बाहरी ऑटोमोर्फिज्म समूह: Difference between revisions

From Vigyanwiki
(TEXT)
No edit summary
Line 34: Line 34:
| {{math|[[cyclic group|C{{sub|''n''}}]]}} || {{math|''n'' > 2}}  
| {{math|[[cyclic group|C{{sub|''n''}}]]}} || {{math|''n'' > 2}}  
| {{math|[[Multiplicative group of integers modulo n|(ℤ/''n''ℤ){{sup|×}}]]}}
| {{math|[[Multiplicative group of integers modulo n|(ℤ/''n''ℤ){{sup|×}}]]}}
| {{math|[[Euler's totient function|''φ''(''n'')]] {{=}} }}<math>n\prod_{p|n}\left(1 - \frac{1}{p}\right)</math>; one corresponding to multiplication by an invertible element in the [[Ring (mathematics)|ring]] {{math|ℤ/''n''ℤ}}.
| {{math|[[Euler's totient function|''φ''(''n'')]] {{=}} }}<math>n\prod_{p|n}\left(1 - \frac{1}{p}\right)</math>; [[रिंग (प्रोग्रामिंग भाषा)|रिंग]] में एक उलटा तत्व द्वारा गुणन के अनुरूप एक {{math|ℤ/''n''ℤ}}.
|-
|-
| {{math|[[cyclic group|Z{{sub|''p''}}{{sup|''n''}}]]}}
| {{math|[[cyclic group|Z{{sub|''p''}}{{sup|''n''}}]]}}
Line 102: Line 102:


== जटिल और वास्तविक सरल ली बीजगणित में ==
== जटिल और वास्तविक सरल ली बीजगणित में ==
डायनकिन आरेख की समरूपता के रूप में बाहरी स्वाकारिता की पूर्ववर्ती व्याख्या सामान्य तथ्य से होती है, कि एक जटिल या वास्तविक सरल ली बीजगणित के लिए, {{mvar|𝔤}}, स्वाकारिता समूह {{math|Aut(''𝔤'')}} {{math|Inn(''𝔤'')}} और {{math|Out(''𝔤'')}} का एक अर्ध-प्रत्यक्ष उत्पाद है; यानी, [[लघु सटीक अनुक्रम|लघु यथार्थ अनुक्रम]]
डायनकिन आरेख की समरूपता के रूप में बाहरी स्वाकारिता की पूर्ववर्ती व्याख्या सामान्य तथ्य से होती है, कि एक जटिल या वास्तविक सरल ली बीजगणित के लिए, {{mvar|𝔤}}, स्वाकारिता समूह {{math|Aut(''𝔤'')}} {{math|Inn(''𝔤'')}} और {{math|Out(''𝔤'')}} का एक अर्ध-प्रत्यक्ष उत्पाद है; अर्थात, [[लघु सटीक अनुक्रम|लघु यथार्थ अनुक्रम]]


: {{math|1 ⟶ Inn(''𝔤'') ⟶ Aut(''𝔤'') ⟶ Out(''𝔤'') ⟶ 1}}
: {{math|1 ⟶ Inn(''𝔤'') ⟶ Aut(''𝔤'') ⟶ Out(''𝔤'') ⟶ 1}}

Revision as of 12:59, 15 March 2023

गणित में, एक समूह का बाह्य स्वाकारिता समूह, G, भागफल है, Aut(G) / Inn(G), जहाँ Aut(G) G का स्वाकारिता समूह है और Inn(G) आंतरिक स्वाकारिता वाला उपसमूह है। बाह्य स्वाकारिता समूह को प्रायः Out(G) के रूप में लक्षित किया जाता है। अगर Out(G) मामूली है और G का एक मामूली केंद्र है, तो G को पूर्ण कहा जाता है।

एक समूह का एक स्वाकारिता जो आंतरिक नहीं है उसे बाह्य स्वाकारिता कहा जाता है। Inn(G) के सहसमुच्चय बाह्य स्वाकारिता के संबंध में Out(G) के तत्व हैं; यह इस तथ्य का एक उदाहरण है कि समूहों के उद्धरण सामान्य रूप से उपसमूह (समरूपी) नहीं होते हैं। यदि आंतरिक स्वाकारिता समूह मामूली है (जब कोई समूह एबेलियन है), स्वाकारिता समूह और बाह्य स्वाकारिता समूह स्वाभाविक रूप से पहचाने जाते हैं; अर्थात्, बाह्य स्वाकारिता समूह समूह पर कार्य करता है।

उदाहरण के लिए, एकांतर समूह, An के लिए, बाह्य स्वाकारिता समूह प्रायः क्रम 2 का समूह होता है, अपवादों के साथ नीचे उल्लेख किया गया है। An को सममित समूह के एक उपसमूह के रूप में मानते हुए, Sn, किसी भी विषम क्रमचय द्वारा संयुग्मन An का एक बाह्य स्वाकारिता है या अधिक यथार्थता से ''An के (गैर-मामूली) बाह्य स्वाकारिता के वर्ग का प्रतिनिधित्व करता है", लेकिन बाह्य स्वाकारिता किसी विशेष विषम तत्व द्वारा संयुग्मन के अनुरूप नहीं है, और विषम तत्वों द्वारा सभी संयुग्मन एक समान तत्व द्वारा संयुग्मन के समान होते हैं।

संरचना

श्रेयर अनुमान का अधिकार है कि Out(G) हमेशा एक हल करने योग्य समूह होता है जब G एक परिमित सरल समूह होता है। यह परिणाम अब परिमित सरल समूहों के वर्गीकरण के परिणाम के रूप में सत्य माना जाता है, यद्यपि कोई सरल प्रमाण ज्ञात नहीं है।

केंद्र के द्वैध के रूप में

बाहरी स्वाकारिता समूह निम्नलिखित अर्थों में केंद्र के लिए द्वैध है: G के एक तत्व द्वारा संयुग्मन एक स्वाकारिता है, जो मानचित्र σ : G → Aut(G) उत्पन्न करता है। संयुग्मन मानचित्र का कर्नेल केंद्र है, जबकि कोकर्नेल बाहरी स्वाकारिता समूह है (और प्रतिबिंब आंतरिक स्वाकारिता समूह है)। इसे यथार्थ अनुक्रम द्वारा संक्षेपित किया जा सकता है:

Z(G) ↪ G σ Aut(G) ↠ Out(G).

अनुप्रयोग

एक समूह का बाहरी स्वाकारिता समूह संयुग्मन वर्गों पर और परिणामस्वरूप वर्ण सूची पर कार्य करता है। वर्ण सूची पर विवरण देखें: बाहरी स्वाकारिता

सतहों की सांस्थिति

सतहों की सांस्थिति में बाह्य स्वाकारिता समूह महत्वपूर्ण है क्योंकि देह-नीलसन प्रमेय द्वारा प्रदान किया गया एक संबंधन है: सतह का विस्तारित मानचित्रण वर्ग समूह अपने मूल समूह का बाह्य स्वाकारिता समूह है।

परिमित समूहों में

सभी परिमित सरल समूहों के बाहरी स्वाकारिता समूहों के लिए परिमित सरल समूहों की सूची देखें। विकीर्ण सरल समूह और एकांतर समूह (एकांतर समूह के अतिरिक्त, A6; नीचे देखें) सभी में क्रम 1 या 2 के बाह्य स्वाकारिता समूह होते हैं। ली प्रकार के परिमित सरल समूह का बाह्य स्वाकारिता समूह "विकर्ण स्वाकारिता" के समूह का एक विस्तार है Dn(q) के अतिरिक्त चक्रीय, जब इसका क्रम 4 होता है), ''क्षेत्र स्वाकारिता'' का एक समूह (सदैव चक्रीय), और ''आलेख स्वाकारिता'' का एक समूह D4(q) के अतिरिक्त क्रम 1 या 2 का, जब यह 3 बिंदुओं पर सममित समूह होता है)। ये विस्तार हमेशा अर्ध-प्रत्यक्ष उत्पाद नहीं होते हैं, जैसा कि एकांतर समूह A6 प्रदर्शन के प्रकरण में होता है; ऐसा होने के लिए एक यथार्थ कसौटी 2003 में दिया गया था।[1]

समूह प्राचल Out(G) |Out(G)|
Z C2 2: पहचान और बाह्य स्वाकारिता x ↦ −x
Cn n > 2 (ℤ/nℤ)× φ(n) = ; रिंग में एक उलटा तत्व द्वारा गुणन के अनुरूप एक ℤ/n.
Zpn p prime, n > 1 GLn(p) (pn − 1)(pnp )(pnp2)...(pnpn−1)
Sn n ≠ 6 C1 1
S6   C2 (see below) 2
An n ≠ 6 C2 2
A6   C2 × C2 (see below) 4
PSL2(p) p > 3 prime C2 2
PSL2(2n) n > 1 Cn n
PSL3(4) = M21   Dih6 12
Mn n ∈ {11, 23, 24} C1 1
Mn n ∈ {12, 22} C2 2
Con n ∈ {1, 2, 3} C1 1

[citation needed]

सममित और एकांतर समूहों में

परिमित सरल समूहों के कुछ अनंत वर्ग में एक परिमित सरल समूह का बाहरी स्वाकारिता समूह लगभग हमेशा एक समान सूत्र द्वारा दिया जा सकता है जो वर्ग के सभी तत्वों के लिए काम करता है। इसका केवल एक अपवाद है:[2] एकांतर समूह A6 में 2 के बदले क्रम 4 का बाहरी स्वाकारिता समूह है, जैसा कि अन्य सरल एकांतर समूह (एक विषम क्रमपरिवर्तन द्वारा संयुग्मन द्वारा दिया गया) करते हैं। समान रूप से सममित समूह S6 गैर-मामूली बाहरी स्वाकारिता समूह वाला एकमात्र सममित समूह है।

ध्यान दें कि G = A6 = PSL(2, 9) के प्रकरण में, अनुक्रम 1 ⟶ G ⟶ Aut(G) ⟶ Out(G) ⟶ 1 विभाजित नहीं होता है। समान परिणाम किसी भी PSL(2, q2), q विषम के लिए होता है।

अपचयी बीजगणितीय समूहों में

डायनकिन आरेख, D4 की समरूपता, ट्रायलिटी में Spin(8) के बाहरी स्वाकारिता के अनुरूप है।

बता दें कि G अब बीजगणितीय रूप से बंद क्षेत्र पर एक जुड़ा हुआ अपचयी समूह है। फिर कोई भी दो बोरेल उपसमूह एक आंतरिक स्वाकारिता द्वारा संयुग्मित होते हैं, इसलिए बाह्य स्वाकारिता का अध्ययन करने के लिए स्वाकारिता पर विचार करना पर्याप्त होता है जो किसी दिए गए बोरेल उपसमूह को निर्धारित करता है। बोरेल उपसमूह से संबद्ध सरल मूल का एक समूह है, और संबंधित डायनकिन आरेख की संरचना को संरक्षित करते हुए बाहरी स्वाकारिता उन्हें अनुमति दे सकता है। इस तरह कोई Out(G) के उपसमूह के साथ G के डायनकिन आरेख के स्वाकारिता समूह की पहचान कर सकता है।

D4 में एक बहुत ही सममित डायनकिन आरेख है, जो Spin(8) के एक बड़े बाहरी स्वाकारिता समूह का उत्पादन करता है, अर्थात् Out(Spin(8)) = S3; इसे ट्रायलिटी कहा जाता है।

जटिल और वास्तविक सरल ली बीजगणित में

डायनकिन आरेख की समरूपता के रूप में बाहरी स्वाकारिता की पूर्ववर्ती व्याख्या सामान्य तथ्य से होती है, कि एक जटिल या वास्तविक सरल ली बीजगणित के लिए, 𝔤, स्वाकारिता समूह Aut(𝔤) Inn(𝔤) और Out(𝔤) का एक अर्ध-प्रत्यक्ष उत्पाद है; अर्थात, लघु यथार्थ अनुक्रम

1 ⟶ Inn(𝔤) ⟶ Aut(𝔤) ⟶ Out(𝔤) ⟶ 1

विभाजन होता है। जटिल सरल प्रकरण में, यह चिरप्रतिष्ठित परिणाम है,[3] जबकि वास्तविक सरल ली बीजगणित के लिए, यह तथ्य हाल ही में 2010 तक सिद्ध हो गया है।[4]

शब्द खेल

बाह्य स्वाकारिता शब्द स्वयं को शब्दों के खेल के लिए उधार देता है: आउटरमॉर्फिज़्म शब्द का प्रयोग कभी-कभी बाहरी स्वाकारिता के लिए किया जाता है, और एक विशेष ज्यामितीय जिस पर Out(Fn) कार्य करता है, उसे बाहरी स्थान कहा जाता है।

यह भी देखें

संदर्भ

  1. A. Lucchini, F. Menegazzo, M. Morigi (2003), "On the existence of a complement for a finite simple group in its automorphism group", Illinois J. Math. 47, 395–418.
  2. ATLAS p. xvi
  3. (Fulton & Harris 1991, Proposition D.40)
  4. JLT20035


बाहरी संबंध

  • ATLAS of Finite Group Representations-V3, contains a lot of information on various classes of finite groups (in particular sporadic simple groups), including the order of Out(G) for each group listed.