बाहरी ऑटोमोर्फिज्म समूह: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 1: Line 1:
गणित में, एक [[समूह (गणित)|समूह]] का बाहरी ऑटोमोर्फिज्म समूह, {{mvar|G}}, [[भागफल समूह|भागफल]] है, {{math|Aut(''G'') / Inn(''G'')}}, जहाँ {{math|Aut(''G'')}} G का [[ऑटोमोर्फिज्म समूह]] है और {{math|Inn(''G''}}) [[आंतरिक ऑटोमोर्फिज्म]] वाला उपसमूह है। बाहरी ऑटोमोर्फिज्म समूह को प्रायः {{math|Out(''G'')}} के रूप में दर्शाया जाता है। अगर {{math|Out(''G'')}} तुच्छ है और {{mvar|G}} का एक तुच्छ [[केंद्र (समूह सिद्धांत)|केंद्र]] है, तो {{mvar|G}} को पूर्ण कहा जाता है।
गणित में, एक [[समूह (गणित)|समूह]] का बाहरी ऑटोमोर्फिज्म समूह, {{mvar|G}}, [[भागफल समूह|भागफल]] है, {{math|Aut(''G'') / Inn(''G'')}}, जहाँ {{math|Aut(''G'')}} G का [[ऑटोमोर्फिज्म समूह]] है और {{math|Inn(''G''}}) [[आंतरिक ऑटोमोर्फिज्म]] उपसमूह है। बाहरी ऑटोमोर्फिज्म समूह को प्रायः {{math|Out(''G'')}} के रूप में दर्शाया जाता है। अगर {{math|Out(''G'')}} तुच्छ है और {{mvar|G}} का एक तुच्छ [[केंद्र (समूह सिद्धांत)|केंद्र]] है, तो {{mvar|G}} को पूर्ण कहा जाता है।


एक समूह का एक ऑटोमोर्फिज्म जो आंतरिक नहीं है उसे बाहरी ऑटोमोर्फिज्म कहा जाता है। {{math|Inn(''G'')}} के[[ सह समुच्चय | सहसमुच्चय]] बाहरी ऑटोमोर्फिज्म के संबंध में तो {{math|Out(''G'')}} के तत्व हैं; यह इस तथ्य का एक उदाहरण है कि समूहों के उद्धरण सामान्य रूप से उपसमूहों (समरूपी) नहीं होते हैं। यदि आंतरिक ऑटोमोर्फिज्म समूह तुच्छ है (जब कोई समूह एबेलियन है), ऑटोमोर्फिज्म समूह और बाहरी ऑटोमोर्फिज्म समूह स्वाभाविक रूप से पहचाने जाते हैं; अर्थात्, बाह्य ऑटोमोर्फिज्म समूह पर कार्य करता है।
एक समूह का एक ऑटोमोर्फिज्म जो आंतरिक नहीं है उसे बाहरी ऑटोमोर्फिज्म कहा जाता है। {{math|Inn(''G'')}} के[[ सह समुच्चय | सहसमुच्चय]] बाहरी ऑटोमोर्फिज्म के संबंध में {{math|Out(''G'')}} के तत्व हैं; यह इस तथ्य का एक उदाहरण है कि समूहों के उद्धरण सामान्य रूप से उपसमूह (समरूपी) नहीं होते हैं। यदि आंतरिक ऑटोमोर्फिज्म समूह तुच्छ है (जब कोई समूह एबेलियन है), ऑटोमोर्फिज्म समूह और बाहरी ऑटोमोर्फिज्म समूह स्वाभाविक रूप से पहचाने जाते हैं; अर्थात्, बाह्य ऑटोमोर्फिज्म समूह पर कार्य करता है।


उदाहरण के लिए, [[वैकल्पिक समूह|प्रत्यावर्ती समूह,]] {{math|A{{sub|''n''}}}} के लिए, बाहरी ऑटोमोर्फिज्म समूह प्रायः क्रम 2 का समूह होता है, अपवादों के साथ नीचे उल्लेख किया गया है। {{math|A{{sub|''n''}}}} को सममित समूह के एक उपसमूह के रूप में मानते हुए, S<sub>''n''</sub>  किसी भी विषम क्रमपरिवर्तन द्वारा संयुग्मन {{math|A{{sub|''n''}}}} का एक बाहरी ऑटोमोर्फिज्म है या अधिक सटीक रूप से <nowiki>''</nowiki>{{math|A{{sub|''n''}}}} के (गैर-तुच्छ) बाहरी ऑटोमोर्फिज्म के वर्ग का प्रतिनिधित्व करता है", लेकिन बाहरी ऑटोमोर्फिज्म किसी विशेष विषम तत्व द्वारा संयुग्मन के अनुरूप नहीं है, और विषम तत्वों द्वारा सभी संयुग्मन एक समान तत्व द्वारा संयुग्मन के समान होते हैं।  
उदाहरण के लिए, [[वैकल्पिक समूह|प्रत्यावर्ती समूह,]] {{math|A{{sub|''n''}}}} के लिए, बाहरी ऑटोमोर्फिज्म समूह प्रायः क्रम 2 का समूह होता है, अपवादों के साथ नीचे उल्लेख किया गया है। {{math|A{{sub|''n''}}}} को सममित समूह के एक उपसमूह के रूप में मानते हुए, S<sub>''n''</sub>  किसी भी विषम क्रमपरिवर्तन द्वारा संयुग्मन {{math|A{{sub|''n''}}}} का एक बाहरी ऑटोमोर्फिज्म है या अधिक सटीक रूप से <nowiki>''</nowiki>{{math|A{{sub|''n''}}}} के (गैर-तुच्छ) बाहरी ऑटोमोर्फिज्म के वर्ग का प्रतिनिधित्व करता है", लेकिन बाहरी ऑटोमोर्फिज्म किसी विशेष विषम तत्व द्वारा संयुग्मन के अनुरूप नहीं है, और विषम तत्वों द्वारा सभी संयुग्मन एक समान तत्व द्वारा संयुग्मन के समान होते हैं।  
Line 9: Line 9:


== केंद्र के दोहरे के रूप में ==
== केंद्र के दोहरे के रूप में ==
बाहरी ऑटोमोर्फिज़्म समूह निम्नलिखित अर्थों में केंद्र के लिए दोहरा है: G के एक तत्व द्वारा संयुग्मन एक ऑटोमोर्फिज्म है, एक मानचित्र {{math|''σ'' : ''G'' → Aut(''G'')}} प्राप्त करना। संयुग्मन मानचित्र का कर्नेल केंद्र है, जबकि [[cokernel|कोकर्नेल]] बाहरी ऑटोमोर्फिज़्म समूह है (और छवि आंतरिक ऑटोमोर्फिज़्म समूह है)। इसे सटीक अनुक्रम द्वारा संक्षेपित किया जा सकता है:
बाहरी ऑटोमोर्फिज़्म समूह निम्नलिखित अर्थों में केंद्र के लिए दोहरा है: G के एक तत्व द्वारा संयुग्मन एक ऑटोमोर्फिज्म है, जो मानचित्र {{math|''σ'' : ''G'' → Aut(''G'')}} उत्पन्न करता है। संयुग्मन मानचित्र का कर्नेल केंद्र है, जबकि [[cokernel|कोकर्नेल]] बाहरी ऑटोमोर्फिज़्म समूह है (और छवि आंतरिक ऑटोमोर्फिज़्म समूह है)। इसे सटीक अनुक्रम द्वारा संक्षेपित किया जा सकता है:
:{{math|Z(''G'') ↪ ''G'' {{overset|''σ''|→}} Aut(''G'') ↠ Out(''G'')}}.
:{{math|Z(''G'') ↪ ''G'' {{overset|''σ''|→}} Aut(''G'') ↠ Out(''G'')}}.


== अनुप्रयोग ==
== अनुप्रयोग ==
एक समूह का बाहरी ऑटोमोर्फिज़्म समूह [[संयुग्मन वर्ग|संयुग्मन वर्गों]] पर और परिणामस्वरूप वर्ण सूची पर कार्य करता है। [[ चरित्र तालिका | वर्ण सूची]] पर विवरण देखें: बाहरी ऑटोमोर्फिज़्म
एक समूह का बाहरी ऑटोमोर्फिज़्म समूह [[संयुग्मन वर्ग|संयुग्मन वर्गों]] पर और परिणामस्वरूप वर्ण सूची पर कार्य करता है। [[ चरित्र तालिका |वर्ण सूची]] पर विवरण देखें: बाहरी ऑटोमोर्फिज़्म


=== सतहों की [[टोपोलॉजी|सांस्थिति]] ===
=== सतहों की [[टोपोलॉजी|सांस्थिति]] ===
Line 94: Line 94:
                       \operatorname{Out}(\mathrm{A}_6) & = \mathrm{C}_2 \times \mathrm{C}_2
                       \operatorname{Out}(\mathrm{A}_6) & = \mathrm{C}_2 \times \mathrm{C}_2
\end{align}</math>
\end{align}</math>
ध्यान दें कि {{math|''G'' {{=}} A{{sub|6}} {{=}} PSL(2, 9)}} के प्रकरण में , अनुक्रम {{math|1 ⟶ ''G'' ⟶ Aut(''G'') ⟶ Out(''G'') ⟶ 1}} विभाजित नहीं होता है। समान परिणाम किसी भी {{math|PSL(2, ''q''{{sup|2}})}}, {{mvar|q}} विषम के लिए होता है।
ध्यान दें कि {{math|''G'' {{=}} A{{sub|6}} {{=}} PSL(2, 9)}} के प्रकरण में, अनुक्रम {{math|1 ⟶ ''G'' ⟶ Aut(''G'') ⟶ Out(''G'') ⟶ 1}} विभाजित नहीं होता है। समान परिणाम किसी भी {{math|PSL(2, ''q''{{sup|2}})}}, {{mvar|q}} विषम के लिए होता है।


== रिडक्टिव बीजगणितीय समूहों में ==
== रिडक्टिव बीजगणितीय समूहों में ==

Revision as of 11:56, 14 March 2023

गणित में, एक समूह का बाहरी ऑटोमोर्फिज्म समूह, G, भागफल है, Aut(G) / Inn(G), जहाँ Aut(G) G का ऑटोमोर्फिज्म समूह है और Inn(G) आंतरिक ऑटोमोर्फिज्म उपसमूह है। बाहरी ऑटोमोर्फिज्म समूह को प्रायः Out(G) के रूप में दर्शाया जाता है। अगर Out(G) तुच्छ है और G का एक तुच्छ केंद्र है, तो G को पूर्ण कहा जाता है।

एक समूह का एक ऑटोमोर्फिज्म जो आंतरिक नहीं है उसे बाहरी ऑटोमोर्फिज्म कहा जाता है। Inn(G) के सहसमुच्चय बाहरी ऑटोमोर्फिज्म के संबंध में Out(G) के तत्व हैं; यह इस तथ्य का एक उदाहरण है कि समूहों के उद्धरण सामान्य रूप से उपसमूह (समरूपी) नहीं होते हैं। यदि आंतरिक ऑटोमोर्फिज्म समूह तुच्छ है (जब कोई समूह एबेलियन है), ऑटोमोर्फिज्म समूह और बाहरी ऑटोमोर्फिज्म समूह स्वाभाविक रूप से पहचाने जाते हैं; अर्थात्, बाह्य ऑटोमोर्फिज्म समूह पर कार्य करता है।

उदाहरण के लिए, प्रत्यावर्ती समूह, An के लिए, बाहरी ऑटोमोर्फिज्म समूह प्रायः क्रम 2 का समूह होता है, अपवादों के साथ नीचे उल्लेख किया गया है। An को सममित समूह के एक उपसमूह के रूप में मानते हुए, Sn किसी भी विषम क्रमपरिवर्तन द्वारा संयुग्मन An का एक बाहरी ऑटोमोर्फिज्म है या अधिक सटीक रूप से ''An के (गैर-तुच्छ) बाहरी ऑटोमोर्फिज्म के वर्ग का प्रतिनिधित्व करता है", लेकिन बाहरी ऑटोमोर्फिज्म किसी विशेष विषम तत्व द्वारा संयुग्मन के अनुरूप नहीं है, और विषम तत्वों द्वारा सभी संयुग्मन एक समान तत्व द्वारा संयुग्मन के समान होते हैं।

संरचना

श्रेयर अनुमान का दावा है कि Out(G) हमेशा एक हल करने योग्य समूह होता है जब G एक परिमित सरल समूह है। यह परिणाम अब परिमित सरल समूहों के वर्गीकरण के परिणाम के रूप में सत्य माना जाता है, हालांकि कोई सरल प्रमाण ज्ञात नहीं है।

केंद्र के दोहरे के रूप में

बाहरी ऑटोमोर्फिज़्म समूह निम्नलिखित अर्थों में केंद्र के लिए दोहरा है: G के एक तत्व द्वारा संयुग्मन एक ऑटोमोर्फिज्म है, जो मानचित्र σ : G → Aut(G) उत्पन्न करता है। संयुग्मन मानचित्र का कर्नेल केंद्र है, जबकि कोकर्नेल बाहरी ऑटोमोर्फिज़्म समूह है (और छवि आंतरिक ऑटोमोर्फिज़्म समूह है)। इसे सटीक अनुक्रम द्वारा संक्षेपित किया जा सकता है:

Z(G) ↪ G σ Aut(G) ↠ Out(G).

अनुप्रयोग

एक समूह का बाहरी ऑटोमोर्फिज़्म समूह संयुग्मन वर्गों पर और परिणामस्वरूप वर्ण सूची पर कार्य करता है। वर्ण सूची पर विवरण देखें: बाहरी ऑटोमोर्फिज़्म

सतहों की सांस्थिति

सतहों की टोपोलॉजी में बाहरी ऑटोमोर्फिज्म समूह महत्वपूर्ण है क्योंकि देह-नीलसन प्रमेय द्वारा प्रदान किया गया एक संबंधन है: सतह का विस्तारित मानचित्रण वर्ग समूह अपने मूल समूह का बाहरी ऑटोमोर्फिज्म समूह है।

परिमित समूहों में

सभी परिमित सरल समूहों के बाहरी ऑटोमोर्फिज़्म समूहों के लिए परिमित सरल समूहों की सूची देखें। छिटपुट सरल समूह और प्रत्यावर्ती समूह (प्रत्यावर्ती समूह के अलावा, A6; नीचे देखें) सभी में क्रम 1 या 2 के बाहरी ऑटोमोर्फिज्म समूह होते हैं। ली प्रकार के परिमित सरल समूह का बाहरी ऑटोमोर्फिज्म समूह "विकर्ण ऑटोमोर्फिज्म" के समूह का एक विस्तार है Dn(q) को छोड़कर चक्रीय, जब इसका क्रम 4 होता है), ''क्षेत्र ऑटोमोर्फिज़्म'' का एक समूह (हमेशा चक्रीय), और ''आलेख ऑटोमोर्फिज़्म'' का एक समूह D4(q) को छोड़कर क्रम 1 या 2 का, जब यह 3 बिंदुओं पर सममित समूह होता है)। ये विस्तार हमेशा अर्ध-प्रत्यक्ष उत्पाद नहीं होते हैं, जैसा कि प्रत्यावर्ती समूह A6 प्रदर्शन के प्रकरण में होता है; ऐसा होने के लिए एक सटीक मानदंड 2003 में दिया गया था।[1]

समूह प्राचल Out(G) |Out(G)|
Z C2 2: पहचान और बाहरी ऑटोमोर्फिज्म x ↦ −x
Cn n > 2 (ℤ/nℤ)× φ(n) = ; one corresponding to multiplication by an invertible element in the ring ℤ/n.
Zpn p prime, n > 1 GLn(p) (pn − 1)(pnp )(pnp2)...(pnpn−1)
Sn n ≠ 6 C1 1
S6   C2 (see below) 2
An n ≠ 6 C2 2
A6   C2 × C2 (see below) 4
PSL2(p) p > 3 prime C2 2
PSL2(2n) n > 1 Cn n
PSL3(4) = M21   Dih6 12
Mn n ∈ {11, 23, 24} C1 1
Mn n ∈ {12, 22} C2 2
Con n ∈ {1, 2, 3} C1 1

[citation needed]

सममित और प्रत्यावर्ती समूहों में

परिमित सरल समूहों के कुछ अनंत परिवार में एक परिमित सरल समूह का बाहरी ऑटोमोर्फिज़्म समूह लगभग हमेशा एक समान सूत्र द्वारा दिया जा सकता है जो परिवार के सभी तत्वों के लिए काम करता है। इसका केवल एक अपवाद है:[2] प्रत्यावर्ती समूह A6 में 2 के बदले क्रम 4 का बाहरी ऑटोमोर्फिज़्म समूह है, जैसा कि अन्य सरल प्रत्यावर्ती समूह (एक विषम क्रमपरिवर्तन द्वारा संयुग्मन द्वारा दिया गया) करते हैं। समान रूप से सममित समूह S6 गैर-तुच्छ बाहरी ऑटोमोर्फिज़्म समूह वाला एकमात्र सममित समूह है।

ध्यान दें कि G = A6 = PSL(2, 9) के प्रकरण में, अनुक्रम 1 ⟶ G ⟶ Aut(G) ⟶ Out(G) ⟶ 1 विभाजित नहीं होता है। समान परिणाम किसी भी PSL(2, q2), q विषम के लिए होता है।

रिडक्टिव बीजगणितीय समूहों में

डायनकिन आरेख, D4 की समरूपता, ट्रायलिटी में Spin(8) के बाहरी ऑटोमोर्फिज़्म के अनुरूप है।

बता दें कि G अब बीजगणितीय रूप से बंद क्षेत्र पर एक जुड़ा हुआ रिडक्टिव समूह है। फिर कोई भी दो बोरेल उपसमूह एक आंतरिक ऑटोमोर्फिज्म द्वारा संयुग्मित होते हैं, इसलिए बाहरी ऑटोमोर्फिज्म का अध्ययन करने के लिए ऑटोमोर्फिज्म पर विचार करना पर्याप्त होता है जो किसी दिए गए बोरेल उपसमूह को ठीक करता है। बोरेल उपसमूह से संबद्ध सरल जड़ों का एक समूह है, और संबंधित डायनकिन आरेख की संरचना को संरक्षित करते हुए बाहरी ऑटोमोर्फिज़्म उन्हें अनुमति दे सकता है। इस तरह कोई Out(G) के उपसमूह के साथ G के डायनकिन आरेख के ऑटोमोर्फिज्म समूह की पहचान कर सकता है।

D4 में एक बहुत ही सममित डायनकिन आरेख है, जो Spin(8) के एक बड़े बाहरी ऑटोमोर्फिज़्म समूह का उत्पादन करता है, अर्थात् Out(Spin(8)) = S3; इसे ट्रायलिटी कहा जाता है।

जटिल और वास्तविक सरल ली बीजगणित में

डायनकिन आरेख की समरूपता के रूप में बाहरी ऑटोमोर्फिज़्म की पूर्ववर्ती व्याख्या सामान्य तथ्य से होती है, कि एक जटिल या वास्तविक सरल ली बीजगणित के लिए, 𝔤, ऑटोमोर्फिज़्म समूह Aut(𝔤) Inn(𝔤) और Out(𝔤) का एक अर्ध-प्रत्यक्ष उत्पाद है; यानी, लघु सटीक अनुक्रम

1 ⟶ Inn(𝔤) ⟶ Aut(𝔤) ⟶ Out(𝔤) ⟶ 1

विभाजन होता है। जटिल सरल प्रकरण में, यह शास्त्रीय परिणाम है,[3] जबकि वास्तविक सरल ली बीजगणित के लिए, यह तथ्य हाल ही में 2010 तक सिद्ध हो चुका है।[4]

शब्द खेल

बाहरी ऑटोमोर्फिज्म शब्द स्वयं को शब्दों के खेल के लिए उधार देता है: आउटरमॉर्फिज़्म शब्द का प्रयोग कभी-कभी बाहरी ऑटोमोर्फिज़्म के लिए किया जाता है, और एक विशेष ज्यामितीय जिस पर Out(Fn) कार्य करता है, उसे बाहरी स्थान कहा जाता है।

यह भी देखें

संदर्भ

  1. A. Lucchini, F. Menegazzo, M. Morigi (2003), "On the existence of a complement for a finite simple group in its automorphism group", Illinois J. Math. 47, 395–418.
  2. ATLAS p. xvi
  3. (Fulton & Harris 1991, Proposition D.40)
  4. JLT20035


बाहरी संबंध

  • ATLAS of Finite Group Representations-V3, contains a lot of information on various classes of finite groups (in particular sporadic simple groups), including the order of Out(G) for each group listed.