Template:QM AM GM HM inequality visual proof.svg: Difference between revisions
From Vigyanwiki
(Created page with "thumb|{{{1|230px}}}|Geometric [[proof without words that {{nowrap|''max'' (''a'',''b'')}} > {{nowrap|root mean squ...") |
(No difference)
|
Revision as of 17:45, 3 February 2023
Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [1]
Template documentation
| This template's documentation is missing, inadequate, or does not accurately describe its functionality and/or the parameters in its code. Please help to expand and improve it. |
| This template has not been added to any categories. Please help out by adding categories to it so that it can be listed with similar templates. |
[[Category:Template documentation pages{{#translation:}}]]
- ↑ If AC = a and BC = b. OC = AM of a and b, and radius r = QO = OG.
Using Pythagoras' theorem, QC² = QO² + OC² ∴ QC = √QO² + OC² = QM.
Using Pythagoras' theorem, OC² = OG² + GC² ∴ GC = √OC² − OG² = GM.
Using similar triangles, HC/GC = GC/OC ∴ HC = GC²/OC = HM.