त्वरण: Difference between revisions
No edit summary |
No edit summary |
||
| (10 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
यांत्रिकी में, समय के संबंध में किसी ऑब्जेक्ट के [[वेग]] में परिवर्तन की [[ दर (गणित) |दर (गणित)]] को त्वरण कहते हैं। त्वरण सदिश भौतिक राशियाँ के रूप में होती है, जिसमें उनका [[ परिमाण (गणित) |परिमाण (गणित)]] और [[ दिशा (ज्यामिति) |दिशा (ज्यामिति)]] के रूप में होता है।<ref>{{cite book |title=Relativity and Common Sense |first=Hermann |last=Bondi |pages=[https://archive.org/details/relativitycommon0000bond/page/3 3] |publisher=Courier Dover Publications |year=1980 |isbn=978-0-486-24021-3 |url=https://archive.org/details/relativitycommon0000bond/page/3 }}</ref><ref>{{cite book |title=Physics the Easy Way |pages=[https://archive.org/details/physicseasyway00lehr_0/page/27 27] |first=Robert L. |last=Lehrman |publisher=Barron's Educational Series |year=1998 |isbn=978-0-7641-0236-3 |url=https://archive.org/details/physicseasyway00lehr_0/page/27 }}</ref> किसी ऑब्जेक्ट के त्वरण का ओरिएंटेशन उस ऑब्जेक्ट पर कार्य करने वाले शुद्ध बल के ओरिएंटेशन द्वारा दिया जाता है। न्यूटन के दूसरे नियम द्वारा वर्णित ऑब्जेक्ट के त्वरण का परिमाण,<ref>{{cite book |title=The Principles of Mechanics |first=Henry |last=Crew |publisher=BiblioBazaar, LLC |year=2008 |isbn=978-0-559-36871-4 |pages=43}}</ref> दो कारणों का संयुक्त प्रभाव के रूप में होता है | |||
* उस ऑब्जेक्ट पर कार्य करने वाले सभी बाहरी बलों का शुद्ध संतुलन परिमाण इस शुद्ध परिणामी बल के लिए [[ प्रत्यक्ष आनुपातिकता |स्पष्टतः समानुपातिक]] रूप में होता है, | |||
* उस ऑब्जेक्ट का [[ द्रव्यमान |द्रव्यमान]] उन पदार्थो पर निर्भर करता है, जिनमें से इसे बनाया गया है, परिमाण ऑब्जेक्ट के द्रव्यमान के लिए व्युत्क्रम समानुपातिक रूप में होता है। | |||
त्वरण के लिए यूनिट की अंतर्राष्ट्रीय प्रणाली मीटर प्रति सेकंड वर्ग ({{nowrap|m⋅s<sup>−2</sup>}}, <math>\mathrm{\tfrac{m}{s^2}}</math>) के रूप में होती है। | |||
उदाहरण के लिए, जब कोई [[वाहन]] संदर्भ के एक जड़त्वीय फ्रेम में स्थिर शून्य वेग से शुरू होता है और बढ़ती गति से एक सीधी रेखा में यात्रा करता है, तो यह यात्रा की दिशा में तेजी ला रहा होता है। यदि वाहन मुड़ता है तो त्वरण नई दिशा की ओर होता है और इसके गति वेक्टर को बदल देता है। गति की अपनी धारा दिशा में वाहन के त्वरण को वृत्ताकार गति के समय एक रैखिक या स्पर्शरेखा कहा जाता है, त्वरण[[ प्रतिक्रिया (भौतिकी) | प्रतिक्रिया (भौतिकी)]] जिसके लिए यात्रियों को एक बल के रूप में अनुभव होता है, यह बल इन्हें अपनी सीटों में वापस धकेलता है। दिशा बदलते समय प्रभावी त्वरण को वृत्ताकार गति त्वरण के समय रेडियल या सेंट्रिपेटल कहा जाता है, जिसकी प्रतिक्रिया यात्रियों को एक [[केन्द्रापसारक बल]] के रूप में अनुभव करते हैं। यदि वाहन की गति कम हो जाती है, तो यह गणितीय रूप से नकारात्मक दिशा में त्वरण के रूप में होता है जिसे कभी -कभी मंद होना या मंदबुद्धिता कहा जाता है और यात्रियों को एक जड़त्वीय बल के रूप में गतिहीनता की प्रतिक्रिया का अनुभव होता है। इस तरह के नकारात्मक त्वरण अधिकांशतः अंतरिक्ष यान में [[ रिट्रोरॉकेट |रिट्रोरॉकेट]] जलने से प्राप्त होते हैं।<ref>{{cite book |author1=Raymond A. Serway |author2=Chris Vuille |author3=Jerry S. Faughn |title=College Physics, Volume 10 |year=2008 |publisher=Cengage |isbn=9780495386933 |page=32 |url=https://books.google.com/books?id=CX0u0mIOZ44C&pg=PA32}}</ref> त्वरण और मंदी दोनों को समान माना जाता है, क्योंकि ये दोनों के वेग में परिवर्तन होते हैं। इनमें से प्रत्येक त्वरण स्पर्शरेखा, रेडियल, डिलेरेशन यात्रियों द्वारा महसूस किया जाता है जब तक उनके सापेक्ष विभेदी वेग को गति में परिवर्तन के कारण त्वरण के संदर्भ में निष्क्रिय रूप में नहीं हो जाते हैं। | |||
उदाहरण के लिए, जब कोई [[ वाहन ]] | |||
== परिभाषा और गुण == | == परिभाषा और गुण == | ||
[[File:Kinematics.svg|thumb|300px|एक | [[File:Kinematics.svg|thumb|300px|एक मौलिक कण की काइनेमेटिक मात्रा: द्रव्यमान {{mvar|m}}, स्थान {{math|'''r'''}}, वेग {{math|'''v'''}}, त्वरण {{math|'''a'''}}।]] | ||
=== औसत त्वरण === | === औसत त्वरण === | ||
[[File:Acceleration as derivative of velocity along trajectory.svg|right|thumb|त्वरण वेग के परिवर्तन की दर है।किसी प्रक्षेपवक्र पर किसी भी बिंदु पर, त्वरण की भयावहता उस बिंदु पर परिमाण और दिशा दोनों में वेग के परिवर्तन की दर से दी जाती है।समय पर सच्चा त्वरण {{mvar|t}} [[ समय अंतराल ]] के रूप में सीमा में पाया जाता है {{math|Δ''t'' → 0}} का {{math|Δ'''v'''/Δ''t''}}]] | [[File:Acceleration as derivative of velocity along trajectory.svg|right|thumb|त्वरण वेग के परिवर्तन की दर है।किसी प्रक्षेपवक्र पर किसी भी बिंदु पर, त्वरण की भयावहता उस बिंदु पर परिमाण और दिशा दोनों में वेग के परिवर्तन की दर से दी जाती है।समय पर सच्चा त्वरण {{mvar|t}} [[ समय अंतराल |समय अंतराल]] के रूप में सीमा में पाया जाता है {{math|Δ''t'' → 0}} का {{math|Δ'''v'''/Δ''t''}}]] | ||
[[ भौतिकी में समय ]] की अवधि में एक | [[ भौतिकी में समय | भौतिकी में समय]] की अवधि में एक ऑब्जेक्ट का औसत त्वरण वेग <math>\Delta \mathbf{v}</math>,में इसका परिवर्तन होता है, जिसे अवधि <math>\Delta t</math>। से विभाजित किया जाता है, गणितीय रूप से इस प्रकार दिखाया गया है। | ||
<math display="block">\bar{\mathbf{a}} = \frac{\Delta \mathbf{v}}{\Delta t}.</math> | <math display="block">\bar{\mathbf{a}} = \frac{\Delta \mathbf{v}}{\Delta t}.</math> | ||
=== तात्कालिक त्वरण === | === तात्कालिक त्वरण === | ||
[[File:1-D kinematics.svg|thumb|right|नीचे से उपर तक: {{bulleted list | [[File:1-D kinematics.svg|thumb|right|नीचे से उपर तक: {{bulleted list | ||
| Line 25: | Line 22: | ||
| and the integral of the velocity is the distance function {{math|''s''(''t'')}}. | | and the integral of the velocity is the distance function {{math|''s''(''t'')}}. | ||
}}]] | }}]] | ||
तात्कालिक त्वरण | इस बीच तात्कालिक त्वरण, समय के एक अतिसूक्ष्म अंतराल पर औसत त्वरण के [[ एक समारोह की सीमा |फलन की सीमा]] के रूप में होता है। [[ गणना |गणना]] के संदर्भ में, तात्कालिक त्वरण समय के संबंध में वेग सदिश का व्युत्पन्न होता है। | ||
<math display="block">\mathbf{a} = \lim_{{\Delta t} \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \frac{d\mathbf{v}}{dt}</math> | <math display="block">\mathbf{a} = \lim_{{\Delta t} \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \frac{d\mathbf{v}}{dt}</math> | ||
जैसा कि त्वरण को वेग | जैसा कि त्वरण को वेग {{math|'''v'''}} के व्युत्पन्न के रूप में परिभाषित किया गया है, समय {{mvar|t}} के संबंध में और वेग को स्थिति {{math|'''x'''}} के व्युत्पन्न के रूप में परिभाषित किया गया है, समय के संबंध में, त्वरण को {{mvar|t}}: के संबंध में {{math|'''x'''}} के दूसरे व्युत्पन्न के रूप में माना जा सकता है। <math display="block">\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{x}}{dt^2}</math> | ||
<math display="block">\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{x}}{dt^2}</math> | |||
यहाँ और अन्यत्र, यदि [[गति एक सीधी]] रेखा में होती है, तो समीकरणों में सदिश राशियों को अदिशों द्वारा प्रतिस्थापित किया जा सकता है। | |||
कैलकुलस के मौलिक प्रमेय द्वारा यह देखा जा सकता है कि त्वरण फलन {{math|''a''(''t'')}} का [[ अभिन्न |अभिन्न]] अंग वेग फलन {{math|''v''(''t'')}} के रूप में हैअर्थात्, एक त्वरण बनाम समय के वक्र के अनुसार क्षेत्र {{mvar|a}} बनाम {{mvar|t}} ग्राफ वेग के परिवर्तन से मेल खाता है। | |||
<math display="block" qid="Q11465">\mathbf{\Delta v} = \int \mathbf{a} \, dt</math> | |||
इसी तरह, [[ जर्क (भौतिकी) |जर्क (भौतिकी)]] फलन का अभिन्न अंग {{math|''j''(''t'')}}, त्वरण फलन के व्युत्पन्न के रूप में होता है, एक निश्चित समय पर त्वरण के परिवर्तन को खोजने के लिए उपयोग किया जाता है, | |||
<math display="block">\mathbf{\Delta a} = \int \mathbf{j} \, dt</math> | |||
=== इकाइयाँ === | === इकाइयाँ === | ||
त्वरण में [[ | त्वरण में वेग के [[ आयामी विश्लेषण |आयामी]] (एल/टी) [[समय]] से विभाजित होते हैं, अर्थात् [[एल टी-2]] के रूप में विभाजित होते है, त्वरण की अंतर्राष्ट्रीय प्रणाली इकाई मीटर प्रति सेकंड वर्ग (एम एस−2) या मीटर प्रति सेकंड प्रति सेकंड होती है, क्योंकि मीटर प्रति सेकंड में वेग त्वरण का मान प्रति सेकंड बदलता रहता है। | ||
=== अन्य रूप === | === अन्य रूप === | ||
एक गोलाकार गति में | एक गोलाकार गति में गतिमान एक ऑब्जेक्ट जैसे कि पृथ्वी की परिक्रमा करने वाला एक उपग्रह गति की दिशा में परिवर्तन के कारण त्वरित होता है, चूंकि, इसकी गति स्थिर रूप में हो सकती है। इस स्थिति में कहा जाता है कि यह केंद्र त्वरण की ओर निर्देशित केन्द्रापसारक से गुजर रहा है। | ||
[[ उचित त्वरण ]], | [[उचित त्वरण]] ,मुक्त पतन की स्थिति के सापेक्ष पिण्ड के त्वरण को एक उपकरण द्वारा मापा जाता है, जिसे[[ accelerometer | एक्सीलरोमीटर]] कहा जाता है। | ||
[[ शास्त्रीय यांत्रिकी ]] में, निरंतर द्रव्यमान के साथ एक निकाय के लिए, | [[ शास्त्रीय यांत्रिकी | मौलिक यांत्रिकी]] में, निरंतर द्रव्यमान के साथ एक निकाय के लिए, पिण्ड के द्रव्यमान के केंद्र का वेक्टर त्वरण नेट फोर्स वेक्टर अर्थात सभी बलों का योग के लिए आनुपातिक रूप में होता है।न्यूटन का दूसरा नियम इस प्रकार है, | ||
<math display="block" qid=Q2397319>\mathbf{F} = m\mathbf{a} \quad \implies \quad \mathbf{a} = \frac{\mathbf{F}}{m}</math> | <math display="block" qid=Q2397319>\mathbf{F} = m\mathbf{a} \quad \implies \quad \mathbf{a} = \frac{\mathbf{F}}{m}</math> | ||
जहाँ पे {{math|'''F'''}} पिण्ड पर कार्य करने वाला शुद्ध बल के रूप में है, {{mvar|m}} पिण्ड का द्रव्यमान है और {{math|'''a'''}} द्रव्यमान त्वरण का केंद्र है। जैसे -जैसे प्रकाश की गति निकट तक पहुंचती है,प्रकाश के सापेक्ष प्रभाव की गति तेजी से बड़ी होती जाती है। | |||
== स्पर्शरेखा और सेंट्रिपेटल त्वरण == | == स्पर्शरेखा और सेंट्रिपेटल त्वरण == | ||
{{See also| | {{See also| सेंट्रिपेटल बल § स्थानीय निर्देशांक}} | ||
[[File:Oscillating pendulum.gif|thumb|left|एक दोलन पेंडुलम, वेग और त्वरण के साथ चिह्नित।यह स्पर्शरेखा और सेंट्रिपेटल त्वरण दोनों का अनुभव करता है।]] | [[File:Oscillating pendulum.gif|thumb|left|एक दोलन पेंडुलम, वेग और त्वरण के साथ चिह्नित।यह स्पर्शरेखा और सेंट्रिपेटल त्वरण दोनों का अनुभव करता है।]] | ||
[[File:Acceleration components.JPG|right|thumb|एक घुमावदार गति के लिए त्वरण के घटक।स्पर्शरेखा घटक {{math|'''a'''<sub>t</sub>}} ट्रैवर्सल की गति में परिवर्तन के कारण है, और वेग वेक्टर (या विपरीत दिशा में) की दिशा में वक्र के साथ अंक।सामान्य घटक (जिसे परिपत्र गति के लिए सेंट्रिपेटल घटक भी कहा जाता है) {{math|'''a'''<sub>c</sub>}} वेग वेक्टर की दिशा में परिवर्तन के कारण है और पथ के वक्रता के केंद्र की ओर इशारा करते हुए, प्रक्षेपवक्र के लिए सामान्य है।]] | [[File:Acceleration components.JPG|right|thumb|एक घुमावदार गति के लिए त्वरण के घटक।स्पर्शरेखा घटक {{math|'''a'''<sub>t</sub>}} ट्रैवर्सल की गति में परिवर्तन के कारण है, और वेग वेक्टर (या विपरीत दिशा में) की दिशा में वक्र के साथ अंक।सामान्य घटक (जिसे परिपत्र गति के लिए सेंट्रिपेटल घटक भी कहा जाता है) {{math|'''a'''<sub>c</sub>}} वेग वेक्टर की दिशा में परिवर्तन के कारण है और पथ के वक्रता के केंद्र की ओर इशारा करते हुए, प्रक्षेपवक्र के लिए सामान्य है।]] | ||
समय के एक [[ समारोह (गणित) ]] के रूप में एक घुमावदार पथ पर चलते हुए एक कण का वेग लिखा | समय के एक [[ समारोह (गणित) |फलन (गणित)]] के रूप में एक घुमावदार पथ पर चलते हुए एक कण का वेग इस प्रकार लिखा जाता है | ||
<math display="block">\mathbf{v}(t) = v(t) \frac{\mathbf{v}(t)}{v(t)} = v(t) \mathbf{u}_\mathrm{t}(t) , </math> | <math display="block">\mathbf{v}(t) = v(t) \frac{\mathbf{v}(t)}{v(t)} = v(t) \mathbf{u}_\mathrm{t}(t) , </math> | ||
{{math|''v''(''t'')}} पथ के साथ यात्रा की गति के बराबर होती है, और | |||
<math display="block">\mathbf{u}_\mathrm{t} = \frac{\mathbf{v}(t)}{v(t)} \, , </math> | <math display="block">\mathbf{u}_\mathrm{t} = \frac{\mathbf{v}(t)}{v(t)} \, , </math> | ||
समय में चुने गए क्षण में गति की दिशा में इंगित करने वाले पथ के लिए | एक समय में चुने गए क्षण में गति की दिशा में इंगित करने वाले पथ के लिए इकाई वेक्टर स्पर्शरेखा की अंतर ज्यामिति के रूप में होती है। बदलती गति {{math|''v''(''t'')}} और घुमावदार पथ पर चलने वाले कण {{math|'''u'''<sub>''t''</sub>}}, के त्वरण की बदलती दिशा दोनों को ध्यान में रखते हुए, समय के दो कार्यों के उत्पाद के लिए विभेदन के [[ श्रृंखला नियम |श्रृंखला नियम]] का उपयोग करके लिखा जाता है<ref>{{cite web|last1=Weisstein|first1=Eric W.|title=Chain Rule| url=http://mathworld.wolfram.com/ChainRule.html |website=Wolfram MathWorld| publisher=Wolfram Research| access-date=2 August 2016}}</ref> । | ||
<math display="block">\begin{alignat}{3} | <math display="block">\begin{alignat}{3} | ||
| Line 64: | Line 61: | ||
& = \frac{dv }{dt} \mathbf{u}_\mathrm{t}+ \frac{v^2}{r}\mathbf{u}_\mathrm{n}\ , | & = \frac{dv }{dt} \mathbf{u}_\mathrm{t}+ \frac{v^2}{r}\mathbf{u}_\mathrm{n}\ , | ||
\end{alignat}</math> | \end{alignat}</math> | ||
जहाँ पे {{math|'''u'''<sub>n</sub>}} कण के प्रक्षेपवक्र के लिए आंतरिक सामान्य वेक्टर की इकाई के रूप में होती है, जिसे प्रिंसिपल नॉर्मल भी कहा जाता है और {{math|'''r'''}} इसकी वक्रता की तात्क्षणिक त्रिज्या समय t पर दोलन चक्र पर आधारित तात्कालिक वक्रता। इन घटकों को [[स्पर्शरेखा त्वरण]] कहा जाता है और परिपत्र गति में सामान्य या रेडियल त्वरण या केन्द्रापसारक त्वरण, परिपत्र गति और [[ केन्द्राभिमुख शक्ति |केन्द्राभिमुख बल]] इत्यादि रूप में होते है। | |||
त्रि-आयामी अंतरिक्ष | त्रि-आयामी अंतरिक्ष वक्रों का ज्यामितीय विश्लेषण के रूप में होता है, जो स्पर्शरेखा, मुख्य सामान्य और द्विसामान्य की व्याख्या करता है, इसे फ्रेनेट-सीरेट फॉर्मूला द्वारा वर्णित किया गया है।<ref name = Andrews>{{cite book |title = Mathematical Techniques for Engineers and Scientists |author1=Larry C. Andrews |author2=Ronald L. Phillips |page = 164 |url = https://books.google.com/books?id=MwrDfvrQyWYC&q=particle+%22planar+motion%22&pg=PA164 |isbn = 978-0-8194-4506-3 |publisher = SPIE Press |year = 2003 }}</ref><ref name = Chand>{{cite book |title = Applied Mathematics |page = 337 |author1=Ch V Ramana Murthy |author2=NC Srinivas |isbn = 978-81-219-2082-7 | url = https://books.google.com/books?id=Q0Pvv4vWOlQC&pg=PA337 | publisher = S. Chand & Co. | year = 2001| location=New Delhi }}</ref> | ||
== विशेष स्थिति == | |||
=== यूनिफार्म त्वरण === | |||
{{See also|टोरिकेली का समीकरण}} | |||
=== | |||
{{See also| | |||
[[File:Strecke und konstante Beschleunigung.png|thumb|एक समान त्वरण के लिए गति अंतर की गणना]] | [[File:Strecke und konstante Beschleunigung.png|thumb|एक समान त्वरण के लिए गति अंतर की गणना]] | ||
समान या निरंतर त्वरण एक प्रकार की गति है जिसमें किसी | समान या निरंतर त्वरण एक प्रकार की गति के रूप में होती है, जिसमें किसी ऑब्जेक्ट का वेग प्रत्येक समान समय अवधि में एक समान राशि से बदलता रहता है। | ||
एक समान त्वरण का | एक समान त्वरण का अधिकांशतः उद्धृत उदाहरण एक समान [[ गुरुत्वाकर्षण क्षेत्र |गुरुत्वाकर्षण क्षेत्र]] में मुक्त गिरावट में एक ऑब्जेक्ट के रूप में होता है। गति के प्रतिरोधों की अनुपस्थिति में एक गिरने वाले पिण्ड का त्वरण केवल गुरुत्वाकर्षण क्षेत्र की ताकत मानक गुरुत्व पर निर्भर होता है। g को गुरुत्वाकर्षण के कारण त्वरण भी कहा जाता है। न्यूटन के द्वितीय नियम द्वारा किसी पिंड पर लगने वाले बल <math> \mathbf{F_g}</math> द्वारा दिया जाता है | ||
<math display="block"> \mathbf{F_g} = m \mathbf{g}</math> | <math display="block"> \mathbf{F_g} = m \mathbf{g}</math> | ||
निरंतर त्वरण के | निरंतर त्वरण के स्थिति के सरल विश्लेषणात्मक गुणों के कारण, [[ विस्थापन |विस्थापन]] (वेक्टर), प्रारंभिक और समय निर्भर वेग और भौतिकी में समय के लिए त्वरण से संबंधित सरल सूत्र के रूप में होता है<ref>{{cite book |title=Physics for you: revised national curriculum edition for GCSE |author =Keith Johnson |publisher=Nelson Thornes |year=2001 |edition=4th |page=135 |url=https://books.google.com/books?id=D4nrQDzq1jkC&q=suvat&pg=PA135 |isbn=978-0-7487-6236-1}}</ref> | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\mathbf{s}(t) &= \mathbf{s}_0 + \mathbf{v}_0 t + \tfrac{1}{2} \mathbf{a}t^2 = \mathbf{s}_0 + \tfrac{1}{2} \left(\mathbf{v}_0 + \mathbf{v}(t)\right) t \\ | \mathbf{s}(t) &= \mathbf{s}_0 + \mathbf{v}_0 t + \tfrac{1}{2} \mathbf{a}t^2 = \mathbf{s}_0 + \tfrac{1}{2} \left(\mathbf{v}_0 + \mathbf{v}(t)\right) t \\ | ||
| Line 84: | Line 79: | ||
{v^2}(t) &= {v_0}^2 + 2\mathbf{a \cdot}[\mathbf{s}(t)-\mathbf{s}_0] | {v^2}(t) &= {v_0}^2 + 2\mathbf{a \cdot}[\mathbf{s}(t)-\mathbf{s}_0] | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ पे | |||
* <math>t</math> बीता हुआ समय है, | * <math>t</math> बीता हुआ समय है, | ||
* <math>\mathbf{s}_0</math> मूल से प्रारंभिक विस्थापन है, | * <math>\mathbf{s}_0</math> मूल से प्रारंभिक विस्थापन है, | ||
* <math>\mathbf{s}(t)</math> समय पर मूल से विस्थापन | * <math>\mathbf{s}(t)</math> समय पर मूल से विस्थापन <math>t</math> है | ||
* <math>\mathbf{v}_0</math> प्रारंभिक वेग है, | * <math>\mathbf{v}_0</math> प्रारंभिक वेग है, | ||
* <math>\mathbf{v}(t)</math> समय पर वेग है <math>t</math>, तथा | * <math>\mathbf{v}(t)</math> समय पर वेग है <math>t</math>, तथा | ||
* <math>\mathbf{a}</math> त्वरण की समान दर | * <math>\mathbf{a}</math> त्वरण की समान दर के रूप में है। | ||
विशेष रूप से, गति को दो ऑर्थोगोनल भागों में हल किया जा सकता है, एक स्थिर वेग का और दूसरा उपरोक्त समीकरणों के अनुसार, जैसा कि [[ गैलीलियो |गैलीलियो]] ने दिखाया कि शुद्ध परिणाम परवलयिक गति के रूप में होता है, जो पृथ्वी की सतह के निकट निर्वात में एक प्रक्षेप्य के प्रक्षेपवक्र का वर्णन करता है।<ref>{{cite book |title=Understanding physics |author1=David C. Cassidy |author2=Gerald James Holton |author3=F. James Rutherford |publisher=Birkhäuser |year=2002 |isbn=978-0-387-98756-9 |page=146 |url=https://books.google.com/books?id=iPsKvL_ATygC&q=parabolic+arc+uniform-acceleration+galileo&pg=PA146}}</ref> | |||
=== परिपत्र गति === | === परिपत्र गति === | ||
{{multiple image | {{multiple image | ||
| Line 108: | Line 101: | ||
|caption3 = Acceleration vector '''a''', not parallel to the radial motion but offset by the angular and Coriolis accelerations, nor tangent to the path but offset by the centripetal and radial accelerations. | |caption3 = Acceleration vector '''a''', not parallel to the radial motion but offset by the angular and Coriolis accelerations, nor tangent to the path but offset by the centripetal and radial accelerations. | ||
|footer = Kinematic vectors in plane [[polar coordinates]]. Notice the setup is not restricted to 2d space, but may represent the [[osculating plane]] plane in a point of an arbitrary curve in any higher dimension.}} | |footer = Kinematic vectors in plane [[polar coordinates]]. Notice the setup is not restricted to 2d space, but may represent the [[osculating plane]] plane in a point of an arbitrary curve in any higher dimension.}} | ||
एक समान परिपत्र गति में, जो एक गोलाकार पथ के साथ निरंतर गति के साथ आगे बढ़ रहा है, एक कण वेग वेक्टर की दिशा के परिवर्तन से उत्पन्न एक त्वरण का अनुभव करता है, जबकि इसका परिमाण स्थिर रहता | एक समान परिपत्र गति में, जो एक गोलाकार पथ के साथ निरंतर गति के साथ आगे बढ़ रहा है, एक कण वेग वेक्टर की दिशा के परिवर्तन से उत्पन्न एक त्वरण का अनुभव करता है, जबकि इसका परिमाण स्थिर रहता है। समय के संबंध में एक वक्र पर एक बिंदु के स्थान का व्युत्पन्न, अर्थात इसका वेग, इस बिंदु में त्रिज्या के लिए क्रमशः ऑर्थोगोनल के लिए वक्र के लिए सदैव स्पर्शरेखा के रूप में होता है। चूंकि समान गति में स्पर्शरेखा दिशा में वेग नहीं बदलता है, इसलिए त्वरण रेडियल दिशा में होना चाहिए, यह सर्कल के केंद्र की ओर इशारा करता है। यह त्वरण लगातार निकटतम बिंदु में स्पर्शरेखा होने के लिए वेग की दिशा को बदलता है, जिससे सर्कल के साथ वेग वेक्टर को घुमाता है। | ||
* किसी दिए गए गति के लिए | *किसी दिए गए गति v के लिए, इस ज्यामितीय रूप से उत्पन्न त्वरण सेंट्रिपेटल त्वरण का परिमाण वृत्त की त्रिज्या r के व्युत्क्रमानुपाती होता है और इस गति के वर्ग के रूप में बढ़ता है<math qid="Q2248131" display="block"> a_c = \frac {v^2} {r}\,.</math> | ||
* ध्यान दें कि, एक दिए गए कोणीय वेग | * ध्यान दें कि, एक दिए गए कोणीय वेग <math>\omega</math> के लिए, सेंट्रिपेटल त्वरण सीधे त्रिज्या के लिए आनुपातिक <math>r</math>। है, यह वेग की निर्भरता के कारण <math>v</math> त्रिज्या पर <math>r</math>.के रूप में है<math display="block"> v = \omega r.</math> | ||
ध्रुवीय घटकों में सेंट्रीपेटल त्वरण वेक्टर को व्यक्त करना, जहां <math>\mathbf{r} </math> इस दूरी के बराबर परिमाण के साथ सर्कल के केंद्र से कण तक एक वेक्टर है | ध्रुवीय घटकों में सेंट्रीपेटल त्वरण वेक्टर को व्यक्त करना होता है, जहां <math>\mathbf{r} </math> इस दूरी के बराबर परिमाण के साथ सर्कल के केंद्र से कण तक एक वेक्टर के रूप में होता है और केंद्र की ओर त्वरण के ओरिएंटेशन पर विचार करना, संभव होता है | ||
<math display="block"> \mathbf {a_c}= -\frac{v^2}{|\mathbf {r}|}\cdot \frac{\mathbf {r}}{|\mathbf {r}|}\,. </math> | <math display="block"> \mathbf {a_c}= -\frac{v^2}{|\mathbf {r}|}\cdot \frac{\mathbf {r}}{|\mathbf {r}|}\,. </math> | ||
रोटेशन में | रोटेशन में सदैव की तरह, गति <math>v</math> एक कण को दूरी पर एक बिंदु के संबंध में कोणीय वेग के रूप में व्यक्त किया जा सकता है <math>r</math> जैसा | ||
<math display="block" qid=Q161635>\omega = \frac {v}{r}.</math> | <math display="block" qid=Q161635>\omega = \frac {v}{r}.</math> | ||
इस प्रकार <math> \mathbf {a_c}= -\omega^2 \mathbf {r}\,. </math> | इस प्रकार <math> \mathbf {a_c}= -\omega^2 \mathbf {r}\,. </math> | ||
एक गैर-समान वृत्ताकार गति में, | यह त्वरण और कण का द्रव्यमान आवश्यक सेंट्रिपेटल बल को निर्धारित करता है, जो सर्कल के केंद्र की ओर निर्देशित होता है, क्योंकि इस समान परिपत्र गति में रखने के लिए इस कण पर काम करने वाला शुद्ध बल।तथाकथित 'सेंट्रीफ्यूगल फोर्स', पिण्ड पर बाहर की ओर काम करने के लिए दिखाई देता है, एक तथाकथित [[ छद्म बल |छद्म बल]] है जो पिण्ड के संदर्भ में पिण्ड के संदर्भ के फ्रेम में अनुभव किया गया है, पिण्ड की रैखिक गति के कारण, सर्कल के लिए एक वेक्टर स्पर्शरेखागति का। | ||
एक गैर-समान वृत्ताकार गति में, अर्थात , घुमावदार पथ के साथ गति बदल रही है, त्वरण में वक्र के लिए एक गैर-शून्य घटक स्पर्शरेखा होता है, और प्रमुख सामान्य वेक्टर तक सीमित नहीं होता है, जो दोलन सर्कल के केंद्र को निर्देशित करता है,यह त्रिज्या निर्धारित करता है <math>r</math> सेंट्रिपेटल त्वरण के लिए।स्पर्शरेखा घटक कोणीय त्वरण द्वारा दिया जाता है <math>\alpha</math>, अर्थात , परिवर्तन की दर <math>\alpha = \dot\omega</math> कोणीय गति का <math>\omega</math> कई बार त्रिज्या <math>r</math>।वह है, | |||
<math display="block"> a_t = r \alpha.</math> | <math display="block"> a_t = r \alpha.</math> | ||
त्वरण के स्पर्शरेखा घटक का संकेत [[ कोणीय त्वरण ]] के संकेत द्वारा निर्धारित किया जाता है (<math>\alpha</math>), और स्पर्शरेखा को | त्वरण के स्पर्शरेखा घटक का संकेत [[ कोणीय त्वरण |कोणीय त्वरण]] के संकेत द्वारा निर्धारित किया जाता है (<math>\alpha</math>), और स्पर्शरेखा को सदैव रेडियस वेक्टर के लिए समकोण पर निर्देशित किया जाता है। | ||
== सापेक्षता से संबंध == | == सापेक्षता से संबंध == | ||
=== विशेष सापेक्षता === | === विशेष सापेक्षता === | ||
{{main| | {{main|विशेष सापेक्षता|त्वरण (विशेष सापेक्षता)}} | ||
जैसे -जैसे गति प्रकाश की होती है, किसी दिए गए बल द्वारा उत्पादित त्वरण कम हो जाता है | सापेक्षता का विशेष सिद्धांत एक वैक्यूम में प्रकाश की गति से अन्य वस्तुओं के सापेक्ष यात्रा करने वाली वस्तुओं के व्यवहार का वर्णन करता है। न्यूटोनियन यांत्रिकी वास्तव में वास्तविकता के लिए एक अनुमान के रूप में प्रकट होता है, कम गति पर बृहत सटीकता के लिए मान्य होता है। जैसे -जैसे प्रासंगिक गति प्रकाश की गति की ओर बढ़ती है, त्वरण अब मौलिक समीकरणों का पालन नहीं करता है। | ||
जैसे -जैसे गति प्रकाश की होती है, किसी दिए गए बल द्वारा उत्पादित त्वरण कम हो जाता है और प्रकाश की गति के रूप में असीम रूप से छोटा हो जाता है; द्रव्यमान के साथ एक ऑब्जेक्ट इस गति को[[ asymptotically | उपगामितः]] तक पहुंचा सकती है, लेकिन कभी भी उस तक नहीं पहुंचती है। | |||
=== सामान्य सापेक्षता === | === सामान्य सापेक्षता === | ||
{{main| | {{main|सामान्य सापेक्षता}} | ||
जब तक किसी ऑब्जेक्ट की गति की स्थिति ज्ञात नहीं होती है, तब तक यह अंतर करना असंभव होता है कि प्रेक्षित बल [[गुरुत्वाकर्षण]] के कारण है या गुरुत्वाकर्षण के त्वरण के कारण और जड़त्वीय त्वरण के समान प्रभाव होते हैं।[[ अल्बर्ट आइंस्टीन | अल्बर्ट आइंस्टीन]] ने इसे [[ समतुल्यता सिद्धांत |समतुल्यता सिद्धांत]] कहा और कहा कि केवल पर्यवेक्षक जो किसी भी बल का अनुभव नहीं करते हैं, जिसमें गुरुत्वाकर्षण बल भी सम्मलित है यह निष्कर्ष निकालने में न्यायोचित हैं कि वे त्वरण नहीं कर रहे हैं।<ref>Brian Greene, ''[[The Fabric of the Cosmos: Space, Time, and the Texture of Reality]]'', page 67. Vintage {{ISBN|0-375-72720-5}}</ref> | |||
== रूपांतरण == | == रूपांतरण == | ||
{{Acceleration conversions}} | {{Acceleration conversions}} | ||
| Line 142: | Line 136: | ||
== यह भी देखें == | == यह भी देखें == | ||
{{div col |colwidth=22em}} | {{div col |colwidth=22em}} | ||
* त्वरण ( | * त्वरण (अंतर ज्यामिति) | ||
* [[ चार वेक्टर ]]: अंतरिक्ष और समय के बीच संबंध स्पष्ट करना | * [[ चार वेक्टर ]]: अंतरिक्ष और समय के बीच संबंध स्पष्ट करना | ||
* [[ गुरुत्वाकर्षण त्वरण ]] | * [[ गुरुत्वाकर्षण त्वरण ]] | ||
* जड़ता | * जड़ता | ||
* [[ परिमाण के आदेश ]] (त्वरण) | * [[ परिमाण के आदेश ]] (त्वरण) | ||
* | * शॉक (यांत्रिकी) | ||
* | * शॉक और कंपन डेटा लॉगर 3-अक्ष त्वरण को मापता है | ||
* [[ निरंतर त्वरण का उपयोग करके अंतरिक्ष यात्रा ]] | * [[ निरंतर त्वरण का उपयोग करके अंतरिक्ष यात्रा करता है]] | ||
* [[ विशिष्ट बल ]] | * [[ विशिष्ट बल ]] | ||
{{div col end}} | {{div col end}} | ||
| Line 200: | Line 194: | ||
[[Category:Commons category link is the pagename]] | [[Category:Commons category link is the pagename]] | ||
[[Category:Created with V14 On 10/09/2022]] | [[Category:Created with V14 On 10/09/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Missing redirects]] | [[Category:Missing redirects]] | ||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
[[Category:Navigational boxes without horizontal lists]] | [[Category:Navigational boxes without horizontal lists]] | ||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with math errors]] | [[Category:Pages with math errors]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | |||
Latest revision as of 11:15, 24 March 2023
यांत्रिकी में, समय के संबंध में किसी ऑब्जेक्ट के वेग में परिवर्तन की दर (गणित) को त्वरण कहते हैं। त्वरण सदिश भौतिक राशियाँ के रूप में होती है, जिसमें उनका परिमाण (गणित) और दिशा (ज्यामिति) के रूप में होता है।[1][2] किसी ऑब्जेक्ट के त्वरण का ओरिएंटेशन उस ऑब्जेक्ट पर कार्य करने वाले शुद्ध बल के ओरिएंटेशन द्वारा दिया जाता है। न्यूटन के दूसरे नियम द्वारा वर्णित ऑब्जेक्ट के त्वरण का परिमाण,[3] दो कारणों का संयुक्त प्रभाव के रूप में होता है
- उस ऑब्जेक्ट पर कार्य करने वाले सभी बाहरी बलों का शुद्ध संतुलन परिमाण इस शुद्ध परिणामी बल के लिए स्पष्टतः समानुपातिक रूप में होता है,
- उस ऑब्जेक्ट का द्रव्यमान उन पदार्थो पर निर्भर करता है, जिनमें से इसे बनाया गया है, परिमाण ऑब्जेक्ट के द्रव्यमान के लिए व्युत्क्रम समानुपातिक रूप में होता है।
त्वरण के लिए यूनिट की अंतर्राष्ट्रीय प्रणाली मीटर प्रति सेकंड वर्ग (m⋅s−2, ) के रूप में होती है।
उदाहरण के लिए, जब कोई वाहन संदर्भ के एक जड़त्वीय फ्रेम में स्थिर शून्य वेग से शुरू होता है और बढ़ती गति से एक सीधी रेखा में यात्रा करता है, तो यह यात्रा की दिशा में तेजी ला रहा होता है। यदि वाहन मुड़ता है तो त्वरण नई दिशा की ओर होता है और इसके गति वेक्टर को बदल देता है। गति की अपनी धारा दिशा में वाहन के त्वरण को वृत्ताकार गति के समय एक रैखिक या स्पर्शरेखा कहा जाता है, त्वरण प्रतिक्रिया (भौतिकी) जिसके लिए यात्रियों को एक बल के रूप में अनुभव होता है, यह बल इन्हें अपनी सीटों में वापस धकेलता है। दिशा बदलते समय प्रभावी त्वरण को वृत्ताकार गति त्वरण के समय रेडियल या सेंट्रिपेटल कहा जाता है, जिसकी प्रतिक्रिया यात्रियों को एक केन्द्रापसारक बल के रूप में अनुभव करते हैं। यदि वाहन की गति कम हो जाती है, तो यह गणितीय रूप से नकारात्मक दिशा में त्वरण के रूप में होता है जिसे कभी -कभी मंद होना या मंदबुद्धिता कहा जाता है और यात्रियों को एक जड़त्वीय बल के रूप में गतिहीनता की प्रतिक्रिया का अनुभव होता है। इस तरह के नकारात्मक त्वरण अधिकांशतः अंतरिक्ष यान में रिट्रोरॉकेट जलने से प्राप्त होते हैं।[4] त्वरण और मंदी दोनों को समान माना जाता है, क्योंकि ये दोनों के वेग में परिवर्तन होते हैं। इनमें से प्रत्येक त्वरण स्पर्शरेखा, रेडियल, डिलेरेशन यात्रियों द्वारा महसूस किया जाता है जब तक उनके सापेक्ष विभेदी वेग को गति में परिवर्तन के कारण त्वरण के संदर्भ में निष्क्रिय रूप में नहीं हो जाते हैं।
परिभाषा और गुण
औसत त्वरण
भौतिकी में समय की अवधि में एक ऑब्जेक्ट का औसत त्वरण वेग ,में इसका परिवर्तन होता है, जिसे अवधि । से विभाजित किया जाता है, गणितीय रूप से इस प्रकार दिखाया गया है।
तात्कालिक त्वरण
इस बीच तात्कालिक त्वरण, समय के एक अतिसूक्ष्म अंतराल पर औसत त्वरण के फलन की सीमा के रूप में होता है। गणना के संदर्भ में, तात्कालिक त्वरण समय के संबंध में वेग सदिश का व्युत्पन्न होता है।
यहाँ और अन्यत्र, यदि गति एक सीधी रेखा में होती है, तो समीकरणों में सदिश राशियों को अदिशों द्वारा प्रतिस्थापित किया जा सकता है।
कैलकुलस के मौलिक प्रमेय द्वारा यह देखा जा सकता है कि त्वरण फलन a(t) का अभिन्न अंग वेग फलन v(t) के रूप में हैअर्थात्, एक त्वरण बनाम समय के वक्र के अनुसार क्षेत्र a बनाम t ग्राफ वेग के परिवर्तन से मेल खाता है।
इसी तरह, जर्क (भौतिकी) फलन का अभिन्न अंग j(t), त्वरण फलन के व्युत्पन्न के रूप में होता है, एक निश्चित समय पर त्वरण के परिवर्तन को खोजने के लिए उपयोग किया जाता है,इकाइयाँ
त्वरण में वेग के आयामी (एल/टी) समय से विभाजित होते हैं, अर्थात् एल टी-2 के रूप में विभाजित होते है, त्वरण की अंतर्राष्ट्रीय प्रणाली इकाई मीटर प्रति सेकंड वर्ग (एम एस−2) या मीटर प्रति सेकंड प्रति सेकंड होती है, क्योंकि मीटर प्रति सेकंड में वेग त्वरण का मान प्रति सेकंड बदलता रहता है।
अन्य रूप
एक गोलाकार गति में गतिमान एक ऑब्जेक्ट जैसे कि पृथ्वी की परिक्रमा करने वाला एक उपग्रह गति की दिशा में परिवर्तन के कारण त्वरित होता है, चूंकि, इसकी गति स्थिर रूप में हो सकती है। इस स्थिति में कहा जाता है कि यह केंद्र त्वरण की ओर निर्देशित केन्द्रापसारक से गुजर रहा है।
उचित त्वरण ,मुक्त पतन की स्थिति के सापेक्ष पिण्ड के त्वरण को एक उपकरण द्वारा मापा जाता है, जिसे एक्सीलरोमीटर कहा जाता है।
मौलिक यांत्रिकी में, निरंतर द्रव्यमान के साथ एक निकाय के लिए, पिण्ड के द्रव्यमान के केंद्र का वेक्टर त्वरण नेट फोर्स वेक्टर अर्थात सभी बलों का योग के लिए आनुपातिक रूप में होता है।न्यूटन का दूसरा नियम इस प्रकार है,
जहाँ पे F पिण्ड पर कार्य करने वाला शुद्ध बल के रूप में है, m पिण्ड का द्रव्यमान है और a द्रव्यमान त्वरण का केंद्र है। जैसे -जैसे प्रकाश की गति निकट तक पहुंचती है,प्रकाश के सापेक्ष प्रभाव की गति तेजी से बड़ी होती जाती है।स्पर्शरेखा और सेंट्रिपेटल त्वरण
समय के एक फलन (गणित) के रूप में एक घुमावदार पथ पर चलते हुए एक कण का वेग इस प्रकार लिखा जाता है
त्रि-आयामी अंतरिक्ष वक्रों का ज्यामितीय विश्लेषण के रूप में होता है, जो स्पर्शरेखा, मुख्य सामान्य और द्विसामान्य की व्याख्या करता है, इसे फ्रेनेट-सीरेट फॉर्मूला द्वारा वर्णित किया गया है।[6][7]
विशेष स्थिति
यूनिफार्म त्वरण
समान या निरंतर त्वरण एक प्रकार की गति के रूप में होती है, जिसमें किसी ऑब्जेक्ट का वेग प्रत्येक समान समय अवधि में एक समान राशि से बदलता रहता है।
एक समान त्वरण का अधिकांशतः उद्धृत उदाहरण एक समान गुरुत्वाकर्षण क्षेत्र में मुक्त गिरावट में एक ऑब्जेक्ट के रूप में होता है। गति के प्रतिरोधों की अनुपस्थिति में एक गिरने वाले पिण्ड का त्वरण केवल गुरुत्वाकर्षण क्षेत्र की ताकत मानक गुरुत्व पर निर्भर होता है। g को गुरुत्वाकर्षण के कारण त्वरण भी कहा जाता है। न्यूटन के द्वितीय नियम द्वारा किसी पिंड पर लगने वाले बल द्वारा दिया जाता है
- बीता हुआ समय है,
- मूल से प्रारंभिक विस्थापन है,
- समय पर मूल से विस्थापन है
- प्रारंभिक वेग है,
- समय पर वेग है , तथा
- त्वरण की समान दर के रूप में है।
विशेष रूप से, गति को दो ऑर्थोगोनल भागों में हल किया जा सकता है, एक स्थिर वेग का और दूसरा उपरोक्त समीकरणों के अनुसार, जैसा कि गैलीलियो ने दिखाया कि शुद्ध परिणाम परवलयिक गति के रूप में होता है, जो पृथ्वी की सतह के निकट निर्वात में एक प्रक्षेप्य के प्रक्षेपवक्र का वर्णन करता है।[9]
परिपत्र गति
एक समान परिपत्र गति में, जो एक गोलाकार पथ के साथ निरंतर गति के साथ आगे बढ़ रहा है, एक कण वेग वेक्टर की दिशा के परिवर्तन से उत्पन्न एक त्वरण का अनुभव करता है, जबकि इसका परिमाण स्थिर रहता है। समय के संबंध में एक वक्र पर एक बिंदु के स्थान का व्युत्पन्न, अर्थात इसका वेग, इस बिंदु में त्रिज्या के लिए क्रमशः ऑर्थोगोनल के लिए वक्र के लिए सदैव स्पर्शरेखा के रूप में होता है। चूंकि समान गति में स्पर्शरेखा दिशा में वेग नहीं बदलता है, इसलिए त्वरण रेडियल दिशा में होना चाहिए, यह सर्कल के केंद्र की ओर इशारा करता है। यह त्वरण लगातार निकटतम बिंदु में स्पर्शरेखा होने के लिए वेग की दिशा को बदलता है, जिससे सर्कल के साथ वेग वेक्टर को घुमाता है।
- किसी दिए गए गति v के लिए, इस ज्यामितीय रूप से उत्पन्न त्वरण सेंट्रिपेटल त्वरण का परिमाण वृत्त की त्रिज्या r के व्युत्क्रमानुपाती होता है और इस गति के वर्ग के रूप में बढ़ता है
- ध्यान दें कि, एक दिए गए कोणीय वेग के लिए, सेंट्रिपेटल त्वरण सीधे त्रिज्या के लिए आनुपातिक । है, यह वेग की निर्भरता के कारण त्रिज्या पर .के रूप में है
ध्रुवीय घटकों में सेंट्रीपेटल त्वरण वेक्टर को व्यक्त करना होता है, जहां इस दूरी के बराबर परिमाण के साथ सर्कल के केंद्र से कण तक एक वेक्टर के रूप में होता है और केंद्र की ओर त्वरण के ओरिएंटेशन पर विचार करना, संभव होता है
यह त्वरण और कण का द्रव्यमान आवश्यक सेंट्रिपेटल बल को निर्धारित करता है, जो सर्कल के केंद्र की ओर निर्देशित होता है, क्योंकि इस समान परिपत्र गति में रखने के लिए इस कण पर काम करने वाला शुद्ध बल।तथाकथित 'सेंट्रीफ्यूगल फोर्स', पिण्ड पर बाहर की ओर काम करने के लिए दिखाई देता है, एक तथाकथित छद्म बल है जो पिण्ड के संदर्भ में पिण्ड के संदर्भ के फ्रेम में अनुभव किया गया है, पिण्ड की रैखिक गति के कारण, सर्कल के लिए एक वेक्टर स्पर्शरेखागति का।
एक गैर-समान वृत्ताकार गति में, अर्थात , घुमावदार पथ के साथ गति बदल रही है, त्वरण में वक्र के लिए एक गैर-शून्य घटक स्पर्शरेखा होता है, और प्रमुख सामान्य वेक्टर तक सीमित नहीं होता है, जो दोलन सर्कल के केंद्र को निर्देशित करता है,यह त्रिज्या निर्धारित करता है सेंट्रिपेटल त्वरण के लिए।स्पर्शरेखा घटक कोणीय त्वरण द्वारा दिया जाता है , अर्थात , परिवर्तन की दर कोणीय गति का कई बार त्रिज्या ।वह है,
सापेक्षता से संबंध
विशेष सापेक्षता
सापेक्षता का विशेष सिद्धांत एक वैक्यूम में प्रकाश की गति से अन्य वस्तुओं के सापेक्ष यात्रा करने वाली वस्तुओं के व्यवहार का वर्णन करता है। न्यूटोनियन यांत्रिकी वास्तव में वास्तविकता के लिए एक अनुमान के रूप में प्रकट होता है, कम गति पर बृहत सटीकता के लिए मान्य होता है। जैसे -जैसे प्रासंगिक गति प्रकाश की गति की ओर बढ़ती है, त्वरण अब मौलिक समीकरणों का पालन नहीं करता है।
जैसे -जैसे गति प्रकाश की होती है, किसी दिए गए बल द्वारा उत्पादित त्वरण कम हो जाता है और प्रकाश की गति के रूप में असीम रूप से छोटा हो जाता है; द्रव्यमान के साथ एक ऑब्जेक्ट इस गति को उपगामितः तक पहुंचा सकती है, लेकिन कभी भी उस तक नहीं पहुंचती है।
सामान्य सापेक्षता
जब तक किसी ऑब्जेक्ट की गति की स्थिति ज्ञात नहीं होती है, तब तक यह अंतर करना असंभव होता है कि प्रेक्षित बल गुरुत्वाकर्षण के कारण है या गुरुत्वाकर्षण के त्वरण के कारण और जड़त्वीय त्वरण के समान प्रभाव होते हैं। अल्बर्ट आइंस्टीन ने इसे समतुल्यता सिद्धांत कहा और कहा कि केवल पर्यवेक्षक जो किसी भी बल का अनुभव नहीं करते हैं, जिसमें गुरुत्वाकर्षण बल भी सम्मलित है यह निष्कर्ष निकालने में न्यायोचित हैं कि वे त्वरण नहीं कर रहे हैं।[10]
रूपांतरण
| Base value | (Gal, or cm/s2) | (ft/s2) | (m/s2) | (Standard gravity, g0) |
|---|---|---|---|---|
| 1 Gal, or cm/s2 | 1 | 0.0328084 | 0.01 | 1.01972×10−3 |
| 1 ft/s2 | 30.4800 | 1 | 0.304800 | 0.0310810 |
| 1 m/s2 | 100 | 3.28084 | 1 | 0.101972 |
| 1 g0 | 980.665 | 32.1740 | 9.80665 | 1 |
यह भी देखें
- त्वरण (अंतर ज्यामिति)
- चार वेक्टर : अंतरिक्ष और समय के बीच संबंध स्पष्ट करना
- गुरुत्वाकर्षण त्वरण
- जड़ता
- परिमाण के आदेश (त्वरण)
- शॉक (यांत्रिकी)
- शॉक और कंपन डेटा लॉगर 3-अक्ष त्वरण को मापता है
- निरंतर त्वरण का उपयोग करके अंतरिक्ष यात्रा करता है
- विशिष्ट बल
संदर्भ
- ↑ Bondi, Hermann (1980). Relativity and Common Sense. Courier Dover Publications. pp. 3. ISBN 978-0-486-24021-3.
- ↑ Lehrman, Robert L. (1998). Physics the Easy Way. Barron's Educational Series. pp. 27. ISBN 978-0-7641-0236-3.
- ↑ Crew, Henry (2008). The Principles of Mechanics. BiblioBazaar, LLC. p. 43. ISBN 978-0-559-36871-4.
- ↑ Raymond A. Serway; Chris Vuille; Jerry S. Faughn (2008). College Physics, Volume 10. Cengage. p. 32. ISBN 9780495386933.
- ↑ Weisstein, Eric W. "Chain Rule". Wolfram MathWorld. Wolfram Research. Retrieved 2 August 2016.
- ↑ Larry C. Andrews; Ronald L. Phillips (2003). Mathematical Techniques for Engineers and Scientists. SPIE Press. p. 164. ISBN 978-0-8194-4506-3.
- ↑ Ch V Ramana Murthy; NC Srinivas (2001). Applied Mathematics. New Delhi: S. Chand & Co. p. 337. ISBN 978-81-219-2082-7.
- ↑ Keith Johnson (2001). Physics for you: revised national curriculum edition for GCSE (4th ed.). Nelson Thornes. p. 135. ISBN 978-0-7487-6236-1.
- ↑ David C. Cassidy; Gerald James Holton; F. James Rutherford (2002). Understanding physics. Birkhäuser. p. 146. ISBN 978-0-387-98756-9.
- ↑ Brian Greene, The Fabric of the Cosmos: Space, Time, and the Texture of Reality, page 67. Vintage ISBN 0-375-72720-5
इस पृष्ठ में गुम आंतरिक लिंक की सूची
- ताकत
- उलटा आनुपातिकता
- मीटर प्रति सेकंड चुकता
- अंतर्राष्ट्रीय इकाइयाँ प्रणाली
- ऋणात्मक संख्या
- जड़ता
- घूर्नन गति
- संदर्भ का जड़त्वीय फ्रेम
- आदर्श सिद्धान्त
- बहुत छोता
- यौगिक
- द्वितीय व्युत्पन्न
- गणना के मौलिक प्रमेय
- प्रकाश कि गति
- निर्बाध गिरावट
- कोणीय गति
- रेखीय संवेग
- प्रधान सामान्य सदिश
- न्यूटोनियन मैकेनिक्स
- शॉक (यांत्रिकी)
बाहरी संबंध
- Acceleration Calculator Simple acceleration unit converter
- Acceleration Calculator Acceleration Conversion calculator converts units form meter per second square, kilometer per second square, millimeter per second square & more with metric conversion.
]