्मित करने की क्षमता सापेक्षतावादी क्वांटम रसायन विज्ञान द्वारा बाधित होती है, जो प्रभाव मोस्कोवियम के संबंध में और भी अधिक स्पष्ट हैं। बिस्मुथ (III), बिस्मुथ (III) ऑक्साइड, बिस्मथ ऑक्सीक्लोराइड, बिस्मथ ऑक्सीनाइट्रेट, और बिस्मुथ (III) सल्फाइड बनाता है। मोस्कोवियम (III) के बिस्मथ (III) के समान व्यवहार करने की भविष्यवाणी की गई है। मोस्कोवियम के सभी चार ट्राइहैलाइड निर्मित करने की भविष्यवाणी की गई है, जिनमें से सभी लेकिन ट्राइफ्लोराइड को द्रव में घुलनशील होने की भविष्यवाणी की गई है। यह + III ऑक्सीकरण अवस्था में ऑक्सीक्लोराइड और ऑक्सीब्रोमाइड निर्मित करने की भी भविष्यवाणी की जाती है।
+5 ऑक्सीकरण अवस्था
नाइट्रोजन के लिए, +5 अवस्था सामान्यतः N2O5 जैसे अणुओं की केवल औपचारिक व्याख्या के रूप में कार्य करती है, क्योंकि नाइट्रोजन की उच्च वैद्युतीय ऋणात्मकता इलेक्ट्रॉनों को लगभग समान रूप से भागेदारी करने का कारण होती है।[clarification needed] समन्वय संख्या 5 के साथ निक्टोजन यौगिक हाइपरवेलेंट अणु होते हैं। नाइट्रोजन पेंटाफ्लोराइड,नाइट्रोजन (वी) फ्लोराइड केवल सैद्धांतिक है, और इसे संश्लेषित नहीं किया गया है। वास्तविक +5 स्थिति अनिवार्य रूप से अन्य-सापेक्षवादी विशिष्ट निक्टोजन फॉस्फोरस, आर्सेनिक और एंटीमनी के लिए अधिक सामान्य है, जैसा कि उनके ऑक्साइड, फॉस्फोरस (वी) ऑक्साइड, आर्सेनिक (वी) ऑक्साइड, और एंटीमनी (वी) ऑक्साइड और उनके रूप में प्रदर्शित किया गया है I फ्लोराइड्स, फास्फोरस पेंटाफ्लोराइड, फॉस्फोरस (वी) फ्लोराइड, आर्सेनिक पेंटाफ्लोराइड, आर्सेनिक (वी) फ्लोराइड, एंटीमनी पेंटाफ्लोराइड, एंटीमनी (वी) फ्लोराइड कम से कम दो संबंधित फ्लोराइड-आयन, हेक्साफ्लोरोफॉस्फेट और हेक्साफ्लुओरोएण्टीमोनाते भी निर्मित करते हैं, जो अन्य-समन्वय वाले आयनों के रूप में कार्य करते हैं। फॉस्फोरस मिश्रित ऑक्साइड-हैलाइड्स भी निर्मित करता है, जिसे ऑक्सीहैलाइड्स रूप में जाना जाता है, जैसे फास्फोरस ऑक्सीक्लोराइड, और मिश्रित पेंटाहैलाइड्स, जैसे फॉस्फोरस ट्राइफ्लोरोडीक्लोराइड पेंटामेथिलपनिक्टोजेन (वी) यौगिक मोनोमेथिल आर्सेनिक, पेंटामैथिलांतिमोनी और पेंटामेथिलबिस्मथ के लिए उपस्तिथ होते हैं। चूँकि, बिस्मथ के लिए, +5 ऑक्सीकरण अवस्था 6s कक्ष के सापेक्षिक क्वांटम रसायन विज्ञान के कारण दुर्लभ हो जाती है, जिसे अक्रिय जोड़ी प्रभाव के रूप में जाना जाता है, जिससे 6s इलेक्ट्रॉन रासायनिक रूप से बंधन के लिए अनिच्छुक हों जाते है। इससे बिस्मथ (वी) ऑक्साइड अस्थिर हो जाता है,[8] और बिस्मथ पेंटाफ्लोराइड, बिस्मथ (वी) फ्लोराइड अन्य पेंटोजेन पेंटाफ्लोराइड्स की तुलना में अधिक प्रतिक्रियाशील होने के कारण, इसे अत्यंत शक्तिशाली फ्लोरिनेटिंग एजेंट निर्मित होता है।[9] यह प्रभाव मोस्कोवियम के लिए और भी अधिक स्पष्ट है, इसे +5 ऑक्सीकरण अवस्था प्राप्त करने से रोकता है।
अन्य ऑक्सीकरण अवस्थाएं
- नाइट्रोजन, नाइट्रोजन ऑक्साइड निर्मित करता है, जिसमें नाइट्रोजन विभिन्न प्रकार की ऑक्सीकरण अवस्थाओं को प्राप्त कर सकता है, जिसमें + II, + IV, और यहां तक कि कुछ मिश्रित-संयोजी यौगिक और अस्थिर नाइट्रेट कट्टरपंथी + VI ऑक्सीकरण अवस्थाएँ सम्मिलित होती है।
- हाइड्राज़ीन, डिफॉस्फेन और दो कार्बनिक डेरिवेटिव में, नाइट्रोजन या फास्फोरस परमाणुओं में -2 ऑक्सीकरण अवस्था होती है। इसी प्रकार, डीम्ड जिसमें दो नाइट्रोजन परमाणु एक-दूसरे से डबल-बॉन्ड होते हैं, और इसके कार्बनिक डेरिवेटिव में -1 के ऑक्सीकरण अवस्था में नाइट्रोजन होता है।
- इसी प्रकार, रिअलगार में आर्सेनिक-आर्सेनिक बंधन होते हैं, इसलिए आर्सेनिक का ऑक्सीकरण अवस्था + II है।
- एंटीमनी के लिए संगत यौगिक Sb2(C6H5)4 है, जहां एंटीमनी की ऑक्सीकरण अवस्था + II है।
- फास्फोरस में हाइपोफॉस्फोरस एसिड में +1 ऑक्सीकरण अवस्था और हाइपोफॉस्फोरिक एसिड में +4 ऑक्सीकरण अवस्था होती है।
- एंटीमनी टेट्रोक्साइड मिश्रित-वैलेंस कंपाउंड है, जहां एंटीमनी के आधे परमाणु +3 ऑक्सीकरण अवस्था में हैं, और शेष +5 ऑक्सीकरण अवस्था में हैं।
- यह आशा की जाती है, कि मोस्कोवियम का 7s और 7p1/2 दोनों के लिए अक्रिय युग्म प्रभाव होगा Iक्योंकि अकेले 7p3/2 इलेक्ट्रॉन की बाध्यकारी ऊर्जा 7p1/2 इलेक्ट्रॉनों की तुलना में अल्प है। यह भविष्यवाणी की गई है, कि मोस्कोवियम के लिए +I सामान्य ऑक्सीकरण अवस्था है, चूँकि यह बिस्मथ और नाइट्रोजन के लिए भी कुछ सीमा तक होता है।[10]
भौतिक
निक्टोजन में दो अन्य-धातु ( गैस और ठोस), दो उपधातु, धातु और अज्ञात रासायनिक गुणों वाला तत्व होता है। समूह के सभी तत्व कमरे के तापमान पर ठोस होते हैं, नाइट्रोजन के अतिरिक्त सभी कमरे के तापमान पर गैसीय होते है। नाइट्रोजन और बिस्मथ, दोनों निक्टोजन होने के साथ उनके भौतिक गुणों में बहुत भिन्न हैं। उदाहरण के लिए, मानक तापमान और दबाव पर नाइट्रोजन पारदर्शी अन्य-धात्विक गैस है, जबकि बिस्मथ चांदी-सफेद धातु है।[11]
पनिस्टोगेंस का घनत्व भारी पनिस्टोगेंस की ओर बढ़ता है। नाइट्रोजन का घनत्व एसटीपी पर 0.001251 ग्राम/सेमी3 है।[11]एसटीपी में फास्फोरस का घनत्व 1.82 ग्राम/सेमी3, आर्सेनिक 5.72 ग्राम/सेमी3, एंटीमनी 6.68 ग्राम/सेमी3, और बिस्मथ का मान 9.79 ग्राम/सेमी3 होता है I[12]नाइट्रोजन का गलनांक -210 °C और इसका क्वथनांक -196 °C होता है। फास्फोरस का गलनांक 44 °C और क्वथनांक 280 °C होता है। मानक दबाव पर उच्च बनाने की क्रिया (चरण संक्रमण) के लिए आर्सेनिक केवल दो तत्वों में से है; यह 603 °C पर ऐसा क्रिया करता है। एंटीमनी का गलनांक 631 °C और इसका क्वथनांक 1587 °C है। बिस्मथ का गलनांक 271 °C और इसका क्वथनांक 1564 °C है।[12]
नाइट्रोजन की क्रिस्टल संरचना हेक्सागोनल क्रिस्टल प्रणाली होती है। फास्फोरस की क्रिस्टल संरचना घन क्रिस्टल प्रणाली होती है। आर्सेनिक, एंटीमनी और बिस्मथ सभी में रहोबोहेड्राल प्रणाली क्रिस्टल संरचनाएं होती हैं।[12]
इतिहास
नाइट्रोजन यौगिक नमक अमोनियाक (अमोनियम क्लोराइड) प्राचीन मिस्रवासियों के समय से जाना जाता है। 1760 के दशक में दो वैज्ञानिकों, हेनरी कैवेंडिश और जोसेफ प्रिस्टले ने वायु में नाइट्रोजन को विभक्त किया, किन्तु किसी अनदेखे तत्व की उपस्थिति का अनुभव नहीं हुआ। कई वर्षों बाद, 1772 में, डेनियल रदरफोर्ड को एहसास हुआ कि गैस वास्तव में नाइट्रोजन थी।[13] कीमिया हेनरी ब्रांट ने पहली बार 1669 में हैम्बर्ग में फास्फोरस की खोज की थी। ब्रांट ने वाष्पित यूरिन को गर्म करके और द्रव में परिणामी फास्फोरस वाष्प को संघनित करके तत्व का उत्पादन किया था। ब्रांट ने प्रारम्भ में विचार किया था, कि उन्होंने पारस पत्थर की शोध किया था, लेकिन अंततः अनुभव किया कि ऐसा नहीं था।[13]
आर्सेनिक यौगिकों को 5000 वर्षों के लिए जाना जाता है, और प्राचीन ग्रीक थियोफ्रेस्टस ने आर्सेनिक खनिजों को रीयलगर और ऑर्पीमेंट कहा जाता है। एलिमेंटल आर्सेनिक का शोध 13वीं शताब्दी में अल्बर्टस मैग्नस ने किया था।[13]
एंटीमनी पूर्वजों के लिए जाना जाता था। लौवर में लगभग शुद्ध एंटीमनी से निर्मित 5000 साल प्राचीन फूलदान उपस्तिथ है। बेबीलोनिया काल में रंगों के एंटीमनी यौगिकों का उपयोग किया जाता था। एंटीमनी खनिज कठोर ग्रीक का घटक हो सकता है।[13]
बिस्मथ का शोध प्रथम बार 1400 में कीमियागर द्वारा की गई थी। बिस्मथ के परिक्षण के 80 वर्षों के अंदर, इसका मुद्रण और कास्केट (सजावटी बॉक्स) में उपयोग किया गया था। इंकास 1500 तक चाकुओं में बिस्मथ का भी उपयोग कर रहे थे। बिस्मथ को मूल रूप से लेड के समान माना जाता था, लेकिन 1753 में, क्लाउड फ्रांकोइस ज्योफ्रॉय ने सिद्ध कर दिया कि बिस्मथ लेड से भिन्न था।[13]
2003 में एमेरिकियम-243 परमाणुओं पर कैल्शियम-48 परमाणुओं की बमबारी करके सफलतापूर्वक मोस्कोवियम का उत्पादन किया गया था।[13]
नाम और व्युत्पत्ति
शब्द निक्टोजन प्राचीन ग्रीक शब्द से लिया गया है, πνίγειν (pnígein) का अर्थ चोक करना, नाइट्रोजन गैस के चोकिंग या दमघोंटू गुण को संदर्भित करना है।[14] यह दो सामान्य सदस्यों, पी और एन के लिए स्मरक के रूप में भी प्रयोग किया जा सकता है। 1950 के दशक के प्रारम्भ में डच रसायनज्ञ एंटोन एडुआर्ड वैन अर्केल द्वारा शब्द निक्टोजन का सुझाव दिया गया था। इसे पनिकोजीन या निक्टोजन भी लिखा जाता है। पनिकोजीन शब्द निक्टोजन शब्द की तुलना में दुर्लभ है,और पनिकोजीन का उपयोग करने वाले शैक्षणिक शोध पत्रों का अनुपात 2.5 से 1 है।[4] यह ग्रीक भाषा की जड़ (भाषाविज्ञान) से आता है I πνιγ- (चोक, गला घोंटना) और इस प्रकार निक्टोजन शब्द भी नाइट्रोजन के लिए डच और जर्मन नामों का संदर्भ है। निक्टोजन को घुटन निर्माता के रूप में अनुवादित किया जा सकता है। पेनिक्टाइड शब्द भी इसी मूल से आया है।[14] नाम पेंटेल्स (ग्रीक से πέντε, pénte, पाँच) भी इस समूह के लिए चयनित किया गया था।[15]
घटना
नाइट्रोजन पृथ्वी के 25 भागों प्रति मिलियन, औसतन 5 भाग प्रति मिलियन मिट्टी, 100 से 500 भागों प्रति ट्रिलियन समुद्री जल और 78% शुष्क वायु का निर्माण करती है। पृथ्वी पर अधिकांश नाइट्रोजन, गैस के रूप में होते है, लेकिन कुछ नाइट्रेट खनिज उपस्तिथ हैं। सामान्य मानव का 2.5% नाइट्रोजन भार के अनुसार होता है।[13]
फास्फोरस पृथ्वी में प्रति मिलियन 0.1% भाग निर्मित करता है, जिससे यह पृथ्वी में तत्वों की 11 वीं बहुतायत बन जाता है। फास्फोरस 0.65 भाग प्रति मिलियन मिट्टी और 15 से 60 भाग प्रति बिलियन समुद्री जल बनाता है। पृथ्वी पर 200 मेगाटन सुलभ फास्फेट हैं। फास्फोरस भार के अनुसार सामान्य मानव का 1.1% बनाता है।[13]फास्फोरस एपेटाइट समूह के खनिजों में होता है, जो फॉस्फेट चट्टानों के मुख्य घटक होते हैं।
आर्सेनिक पृथ्वी में प्रति मिलियन 1.5 भाग निर्मित करता है, जिससे यह वहां 53वां प्रचुर तत्व बन जाता है। मिट्टी में 1 से 10 भाग प्रति मिलियन आर्सेनिक होता है, और समुद्री जल में 1.6 भाग प्रति बिलियन आर्सेनिक होता है। आर्सेनिक भार के अनुसार सामान्य मानव के 100 भाग प्रति बिलियन बनाता है। कुछ आर्सेनिक तात्विक रूप में उपस्तिथ हैं, लेकिन अधिकांश आर्सेनिक खनिज ऑरपिमेंट, रियलगर, आर्सेनोफोरस और एरगिटे में पाए जाते हैं।[13]
एंटीमोनी पृथ्वी प्रति मिलियन 0.2 भाग निर्मित करता है, जिससे यह वहां 63वां सबसे प्रचुर तत्व बन जाता है। मिट्टी में औसतन 1 भाग प्रति मिलियन एंटीमनी होता है, और समुद्री जल में औसतन 300 भाग प्रति खरब एंटीमनी होता है। विशिष्ट मानव में भार के अनुसार 28 भाग प्रति अरब एंटीमनी होता है। चांदी के निक्षेपों में कुछ तात्विक एंटीमनी होता है।[13]
बिस्मथ पृथ्वी के प्रति अरब 48 भागों को निर्मित करता है, जिससे यह वहां 70वां सबसे प्रचुर तत्व बन जाता है। मिट्टी में लगभग 0.25 भाग प्रति मिलियन बिस्मथ होते हैं, और समुद्री जल में बिस्मथ के प्रति ट्रिलियन में 400 भाग होते हैं। बिस्मुथ सामान्यतः खनिज बिस्मथनाइट के रूप में होता है, लेकिन बिस्मुथ भी मौलिक रूप में या सल्फाइड अयस्कों में होता है।[13]
कण त्वरक में मोस्कोवियम समय में कई परमाणुओं का उत्पादन करता है।[13]
उत्पादन
नाइट्रोजन
वायु के आंशिक आसवन द्वारा नाइट्रोजन का उत्पादन किया जा सकता है।[16]
फास्फोरस
फॉस्फोरस के उत्पादन की मुख्य विधि इलेक्ट्रिक आर्क फर्नेस में कार्बन के साथ फॉस्फेट को अल्प करना (रसायन विज्ञान) है।[17]
आर्सेनिक
अधिकांश आर्सेनिक वायु की उपस्थिति में खनिज आर्सेनोपाइराइट को गर्म करके तैयार किया जाता है। यह आर्सेनिक ट्राइऑक्साइड As4O6 बनाता है I जिससे आर्सेनिक को कार्बन रिडक्शन के जरिए निकाला जा सकता है। चूँकि, ऑक्सीजन के बिना 650 से 700 डिग्री सेल्सियस पर आर्सेनोपाइराइट को गर्म करके धात्विक आर्सेनिक बनाना भी संभव है।[18]
एंटीमनी
सल्फाइड अयस्कों के साथ, एंटीमनी का उत्पादन करने की विधि कच्चे अयस्क में एंटीमनी की मात्रा पर निर्भर करती है। यदि अयस्क में भार के अनुसार 25% से 45% एंटीमनी होता है, तो वात भट्टी में अयस्क को गलाने से कच्चे एंटीमनी का उत्पादन होता है। यदि अयस्क में भार के अनुसार 45% से 60% एंटीमनी होता है, तो अयस्क को गर्म करके एंटीमनी प्राप्त किया जाता है, जिसे परिसमापन भी कहा जाता है। भार के अनुसार 60% से अधिक एंटीमनी वाले अयस्कों को पिघले हुए अयस्क से लोहे की छीलन के साथ रासायनिक रूप से विस्थापित किया जाता है, जिसके परिणामस्वरूप अशुद्ध धातु प्राप्त होती है।
यदि ऐन्टिमनी के ऑक्साइड अयस्क में वजन के हिसाब से 30% से कम ऐंटीमनी है, तो अयस्क को ब्लास्ट फर्नेस में कम किया जाता है। यदि अयस्क में वजन के हिसाब से 50% एंटीमनी होता है, तो अयस्क को एक परावर्तनी भट्टी में कम किया जाता है।
मिश्रित सल्फाइड और ऑक्साइड के साथ एंटीमनी अयस्कों को ब्लास्ट फर्नेस में प्रगलित किया जाता है।[19]
बिस्मथ
बिस्मथ खनिज विशेष रूप से सल्फाइड और ऑक्साइड के रूप में प्राप्त किये जाते हैं, लेकिन बिस्मथ का उत्पादन लेड अयस्कों के गलाने के उप-उत्पाद के रूप में या चीन में टंगस्टन और जस्ता अयस्कों के रूप में करना अधिक आर्थिक है।[20]
मोस्कोवियम
मोस्कोवियम समय में कण त्वरक के कुछ परमाणुओं का उत्पादन करता है, जब तक कि अमेरिकाियम में कैल्शियम -48 आयनों का बीम फायरिंग नहीं हो जाता, जब तक कि नाभिक फ्यूज न हो जाए।[21]
अनुप्रयोग
- तरल नाइट्रोजन सामान्यतः प्रयोग किया जाने वाला क्रायोजेनिक तरल होता है।[11]*अमोनिया के रूप में नाइट्रोजन अधिकांश पौधों के जीवित रहने के लिए महत्वपूर्ण पोषक तत्व है।[11] हैबर प्रक्रिया दुनिया की ऊर्जा खपत का लगभग 1-2% और भोजन में अल्प नाइट्रोजन का बहुमत है।
- फॉस्फोरस का उपयोग माचिस और आग लगाने वाले बमों में किया जाता है।[11] फास्फेट उर्वरक दुनिया के अधिकतर भाग को खिलाने में सहायता करता है।[11] आर्सेनिक को ऐतिहासिक रूप से पेरिस हरा पिगमेंट के रूप में उपयोग किया जाता था, लेकिन इसकी अत्यधिक विषाक्तता के कारण अब इसका उपयोग नहीं किया जाता है।[11]*ऑर्गेनोआर्सेनिक रसायन के रूप में आर्सेनिक का उपयोग कभी-कभी चिकन फीड में किया जाता है।[11]* कुछ गोलियां निर्मित करने के लिए एंटीमनी में सीसे की मिश्रधातु होती है।[11]* चीन के कुछ भागो में 1930 के दशक में एंटीमनी मुद्रा का संक्षिप्त रूप से उपयोग किया गया था, लेकिन इस उपयोग को बंद कर दिया गया था, क्योंकि एंटीमनी नरम और जहरीली दोनों है।[22]
- पपता-बिस्मल में बिस्मथ सबसालिसिलेट सक्रिय संघटक है।[11]*मानव कैंसर रोगियों में विकिरण चिकित्सा में सुधार के लिए उम्मीदवार के रूप में बिस्मथ चॉकोजेनाइड्स का अध्ययन कैंसरग्रस्त चूहों में किया जा रहा है।[23]
जैविक भूमिका
नाइट्रोजन पृथ्वी पर जीवन के लिए महत्वपूर्ण अणुओं का घटक है, जैसे डीएनए और अमीनो अम्ल कुछ पौधों में नाइट्रेट पौधों की गांठों में उपस्थित जीवाणुओं के कारण होता है। यह मटर जैसे फलीदार पौधों में देखा जाता है[clarification needed] या पालक और सलाद के रूप में देखा जाता है।[citation needed] 70 किलो के मानव में 1.8 किलोग्राम नाइट्रोजन होता है।[13]
फॉस्फेट के रूप में फास्फोरस जीवन के लिए महत्वपूर्ण यौगिकों में पाया जाता है, जैसे कि डीएनए और एडेनोसाइन ट्रायफ़ोस्फेट मनुष्य प्रतिदिन लगभग 1 ग्राम फॉस्फोरस का उपभोग करते हैं।[24] फास्फोरस मछली, जिगर, टर्की, चिकन और अंडे जैसे खाद्य पदार्थों में पाया जाता है। फॉस्फेट की अल्पता ऐसी समस्या है जिसे हाइपोफोस्फेटेमिया कहा जाता है। 70 किलो के मानव में 480 ग्राम फॉस्फोरस होता है।[13]
आर्सेनिक मुर्गियों और चूहों में वृद्धि को बढ़ावा देता है, और सूक्ष्म पोषक तत्व हो सकता है। आर्सेनिक को अमीनो एसिड अर्गिनीने के चयापचय में दिखाया गया है। 70 किलो के इंसान में 7 मिलीग्राम आर्सेनिक होता है।[13]
एंटीमोनी को जैविक भूमिका के लिए नहीं जाना जाता है। पौधे केवल एंटीमनी की मात्रा का पता लगाते हैं। 70 किलो के मानव में लगभग 2 मिलीग्राम एंटीमनी होता है।[13]
बिस्मथ को जैविक भूमिका के लिए नहीं जाना जाता है। मनुष्य प्रति दिन औसतन 20 μg से निम्न बिस्मथ ग्रहण करते हैं। 70 किलो के भार वाले इंसान में बिस्मथ की मात्रा 500 माइक्रोग्राम से अल्प होती है।[13]
विषाक्तता
नाइट्रोजन गैस पूर्ण रूप से जहरीली नहीं होती है, लेकिन शुद्ध नाइट्रोजन गैस में सांस लेना घातक होता है, क्योंकि यह नाइट्रोजन श्वासावरोध का कारण बनती है।[22] रक्त में नाइट्रोजन के बुलबुले का निर्माण, जैसे कि स्कूबा डाइविंग के समय में हो सकता है, स्थिति उत्त्पन्न कर सकता है, जिसे बेंड्स के रूप में जाना जाता है। कई नाइट्रोजन यौगिक जैसे हाइड्रोजन साइनाइड और नाइट्रोजन आधारित विस्फोटक भी अत्यधिक खतरनाक होते हैं।[13]
सफेद फास्फोरस विषैला होता है, जिसमें 1 मिलीग्राम प्रति किलोग्राम शरीर के भार के लिए घातक खुराक होती है।[11]सफेद फास्फोरस सामान्यतः लीवर पर वार करता है जिसके परिणाम स्वरुप सप्ताह के अंदर मनुष्यों की मृत्यु हो जाती है। अपने गैसीय रूप में फॉस्फोरस में सांस लेने से औद्योगिक बीमारी हो सकती है, जिसे फॉसी जॉ कहा जाता है, जो जबड़े की हड्डी को खा जाती है। सफेद फास्फोरस भी अत्यधिक ज्वलनशील होता है। कुछ ऑर्गनोफॉस्फोरस यौगिक मानव शरीर में एंजाइमों को घातक रूप से अवरुद्ध कर सकते हैं।[13]
एलिमेंटल आर्सेनिक विषैला होता है, जैसा कि इसके कई अकार्बनिक यौगिक होते हैं; चूँकि इसके कुछ कार्बनिक यौगिक मुर्गियों में वृद्धि को बढ़ावा दे सकते हैं।[11] सामान्य वयस्क के लिए आर्सेनिक की घातक खुराक 200 मिलीग्राम है और इससे दस्त, उल्टी, शूल, निर्जलीकरण और कोमा हो सकता है। आर्सेनिक विषाक्तता से मृत्यु सामान्यतः दिन के अंदर होती है।[13]
एंटीमनी हल्का विषैला होता है।[22]इसके अतिरिक्त, एंटीमनी के कंटेनरों में डूबी शराब उल्टी कर सकती है।[11] जब बड़ी मात्रा में लिया जाता है, तो एंटीमनी पीड़ित में उल्टी का कारण बनता है, जो कई दिनों पश्चात मृत्यु से पूर्व ठीक हो जाता है। एंटीमनी स्वयं को कुछ एंजाइमों से जोड़ लेता है और इसे हटाना कठिन होता है। स्टिबाइन, या SbH3, शुद्ध एंटीमनी से कहीं अधिक विषैला होता है।[13]
बिस्मथ स्वयं अधिक सीमा तक अन्य-विषैला होता है | चूँकि, इसका बहुत अधिक सेवन करने से लीवर को हानि हो सकती है। बिस्मथ विषाक्तता से व्यक्ति के मृत्यु की सूचना मिली है।[13]चूँकि, घुलनशील बिस्मथ लवण के सेवन से व्यक्ति के मसूड़े काले हो सकते हैं।[11] किसी भी विषाक्तता रसायन का संचालन करने के लिए मोस्कोवियम अधिक अस्थिर है।
यह भी देखें
- 2008 में खोजे गए सुपरकंडक्टर्स सहित ऑक्सीपनीटाइड
- लौह आधारित सुपरकंडक्टर, फेरोनिक्टाइड और ऑक्सीपनीक्टाइड सुपरकंडक्टर्स
संदर्भ
- ↑ International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC–IUPAC. ISBN 0-85404-438-8. p. 51. Electronic version.
- ↑ Fluck, E (1988). "आवर्त सारणी में नए अंकन" (PDF). Pure and Applied Chemistry. 60 (3): 431–6. doi:10.1351/pac198860030431. S2CID 96704008.
- ↑ Adachi, S., ed. (2005). समूह- IV, III-V और II-VI सेमीकंडक्टर के गुण. Wiley Series in Materials for Electronic & Optoelectronic Applications. Vol. 15. Hoboken, New Jersey: John Wiley & Sons. Bibcode:2005pgii.book.....A. ISBN 978-0470090329.
- ↑ 4.0 4.1 "Pnicogen – Molecule of the Month". University of Bristol
- ↑ Boudreaux, Kevin A. "Group 5A — The Pnictogens". Department of Chemistry, Angelo State University, Texas
- ↑ Greenwood, N.N.; Earnshaw, A. (1997). तत्वों का रसायन (2nd ed.). Oxford: Butterworth-Heinemann. p. 423. ISBN 0-7506-3365-4.
- ↑ Jerzembeck W, Bürger H, Constantin L, Margulès L, Demaison J, Breidung J, Thiel W (2002). "Bismuthine BiH3: Fact or Fiction? High-Resolution Infrared, Millimeter-Wave, and Ab Initio Studies". Angew. Chem. Int. Ed. 41 (14): 2550–2552. doi:10.1002/1521-3773(20020715)41:14<2550::AID-ANIE2550>3.0.CO;2-B. PMID 12203530.
- ↑ Scott, Thomas; Eagleson, Mary (1994). संक्षिप्त विश्वकोश रसायन. Walter de Gruyter. p. 136. ISBN 978-3-11-011451-5.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 561–563. ISBN 978-0-08-037941-8.
- ↑ Keller, O. L. Jr.; C. W. Nestor, Jr. (1974). "Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth" (PDF). Journal of Physical Chemistry. 78 (19): 1945. doi:10.1021/j100612a015.
- ↑ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 Gray, Theodore (2010). अवयव.
- ↑ 12.0 12.1 12.2 Jackson, Mark (2001), Periodic Table Advanced, BarCharts Publishing, Incorporated, ISBN 1572225424
- ↑ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 Emsley, John (2011), Nature's Building Blocks, ISBN 978-0-19-960563-7
- ↑ 14.0 14.1 Girolami, Gregory S. (2009). "Pnictogen और Pnictide शब्दों की उत्पत्ति". Journal of Chemical Education. American Chemical Society. 86 (10): 1200. Bibcode:2009JChEd..86.1200G. doi:10.1021/ed086p1200.
- ↑ Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, p. 586, ISBN 0-12-352651-5
- ↑ Sanderson, R. Thomas (February 1, 2019). "nitrogen – Definition, Symbol, Uses, Properties, Atomic Number, and Facts". Encyclopædia Britannica.
- ↑ "फास्फोरस (रासायनिक तत्व)". Encyclopædia Britannica. 11 October 2019.
- ↑ "आर्सेनिक (रासायनिक तत्व)". Encyclopædia Britannica. 11 October 2019.
- ↑ Butterman, C.; Carlin, Jr., J.F. (2003). Mineral Commodity Profiles: Antimony. United States Geological Survey.
- ↑ Bell, Terence. "Metal Profile: Bismuth". About.com. Archived from the original on 5 July 2012.
- ↑ Oganessian, Yu Ts; Utyonkov, V K (9 March 2015). "अतिभारी तत्व अनुसंधान". Reports on Progress in Physics. 78 (3): 3. Bibcode:2015RPPh...78c6301O. doi:10.1088/0034-4885/78/3/036301. PMID 25746203.
- ↑ 22.0 22.1 22.2 Kean, Sam (2011), The Disappearing Spoon, Transworld, ISBN 9781446437650
- ↑ Huang, Jia; Huang, Qiong; Liu, Min; Chen, Qiaohui; Ai, Kelong (February 2022). "कैंसर रेडियोथेरेपी के लिए इमर्जिंग बिस्मथ चाल्कोजेनाइड्स आधारित नैनोड्रग्स". Frontiers in Pharmacology. 13: 844037. doi:10.3389/fphar.2022.844037. PMC 8894845. PMID 35250594.
- ↑ "आहार में फास्फोरस". MedlinePlus. NIH–National Library of Medicine. 9 April 2020.