प्रेरित पथ: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Graph path which is an induced subgraph}} {{Use dmy dates|date=August 2020|cs1-dates=y}} Image:Snake in the box.svg|thumb|[[हाइपरक्यू...")
 
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Graph path which is an induced subgraph}}
{{short description|Graph path which is an induced subgraph}}
{{Use dmy dates|date=August 2020|cs1-dates=y}}
[[Image:Snake in the box.svg|thumb|[[हाइपरक्यूब ग्राफ]] में लंबाई चार का प्रेरित पथ। हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ ढूँढना [[सांप-इन-द-बॉक्स]] समस्या के रूप में जाना जाता है।]][[ ग्राफ सिद्धांत ]] के गणित क्षेत्र में, एक [[अप्रत्यक्ष ग्राफ]] में एक प्रेरित पथ {{mvar|G}} एक पथ (ग्राफ़ सिद्धांत) है जो कि एक [[प्रेरित सबग्राफ]] है {{mvar|G}}. यानी यह [[ शीर्ष (ग्राफ सिद्धांत) ]] का एक क्रम है {{mvar|G}} जैसे कि क्रम में प्रत्येक दो आसन्न कोने एक किनारे से जुड़े हुए हैं {{mvar|G}}, और अनुक्रम में प्रत्येक दो असन्निकट कोने किसी भी किनारे से जुड़े नहीं हैं {{mvar|G}}. प्रेरित पथ को कभी-कभी साँप कहा जाता है, और हाइपरक्यूब ग्राफ़ में लंबे प्रेरित पथ खोजने की समस्या को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है।


इसी तरह, एक प्रेरित चक्र एक [[चक्र ग्राफ]] है जो एक प्रेरित सबग्राफ है {{mvar|G}}; प्रेरित चक्रों को तार रहित चक्र या (जब चक्र की लंबाई चार या अधिक हो) छिद्र भी कहा जाता है। एक प्रतिछिद्र के [[पूरक (ग्राफ सिद्धांत)]] में एक छेद है {{mvar|G}}, अर्थात, एक प्रतिछिद्र एक छिद्र का पूरक है।
[[Image:Snake in the box.svg|thumb|[[हाइपरक्यूब ग्राफ]] में लंबाई चार का प्रेरित पथ। हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ ढूँढना [[सांप-इन-द-बॉक्स]] समस्या के रूप में जाना जाता है।]][[ ग्राफ सिद्धांत |ग्राफ सिद्धांत]] के गणित क्षेत्र में, [[अप्रत्यक्ष ग्राफ]] में '''प्रेरित पथ''' {{mvar|G}} ग्राफ़ सिद्धांत पथ है जो कि [[प्रेरित सबग्राफ]] {{mvar|G}} पर निर्भर करता है। यह मुख्य रूप से [[ शीर्ष (ग्राफ सिद्धांत) |शीर्ष (ग्राफ सिद्धांत)]] {{mvar|G}} का क्रम है जैसे कि क्रम में प्रत्येक दो आसन्न कोने {{mvar|G}} के किनारों से संयोजित रहते हैं, और {{mvar|G}} अनुक्रम में प्रत्येक सन्निकटन कोने किसी भी किनारे से संयोजित नहीं होते हैं, इस प्रकार प्रेरित पथ को वलय भी कहा जाता है, और हाइपरक्यूब ग्राफ़ में लंबे प्रेरित पथ खोजने की समस्या को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है।


किसी ग्राफ़ में सबसे लंबे प्रेरित पथ की लंबाई को कभी-कभी ग्राफ़ की चक्कर संख्या कहा जाता है;<ref>{{harvtxt|Buckley|Harary|1988}}.</ref> विरल रेखांकन के लिए, परिबद्ध चक्कर संख्या का होना परिबद्ध वृक्ष-गहराई के बराबर है।<ref>{{harvtxt|Nešetřil|Ossona de Mendez|2012}}, Proposition 6.4, p. 122.</ref> एक ग्राफ की प्रेरित पथ संख्या {{mvar|G}} प्रेरित पथों की सबसे छोटी संख्या है जिसमें ग्राफ़ के शीर्षों को विभाजित किया जा सकता है,<ref>{{harvtxt|Chartrand|McCanna|Sherwani|Hossain|1994}}.</ref> और निकटता से संबंधित पथ की संख्या को कवर करता है {{mvar|G}} प्रेरित पथों की सबसे छोटी संख्या है जिसमें एक साथ सभी शीर्ष शामिल हैं {{mvar|G}}.<ref>{{harvtxt|Barioli|Fallat|Hogben|2004}}.</ref> एक ग्राफ का घेरा (ग्राफ सिद्धांत) उसके सबसे छोटे चक्र की लंबाई है, लेकिन यह चक्र एक प्रेरित चक्र होना चाहिए क्योंकि किसी भी जीवा का उपयोग एक छोटे चक्र का उत्पादन करने के लिए किया जा सकता है; इसी तरह के कारणों के लिए एक ग्राफ का विषम घेरा भी उसके सबसे छोटे विषम प्रेरित चक्र की लंबाई है।
इसी प्रकार प्रेरित चक्र ऐसा [[चक्र ग्राफ]] है जो प्रेरित सबग्राफ {{mvar|G}} पर निर्भर रहता है, इस प्रकार प्रेरित चक्रों को तार रहित चक्र या (जब चक्र की लंबाई चार या अधिक हो) छिद्र भी होते हैं। प्रतिछिद्र के [[पूरक (ग्राफ सिद्धांत)]] {{mvar|G}} में छेद होते है, अर्थात प्रतिछिद्र छिद्र का पूरक कहा जाता हैं।
 
किसी ग्राफ़ में सबसे लंबे प्रेरित पथ की लंबाई को कभी-कभी ग्राफ़ की क्रम संख्या कहा जाता है,<ref>{{harvtxt|Buckley|Harary|1988}}.</ref> इसके विरल रेखांकन के लिए, परिबद्ध चक्कर संख्या का होना परिबद्ध ट्री की गहराई के बराबर होता हैं।<ref>{{harvtxt|Nešetřil|Ossona de Mendez|2012}}, Proposition 6.4, p. 122.</ref> ग्राफ की प्रेरित पथ संख्या {{mvar|G}} प्रेरित पथों की सबसे छोटी संख्या है जिसमें ग्राफ़ के शीर्षों को विभाजित किया जा सकता है,<ref>{{harvtxt|Chartrand|McCanna|Sherwani|Hossain|1994}}.</ref> और निकटता से संबंधित पथ की संख्या {{mvar|G}} को कवर करता है, इस प्रकार प्रेरित पथों की सबसे छोटी संख्या है जिसमें साथ सभी शीर्ष {{mvar|G}} पर सम्मिलित रहते हैं,<ref>{{harvtxt|Barioli|Fallat|Hogben|2004}}.</ref> इस प्रकार ग्राफ का घेरा (ग्राफ सिद्धांत) उसके सबसे छोटे चक्र की लंबाई पर निर्भर रहता है, किन्तु यह चक्र प्रेरित चक्र होना चाहिए क्योंकि किसी भी जीवा का उपयोग छोटे चक्र का उत्पादन करने के लिए किया जा सकता है, इसी प्रकार इसके कारणों के लिए ग्राफ का विषम घेरा भी उसके सबसे छोटे विषम प्रेरित चक्र की लंबाई है।


== उदाहरण ==
== उदाहरण ==


{{snakes_and_coils_in_the_box.svg}}
{{snakes_and_coils_in_the_box.svg}}
चित्रण इस ग्राफ में एक घन, आठ कोने और बारह किनारों वाला एक ग्राफ, और लंबाई चार का एक प्रेरित पथ दिखाता है। एक सीधे मामले के विश्लेषण से पता चलता है कि घन में अब प्रेरित पथ नहीं हो सकता है, हालांकि इसकी लंबाई छह का एक प्रेरित चक्र है। हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ या चक्र खोजने की समस्या, सबसे पहले किसके द्वारा प्रस्तुत की गई थी {{harvtxt|Kautz|1958}}, को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है, और कोडिंग सिद्धांत और इंजीनियरिंग में इसके अनुप्रयोगों के कारण इसका व्यापक अध्ययन किया गया है।
चित्रण इस ग्राफ में घन, आठ कोने और बारह किनारों वाला ग्राफ, और लंबाई चार का प्रेरित पथ दिखाता है। सीधे स्थिति के विश्लेषण से पता चलता है कि घन में अब प्रेरित पथ नहीं हो सकता है, चूंकि इसकी लंबाई छह का प्रेरित चक्र है। इस प्रकार हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ या चक्र खोजने की समस्या, सबसे पहले किसके द्वारा प्रस्तुत की गई थी, इस प्रकार {{harvtxt|कौट्ज|1958}}, को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है, और कोडिंग सिद्धांत और अभियांत्रिकी में इसके अनुप्रयोगों के कारण इसका व्यापक अध्ययन किया गया है।


== [[कोग्राफ]] परिवारों की विशेषता ==
== [[कोग्राफ]] समूह की विशेषता ==


कई महत्वपूर्ण ग्राफ़ परिवारों को परिवार में ग्राफ़ के प्रेरित पथों या चक्रों के संदर्भ में चित्रित किया जा सकता है।
कई महत्वपूर्ण ग्राफ़ समूहों को ग्राफ़ के प्रेरित पथों या चक्रों के संदर्भ में चित्रित किया जा सकता है।


* तुच्छ रूप से, लंबाई दो के बिना प्रेरित पथ वाले जुड़े हुए ग्राफ पूर्ण रेखांकन हैं, और बिना प्रेरित चक्र वाले जुड़े हुए रेखांकन [[पेड़ (ग्राफ सिद्धांत)]] हैं।
* मुख्य रूप से दोनों लंबाई के बिना प्रेरित पथ से संयोजित ग्राफ पूर्ण रूप से रेखांकित होते हैं, और बिना प्रेरित चक्र से संयोजित रेखांकन [[पेड़ (ग्राफ सिद्धांत)|ट्री (ग्राफ सिद्धांत)]] से निरूपित होते हैं।
* एक त्रिभुज-मुक्त ग्राफ एक ऐसा ग्राफ है जिसमें लंबाई तीन का कोई प्रेरित चक्र नहीं है।
* त्रिभुज-मुक्त ग्राफ ऐसा ग्राफ है जिसमें लंबाई तीन का कोई प्रेरित चक्र नहीं है।
* Cographs वास्तव में रेखांकन हैं जिनमें लंबाई तीन का कोई प्रेरित पथ नहीं है।
* कोग्राफ्स वास्तव में रेखांकन हैं जिनमें लंबाई तीन का कोई प्रेरित पथ नहीं है।
* [[कॉर्डल ग्राफ]]ऐसे ग्राफ़ हैं जिनमें लंबाई चार या अधिक का कोई प्रेरित चक्र नहीं है।
* [[कॉर्डल ग्राफ]] ऐसे ग्राफ़ हैं जिनमें लंबाई चार या अधिक का कोई प्रेरित चक्र नहीं है।
* सम-छिद्र-मुक्त ग्राफ़ वे ग्राफ़ होते हैं जिनमें सम संख्या वाले शीर्षों के साथ कोई प्रेरित चक्र नहीं होता है।
* सम-छिद्र-मुक्त ग्राफ़ वे ग्राफ़ होते हैं जिनमें सम संख्या वाले शीर्षों के साथ कोई प्रेरित चक्र नहीं होता है।
* तुच्छ रूप से परिपूर्ण रेखांकन वे रेखांकन होते हैं जिनमें न तो लंबाई तीन का प्रेरित पथ होता है और न ही लंबाई चार का प्रेरित चक्र।
* तुच्छ रूप से परिपूर्ण रेखांकन वे रेखांकन होते हैं जिनमें न तो लंबाई तीन का प्रेरित पथ होता है और न ही लंबाई चार का प्रेरित चक्र पर निर्भर करता हैं।
* मजबूत [[सही ग्राफ]] प्रमेय द्वारा, सही ग्राफ ऐसे ग्राफ होते हैं जिनमें कोई विषम छेद नहीं होता है और कोई विषम एंटीहोल नहीं होता है।
* मजबूत [[सही ग्राफ]] प्रमेय द्वारा, सही ग्राफ ऐसे ग्राफ होते हैं जिनमें कोई विषम छेद नहीं होता है और कोई विषम एंटीहोल नहीं होता है।
* [[दूरी-वंशानुगत ग्राफ]]़ वे ग्राफ़ होते हैं जिनमें प्रत्येक प्रेरित पथ सबसे छोटा पथ होता है, और वे ग्राफ़ जिनमें समान दो शीर्षों के बीच प्रत्येक दो प्रेरित पथों की लंबाई समान होती है।
* [[दूरी-वंशानुगत ग्राफ]] ऐसे ग्राफ़ होते हैं जिनमें प्रत्येक प्रेरित पथ सबसे छोटा पथ होता है, और वे ग्राफ़ जिनमें समान दो शीर्षों के बीच प्रत्येक दो प्रेरित पथों की लंबाई समान होती है।
* [[ब्लॉक ग्राफ]]वे ग्राफ़ होते हैं जिनमें किन्हीं दो शीर्षों के बीच अधिकतम एक प्रेरित पथ होता है, और कनेक्टेड ब्लॉक ग्राफ़ वे ग्राफ़ होते हैं जिनमें प्रत्येक दो शीर्षों के बीच ठीक एक प्रेरित पथ होता है।
* [[ब्लॉक ग्राफ]] वे ग्राफ़ होते हैं जिनमें किन्हीं दो शीर्षों के बीच अधिकतम प्रेरित पथ होता है, और कनेक्टेड ब्लॉक ग्राफ़ वे ग्राफ़ होते हैं जिनमें प्रत्येक दो शीर्षों के बीच ठीक प्रेरित पथ होता है।


== एल्गोरिदम और जटिलता ==
== एल्गोरिदम और जटिलता ==
ग्राफ़ G और पैरामीटर k के लिए यह निर्धारित करने के लिए NP-पूर्ण है कि क्या ग्राफ़ में कम से कम k लंबाई का एक प्रेरित पथ है। {{harvtxt|Garey|Johnson|1979}} इस परिणाम का श्रेय [[ माइकलिस यानाकाकिस ]] के अप्रकाशित संचार को दें। हालाँकि, इस समस्या को बहुपद समय में कुछ ग्राफ़ परिवारों के लिए हल किया जा सकता है, जैसे कि क्षुद्रग्रह-ट्रिपल-मुक्त ग्राफ़<ref>{{harvtxt|Kratsch|Müller|Todinca|2003}}.</ref> या बिना लंबे छेद वाले ग्राफ़।<ref>{{harvtxt|Gavril|2002}}.</ref>
ग्राफ़ G और पैरामीटर k के लिए यह निर्धारित करने के लिए NP-पूर्ण है कि क्या ग्राफ़ में कम से कम k लंबाई का प्रेरित पथ है। {{harvtxt|गैरी|जॉनसन|1979}} इस परिणाम का श्रेय [[ माइकलिस यानाकाकिस |माइकलिस यानाकाकिस]] के अप्रकाशित संचार को दे सकता हैं। चूंकि इस समस्या को बहुपद समय में कुछ ग्राफ़ समूहों के लिए हल किया जा सकता है, जैसे कि ट्रिपल-मुक्त ग्राफ़<ref>{{harvtxt|Kratsch|Müller|Todinca|2003}}.</ref> या बिना लंबे छेद वाले ग्राफ़ इत्यादि।<ref>{{harvtxt|Gavril|2002}}.</ref>
यह निर्धारित करने के लिए भी एनपी-पूर्ण है कि ग्राफ के कोने को दो प्रेरित पथों या दो प्रेरित चक्रों में विभाजित किया जा सकता है या नहीं।<ref>{{harvtxt|Le|Le|Müller|2003}}.</ref> नतीजतन, ग्राफ के प्रेरित पथ संख्या का निर्धारण एनपी-हार्ड है।


सबसे लंबे समय तक प्रेरित पथ या चक्र की समस्याओं का अनुमान लगाने की जटिलता निम्न कमी से ग्राफ में बड़े [[स्वतंत्र सेट (ग्राफ सिद्धांत)]] को खोजने से संबंधित हो सकती है।<ref>{{harvtxt|Berman|Schnitger|1992}}.</ref> n शीर्षों वाले किसी भी ग्राफ़ G से, G n(n − 1)/2 शीर्षों में जोड़कर, G में दो शीर्षों के साथ एक अन्य ग्राफ़ H बनाएँ, जिसमें दो पड़ोसी हों, G में प्रत्येक शीर्ष जोड़ी के लिए एक। फिर यदि G आकार k का एक स्वतंत्र सेट है, H के पास एक प्रेरित पथ और लंबाई 2k का एक प्रेरित चक्र होना चाहिए, जो I के कोने के साथ G में स्वतंत्र सेट के वैकल्पिक वर्टिकल द्वारा बनता है। इसके विपरीत, यदि H का एक प्रेरित पथ या लंबाई k का चक्र है , इस पथ या चक्र से G में असन्निकट शीर्षों का कोई भी अधिकतम सेट कम से कम k/3 आकार के G में एक स्वतंत्र सेट बनाता है। इस प्रकार, जी में अधिकतम स्वतंत्र सेट का आकार सबसे लंबे प्रेरित पथ के आकार और एच में सबसे लंबे समय तक प्रेरित चक्र के एक स्थिर कारक के भीतर है। इसलिए, के परिणाम से {{harvtxt|Håstad|1996}} स्वतंत्र सेटों की अनुपयुक्तता पर, जब तक कि एनपी = जेडपीपी, ओ (एन) के कारक के भीतर सबसे लंबे समय तक प्रेरित पथ या सबसे लंबे समय तक प्रेरित चक्र का अनुमान लगाने के लिए बहुपद समय एल्गोरिदम मौजूद नहीं है।<sup>इष्टतम समाधान का 1/2-ε</sup>)।
यह निर्धारित करने के लिए भी np-पूर्ण है कि ग्राफ के कोने को दो प्रेरित पथों या दो प्रेरित चक्रों में विभाजित किया जा सकता है या नहीं इस बात का मुख्य रूप से ध्यान रखा जाता हैं।<ref>{{harvtxt|Le|Le|Müller|2003}}.</ref> परिणामस्वरूप, ग्राफ के प्रेरित पथ संख्या का निर्धारण np-कठोर होते हैं।


एन कोने और एम किनारों वाले ग्राफ में छेद (और लंबाई 5 के तारहीन चक्र के बिना ग्राफ में एंटीहोल्स) समय में पता लगाया जा सकता है (एन + एम)<sup>2</sup>).<ref>{{harvtxt|Nikolopoulos|Palios|2004}}.</ref>
सबसे लंबे समय तक प्रेरित पथ या चक्र की समस्याओं का अनुमान लगाने की जटिलता निम्न कमी से ग्राफ में बड़े [[स्वतंत्र सेट (ग्राफ सिद्धांत)|स्वतंत्र समुच्चय (ग्राफ सिद्धांत)]] को खोजने से संबंधित हो सकती है।<ref>{{harvtxt|Berman|Schnitger|1992}}.</ref> इस प्रकार n शीर्षों वाले किसी भी ग्राफ़ G से, G n(n − 1)/2 शीर्षों में संयोजित G में दो शीर्षों के साथ इसके अन्य ग्राफ़ H द्वारा बनाए जाते हैं जिसमें दो समीपस्थ G में प्रत्येक शीर्ष मुख्य रूप से संयोजित होकर एकत्र हो जाते हैं। फिर यदि G आकार k का स्वतंत्र समुच्चय है, H के पास प्रेरित पथ और लंबाई 2k का प्रेरित चक्र होना चाहिए, जो आई के कोने के साथ G में स्वतंत्र समुच्चय के वैकल्पिक ऊर्ध्वाधर बनता है। इसके विपरीत, यदि H का प्रेरित पथ या लंबाई k का चक्र है, इस प्रकार इस पथ या चक्र से G में असन्निकट शीर्षों का कोई भी अधिकतम समुच्चय कम से कम k/3 आकार के G में स्वतंत्र समुच्चय बनाता है। इस प्रकार, जी में अधिकतम स्वतंत्र समुच्चय का आकार सबसे लंबे प्रेरित पथ के आकार और एच में सबसे लंबे समय तक प्रेरित चक्र के स्थिर कारक के भीतर है। इसलिए इसके परिणाम से {{harvtxt|हैस्टैड|1996}} स्वतंत्र समुच्चयों की अनुपयुक्तता पर जब तक कि np = zpp, o (n) के कारक के भीतर सबसे लंबे समय तक प्रेरित पथ या सबसे लंबे समय तक प्रेरित चक्र का अनुमान लगाने के लिए बहुपद समय एल्गोरिदम सम्मिलित नहीं है। जो कि इष्टतम समाधान का 1/2-ε) कारक हैं।


इस प्रकार n कोने और एम किनारों वाले ग्राफ में छेद (और लंबाई 5 के तारहीन चक्र के बिना ग्राफ में एंटीहोल्स) समय (n + m<sup>2</sup>) में पता लगाया जा सकता है।<ref>{{harvtxt|Nikolopoulos|Palios|2004}}.</ref>
== परमाणु चक्र ==
'''परमाणु चक्र''' बिना तार से संयोजित चक्रों का सामान्यीकरण रूप होता है, जिसमें कोई n-कॉर्ड नहीं होता है। किसी चक्र को देखते हुए n-कॉर्ड को चक्र पर दो बिंदुओं को जोड़ने वाली लंबाई n के पथ के रूप में परिभाषित किया जाता है, जहां n उन बिंदुओं को जोड़ने वाले चक्र पर सबसे कम पथ की लंबाई से कम है। यदि किसी चक्र में कोई n-काॅर्ड नहीं है, तो इसे परमाणु चक्र कहा जाता है, क्योंकि इसे छोटे चक्रों में विघटित नहीं किया जा सकता है।<ref>{{harvtxt|Gashler|Martinez|2012}}.</ref>


== परमाणु चक्र ==
सबसे बुरी स्थिति में किसी ग्राफ में परमाणु चक्रों की गणना O(m<sup>2</sup>) समय में की जाती हैं, जहां m ग्राफ़ में किनारों की संख्या पर निर्भर करता हैं।
परमाणु चक्र ताररहित चक्रों का एक सामान्यीकरण है, जिसमें कोई एन-कॉर्ड नहीं होता है। किसी चक्र को देखते हुए, एन-कॉर्ड को चक्र पर दो बिंदुओं को जोड़ने वाली लंबाई एन के पथ के रूप में परिभाषित किया जाता है, जहां एन उन बिंदुओं को जोड़ने वाले चक्र पर सबसे कम पथ की लंबाई से कम है। यदि किसी चक्र में कोई n-रज्जु नहीं है, तो इसे परमाणु चक्र कहा जाता है, क्योंकि इसे छोटे चक्रों में विघटित नहीं किया जा सकता है।<ref>{{harvtxt|Gashler|Martinez|2012}}.</ref>
सबसे खराब स्थिति में, एक ग्राफ में परमाणु चक्रों की गणना O(m.) में की जा सकती है<sup>2</sup>) समय, जहां m ग्राफ़ में किनारों की संख्या है।


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 194: Line 194:
  | url = http://portal.acm.org/citation.cfm?id=982792.982920}}
  | url = http://portal.acm.org/citation.cfm?id=982792.982920}}
{{refend}}
{{refend}}
[[Category: ग्राफ सिद्धांत वस्तुओं]]


[[Category: Machine Translated Page]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 07:17, 19 March 2023

हाइपरक्यूब ग्राफ में लंबाई चार का प्रेरित पथ। हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ ढूँढना सांप-इन-द-बॉक्स समस्या के रूप में जाना जाता है।

ग्राफ सिद्धांत के गणित क्षेत्र में, अप्रत्यक्ष ग्राफ में प्रेरित पथ G ग्राफ़ सिद्धांत पथ है जो कि प्रेरित सबग्राफ G पर निर्भर करता है। यह मुख्य रूप से शीर्ष (ग्राफ सिद्धांत) G का क्रम है जैसे कि क्रम में प्रत्येक दो आसन्न कोने G के किनारों से संयोजित रहते हैं, और G अनुक्रम में प्रत्येक सन्निकटन कोने किसी भी किनारे से संयोजित नहीं होते हैं, इस प्रकार प्रेरित पथ को वलय भी कहा जाता है, और हाइपरक्यूब ग्राफ़ में लंबे प्रेरित पथ खोजने की समस्या को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है।

इसी प्रकार प्रेरित चक्र ऐसा चक्र ग्राफ है जो प्रेरित सबग्राफ G पर निर्भर रहता है, इस प्रकार प्रेरित चक्रों को तार रहित चक्र या (जब चक्र की लंबाई चार या अधिक हो) छिद्र भी होते हैं। प्रतिछिद्र के पूरक (ग्राफ सिद्धांत) G में छेद होते है, अर्थात प्रतिछिद्र छिद्र का पूरक कहा जाता हैं।

किसी ग्राफ़ में सबसे लंबे प्रेरित पथ की लंबाई को कभी-कभी ग्राफ़ की क्रम संख्या कहा जाता है,[1] इसके विरल रेखांकन के लिए, परिबद्ध चक्कर संख्या का होना परिबद्ध ट्री की गहराई के बराबर होता हैं।[2] ग्राफ की प्रेरित पथ संख्या G प्रेरित पथों की सबसे छोटी संख्या है जिसमें ग्राफ़ के शीर्षों को विभाजित किया जा सकता है,[3] और निकटता से संबंधित पथ की संख्या G को कवर करता है, इस प्रकार प्रेरित पथों की सबसे छोटी संख्या है जिसमें साथ सभी शीर्ष G पर सम्मिलित रहते हैं,[4] इस प्रकार ग्राफ का घेरा (ग्राफ सिद्धांत) उसके सबसे छोटे चक्र की लंबाई पर निर्भर रहता है, किन्तु यह चक्र प्रेरित चक्र होना चाहिए क्योंकि किसी भी जीवा का उपयोग छोटे चक्र का उत्पादन करने के लिए किया जा सकता है, इसी प्रकार इसके कारणों के लिए ग्राफ का विषम घेरा भी उसके सबसे छोटे विषम प्रेरित चक्र की लंबाई है।

उदाहरण

Maximum lengths of snakes (Ls) and coils (Lc) in the snakes-in-the-box problem for dimensions n from 1 to 4

चित्रण इस ग्राफ में घन, आठ कोने और बारह किनारों वाला ग्राफ, और लंबाई चार का प्रेरित पथ दिखाता है। सीधे स्थिति के विश्लेषण से पता चलता है कि घन में अब प्रेरित पथ नहीं हो सकता है, चूंकि इसकी लंबाई छह का प्रेरित चक्र है। इस प्रकार हाइपरक्यूब में सबसे लंबे समय तक प्रेरित पथ या चक्र खोजने की समस्या, सबसे पहले किसके द्वारा प्रस्तुत की गई थी, इस प्रकार कौट्ज (1958), को स्नेक-इन-द-बॉक्स समस्या के रूप में जाना जाता है, और कोडिंग सिद्धांत और अभियांत्रिकी में इसके अनुप्रयोगों के कारण इसका व्यापक अध्ययन किया गया है।

कोग्राफ समूह की विशेषता

कई महत्वपूर्ण ग्राफ़ समूहों को ग्राफ़ के प्रेरित पथों या चक्रों के संदर्भ में चित्रित किया जा सकता है।

  • मुख्य रूप से दोनों लंबाई के बिना प्रेरित पथ से संयोजित ग्राफ पूर्ण रूप से रेखांकित होते हैं, और बिना प्रेरित चक्र से संयोजित रेखांकन ट्री (ग्राफ सिद्धांत) से निरूपित होते हैं।
  • त्रिभुज-मुक्त ग्राफ ऐसा ग्राफ है जिसमें लंबाई तीन का कोई प्रेरित चक्र नहीं है।
  • कोग्राफ्स वास्तव में रेखांकन हैं जिनमें लंबाई तीन का कोई प्रेरित पथ नहीं है।
  • कॉर्डल ग्राफ ऐसे ग्राफ़ हैं जिनमें लंबाई चार या अधिक का कोई प्रेरित चक्र नहीं है।
  • सम-छिद्र-मुक्त ग्राफ़ वे ग्राफ़ होते हैं जिनमें सम संख्या वाले शीर्षों के साथ कोई प्रेरित चक्र नहीं होता है।
  • तुच्छ रूप से परिपूर्ण रेखांकन वे रेखांकन होते हैं जिनमें न तो लंबाई तीन का प्रेरित पथ होता है और न ही लंबाई चार का प्रेरित चक्र पर निर्भर करता हैं।
  • मजबूत सही ग्राफ प्रमेय द्वारा, सही ग्राफ ऐसे ग्राफ होते हैं जिनमें कोई विषम छेद नहीं होता है और कोई विषम एंटीहोल नहीं होता है।
  • दूरी-वंशानुगत ग्राफ ऐसे ग्राफ़ होते हैं जिनमें प्रत्येक प्रेरित पथ सबसे छोटा पथ होता है, और वे ग्राफ़ जिनमें समान दो शीर्षों के बीच प्रत्येक दो प्रेरित पथों की लंबाई समान होती है।
  • ब्लॉक ग्राफ वे ग्राफ़ होते हैं जिनमें किन्हीं दो शीर्षों के बीच अधिकतम प्रेरित पथ होता है, और कनेक्टेड ब्लॉक ग्राफ़ वे ग्राफ़ होते हैं जिनमें प्रत्येक दो शीर्षों के बीच ठीक प्रेरित पथ होता है।

एल्गोरिदम और जटिलता

ग्राफ़ G और पैरामीटर k के लिए यह निर्धारित करने के लिए NP-पूर्ण है कि क्या ग्राफ़ में कम से कम k लंबाई का प्रेरित पथ है। गैरी & जॉनसन (1979) इस परिणाम का श्रेय माइकलिस यानाकाकिस के अप्रकाशित संचार को दे सकता हैं। चूंकि इस समस्या को बहुपद समय में कुछ ग्राफ़ समूहों के लिए हल किया जा सकता है, जैसे कि ट्रिपल-मुक्त ग्राफ़[5] या बिना लंबे छेद वाले ग्राफ़ इत्यादि।[6]

यह निर्धारित करने के लिए भी np-पूर्ण है कि ग्राफ के कोने को दो प्रेरित पथों या दो प्रेरित चक्रों में विभाजित किया जा सकता है या नहीं इस बात का मुख्य रूप से ध्यान रखा जाता हैं।[7] परिणामस्वरूप, ग्राफ के प्रेरित पथ संख्या का निर्धारण np-कठोर होते हैं।

सबसे लंबे समय तक प्रेरित पथ या चक्र की समस्याओं का अनुमान लगाने की जटिलता निम्न कमी से ग्राफ में बड़े स्वतंत्र समुच्चय (ग्राफ सिद्धांत) को खोजने से संबंधित हो सकती है।[8] इस प्रकार n शीर्षों वाले किसी भी ग्राफ़ G से, G n(n − 1)/2 शीर्षों में संयोजित G में दो शीर्षों के साथ इसके अन्य ग्राफ़ H द्वारा बनाए जाते हैं जिसमें दो समीपस्थ G में प्रत्येक शीर्ष मुख्य रूप से संयोजित होकर एकत्र हो जाते हैं। फिर यदि G आकार k का स्वतंत्र समुच्चय है, H के पास प्रेरित पथ और लंबाई 2k का प्रेरित चक्र होना चाहिए, जो आई के कोने के साथ G में स्वतंत्र समुच्चय के वैकल्पिक ऊर्ध्वाधर बनता है। इसके विपरीत, यदि H का प्रेरित पथ या लंबाई k का चक्र है, इस प्रकार इस पथ या चक्र से G में असन्निकट शीर्षों का कोई भी अधिकतम समुच्चय कम से कम k/3 आकार के G में स्वतंत्र समुच्चय बनाता है। इस प्रकार, जी में अधिकतम स्वतंत्र समुच्चय का आकार सबसे लंबे प्रेरित पथ के आकार और एच में सबसे लंबे समय तक प्रेरित चक्र के स्थिर कारक के भीतर है। इसलिए इसके परिणाम से हैस्टैड (1996) स्वतंत्र समुच्चयों की अनुपयुक्तता पर जब तक कि np = zpp, o (n) के कारक के भीतर सबसे लंबे समय तक प्रेरित पथ या सबसे लंबे समय तक प्रेरित चक्र का अनुमान लगाने के लिए बहुपद समय एल्गोरिदम सम्मिलित नहीं है। जो कि इष्टतम समाधान का 1/2-ε) कारक हैं।

इस प्रकार n कोने और एम किनारों वाले ग्राफ में छेद (और लंबाई 5 के तारहीन चक्र के बिना ग्राफ में एंटीहोल्स) समय (n + m2) में पता लगाया जा सकता है।[9]

परमाणु चक्र

परमाणु चक्र बिना तार से संयोजित चक्रों का सामान्यीकरण रूप होता है, जिसमें कोई n-कॉर्ड नहीं होता है। किसी चक्र को देखते हुए n-कॉर्ड को चक्र पर दो बिंदुओं को जोड़ने वाली लंबाई n के पथ के रूप में परिभाषित किया जाता है, जहां n उन बिंदुओं को जोड़ने वाले चक्र पर सबसे कम पथ की लंबाई से कम है। यदि किसी चक्र में कोई n-काॅर्ड नहीं है, तो इसे परमाणु चक्र कहा जाता है, क्योंकि इसे छोटे चक्रों में विघटित नहीं किया जा सकता है।[10]

सबसे बुरी स्थिति में किसी ग्राफ में परमाणु चक्रों की गणना O(m2) समय में की जाती हैं, जहां m ग्राफ़ में किनारों की संख्या पर निर्भर करता हैं।

टिप्पणियाँ


संदर्भ