Z-परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:
जेड-ट्रांसफॉर्म लाप्लास ट्रांसफॉर्म का असतत प्रतिरूप है। जेड-ट्रांसफॉर्म असतत समय प्रणालियों के अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करता है, जो असतत समय प्रणाली विश्लेषण को सरल करता है। लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म आमरूप में होते है सिवाय इसके कि लाप्लास ट्रांसफॉर्म लगातार समय के संकेतों और प्रणालियों से संबंधित होते है। [[ समय-पैमाने की गणना | समय-पैमाने की गणना]] के सिद्धांत में इस समानता की खोज की गई है।
जेड-ट्रांसफॉर्म लाप्लास ट्रांसफॉर्म का असतत प्रतिरूप है। जेड-ट्रांसफॉर्म असतत समय प्रणालियों के अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करता है, जो असतत समय प्रणाली विश्लेषण को सरल करता है। लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म आमरूप में होते है सिवाय इसके कि लाप्लास ट्रांसफॉर्म लगातार समय के संकेतों और प्रणालियों से संबंधित होते है। [[ समय-पैमाने की गणना | समय-पैमाने की गणना]] के सिद्धांत में इस समानता की खोज की गई है।


जबकि लैपलेस एस-डोमेन की काल्पनिक रेखा पर निरंतर-समय के फूरियर  ट्रांसफॉर्म  का मूल्यांकन किया जाता है, [[असतत-समय फूरियर रूपांतरण|असतत-समय फूरियर  ट्रांसफॉर्म]]  का मूल्यांकन जेड-डोमेन के [[यूनिट सर्कल]] पर किया जाता है। जो लगभग एस-डोमेन के बाएँ  आधा समतल के रूप में है, जो अब जटिल इकाई सर्कल के अंदर है; यूनिट सर्कल के बाहर जेड-डोमेन क्या है, जो लगभग एस डोमेन के दाहिने आधे समतल से मेल खाती है।
जबकि लैपलेस एस-डोमेन की काल्पनिक रेखा पर निरंतर-समय के फूरियर  ट्रांसफॉर्म  का मूल्यांकन किया जाता है, [[असतत-समय फूरियर रूपांतरण|असतत-समय फूरियर  ट्रांसफॉर्म]]  का मूल्यांकन जेड-डोमेन के [[यूनिट सर्कल|यूनिट]] वृत्त पर किया जाता है। जो लगभग एस-डोमेन के बाएँ  आधा समतल के रूप में है, जो अब जटिल इकाई वृत्त के अंदर है; यूनिट वृत्त के बाहर जेड-डोमेन क्या है, जो लगभग एस डोमेन के दाहिने आधे समतल से मेल खाती है।


.[[डिजिटल फिल्टर]] डिजाइन करने का एक साधन एनालॉग डिजाइन को उनको एक बिलिनियर  ट्रांसफॉर्म  पर ले जाना है, जो उन्हें एस डोमेन से जेड  डोमेन के मानचित्र में भेजता है और फिर निरीक्षण प्रकलन या संख्यात्मक सन्निकटन द्वारा डिजीटल फिल्टर का उत्पादन करता है। इस तरह की विधियां जटिल एकता के आसपास के क्षेत्र में यथार्थ नहीं होते हैं, अर्थात कम आवृत्तियों को छोड़कर सटीक रूप में नहीं होती हैं।
.[[डिजिटल फिल्टर]] डिजाइन करने का एक साधन एनालॉग डिजाइन को उनको एक बिलिनियर  ट्रांसफॉर्म  पर ले जाना है, जो उन्हें एस डोमेन से जेड  डोमेन के मानचित्र में भेजता है और फिर निरीक्षण प्रकलन या संख्यात्मक सन्निकटन द्वारा डिजीटल फिल्टर का उत्पादन करता है। इस तरह की विधियां जटिल एकता के आसपास के क्षेत्र में यथार्थ नहीं होते हैं, अर्थात कम आवृत्तियों को छोड़कर सटीक रूप में नहीं होती हैं।
Line 75: Line 75:
एकतरफा जेड-ट्रांसफॉर्म का एक महत्वपूर्ण उदाहरण प्रायिकता उत्पन्न करने वाला कार्य होता है, जहां घटक <math>x[n]</math> की संभावना होती है कि एक असतत यादृच्छिक चर मान <math>n</math> लेता है और फलन <math>X(z)</math> को सामान्यतः  <math>X(s)</math> के रूप में लिखा जाता है।  <math>s=z^{-1}</math>.के अनुसार संभाव्यता सिद्धांत के संदर्भ में नीचे दिए गए जेड-रूपांतरण के गुणों की उपयोगी व्याख्या दी गई है।
एकतरफा जेड-ट्रांसफॉर्म का एक महत्वपूर्ण उदाहरण प्रायिकता उत्पन्न करने वाला कार्य होता है, जहां घटक <math>x[n]</math> की संभावना होती है कि एक असतत यादृच्छिक चर मान <math>n</math> लेता है और फलन <math>X(z)</math> को सामान्यतः  <math>X(s)</math> के रूप में लिखा जाता है।  <math>s=z^{-1}</math>.के अनुसार संभाव्यता सिद्धांत के संदर्भ में नीचे दिए गए जेड-रूपांतरण के गुणों की उपयोगी व्याख्या दी गई है।


== उलटा जेड-ट्रांसफॉर्म ==
== इनवर्स जेड-ट्रांसफॉर्म ==
प्रतिलोम जेड - ट्रांसफॉर्म है
प्रतिलोम जेड -ट्रांसफॉर्म को इस प्रकार दर्शाया गया है


{{Equation box 1
{{Equation box 1
Line 86: Line 86:
|border colour = #0073CF
|border colour = #0073CF
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}
जहाँ C एक वामावर्त बंद पथ है जो उद्गम को घेरता है और पूरी प्रकार  [[अभिसरण की त्रिज्या]] (ROC) में है। ऐसे स्थितियों में जहां आरओसी कारण है (देखें #उदाहरण 2 (कारण आरओसी)), इसका मतलब है कि पथ सी को सभी ध्रुवों को घेरना चाहिए <math>X(z)</math>.
जहाँ सी एक वामावर्त बंद पथ के रुप में होता है, जो मूल को घेरता है और पूरी तरह से [[अभिसरण की त्रिज्या]] (आरओसी) के क्षेत्र में होती है। ऐसे स्थितियों में जहां आरओसी कारणात्मक रुप में होते है जैसे उदाहरण 2 दिखाया गया है, इसका मतलब है कि पथ सी <math>X(z)</math>.के सभी ध्रुवों को घेरना चाहिए।


इस [[समोच्च अभिन्न]] का एक विशेष मामला तब होता है जब C इकाई चक्र होता है। इस समोच्च का उपयोग तब किया जा सकता है जब ROC में यूनिट सर्कल सम्मलित होता है, जिसकी हमेशा गारंटी होती है <math>X(z)</math> स्थिर है, अर्थात, जब सभी ध्रुव इकाई चक्र के अंदर हों। इस समोच्च के साथ, व्युत्क्रम जेड - ट्रांसफॉर्म  असतत-समय फूरियर  ट्रांसफॉर्म # उलटा परिवर्तन| उलटा असतत-समय फूरियर  ट्रांसफॉर्म , या फूरियर श्रृंखला, इकाई चक्र के चारों ओर जेड- ट्रांसफॉर्म  के आवधिक मूल्यों के लिए सरल करता है:
इस [[परिरेखा समाकलन]] का एक विशेष स्थिति तब होता है जब सी इकाई वृत्त के रुप में होता है। इस समोच्च का उपयोग तब किया जा सकता है जब आरओसी में यूनिट वृत्त के रुप में सम्मलित होता है, जिसकी सदैव गारंटी होती है <math>X(z)</math> स्थिर रुप में होता है अर्थात जब सभी ध्रुव इकाई वृत्त के अंदर होते है। इस समोच्च के साथ, व्युत्क्रम जेड - ट्रांसफॉर्म  इकाई चक्र के चारों ओर जेड-रूपांतरण के आवधिक मूल्यों के व्युत्क्रम असतत-समय फूरियर रूपांतरण, या फूरियर श्रृंखला को सरल करता है।


{{Equation box 1
{{Equation box 1
Line 99: Line 99:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


एन की एक परिमित सीमा के साथ जेड- ट्रांसफॉर्म  और समान दूरी वाले जेड मानों की एक सीमित संख्या को ब्लूस्टीन के एफएफटी एल्गोरिदम के माध्यम से कुशलतापूर्वक गणना की जा सकती है। असतत-समय फूरियर ट्रांसफॉर्म (DTFT) - [[असतत फूरियर रूपांतरण|असतत फूरियर  ट्रांसफॉर्म]]  (DFT) के साथ भ्रमित नहीं होना - इस प्रकार  के जेड-ट्रांसफॉर्म का एक विशेष मामला है जो जेड को यूनिट सर्कल पर झूठ बोलने के लिए प्रतिबंधित करता है।
एन की एक परिमित सीमा के साथ जेड- ट्रांसफॉर्म  और समान दूरी वाले जेड मानों की एक सीमित संख्या को ब्लूस्टीन के एफएफटी एल्गोरिदम के माध्यम से कुशलतापूर्वक गणना की जा सकती है। असतत-समय फूरियर ट्रांसफॉर्म (DTFT) - [[असतत फूरियर रूपांतरण|असतत फूरियर  ट्रांसफॉर्म]]  (DFT) के साथ भ्रमित नहीं होना - इस प्रकार  के जेड-ट्रांसफॉर्म का एक विशेष स्थिति है जो जेड को यूनिट वृत्त पर झूठ बोलने के लिए प्रतिबंधित करता है।


== अभिसरण का क्षेत्र ==
== अभिसरण का क्षेत्र ==
Line 132: Line 132:


:<math>\sum_{n=-\infty}^{\infty}x[n]z^{-n} = -\sum_{n=-\infty}^{-1}0.5^nz^{-n} = -\sum_{m=1}^{\infty}\left(\frac{z}{0.5}\right)^{m} = -\frac{0.5^{-1}z}{1 - 0.5^{-1}z} = -\frac{1}{0.5z^{-1}-1} = \frac{1}{1 - 0.5z^{-1}}.</math>
:<math>\sum_{n=-\infty}^{\infty}x[n]z^{-n} = -\sum_{n=-\infty}^{-1}0.5^nz^{-n} = -\sum_{m=1}^{\infty}\left(\frac{z}{0.5}\right)^{m} = -\frac{0.5^{-1}z}{1 - 0.5^{-1}z} = -\frac{1}{0.5z^{-1}-1} = \frac{1}{1 - 0.5z^{-1}}.</math>
अनंत ज्यामितीय श्रृंखला का उपयोग करते हुए, समानता केवल तभी होती है जब {{abs|0.5<sup>−1</sup>''z''}} <1 जिसे जेड  के रूप में फिर से लिखा जा सकता है {{abs|''z''}} <0.5। इस प्रकार, आरओसी है {{abs|''z''}} <0.5। इस स्थितियों में ROC मूल बिंदु पर केंद्रित और 0.5 त्रिज्या की एक डिस्क है।
अनंत ज्यामितीय श्रृंखला का उपयोग करते हुए, समानता केवल तभी होती है जब {{abs|0.5<sup>−1</sup>''z''}} <1 जिसे जेड  के रूप में फिर से लिखा जा सकता है {{abs|''z''}} <0.5। इस प्रकार, आरओसी है {{abs|''z''}} <0.5। इस स्थितियों में आरओसी मूल बिंदु पर केंद्रित और 0.5 त्रिज्या की एक डिस्क है।


इस उदाहरण को पिछले उदाहरण से जो अलग करता है वह केवल ROC है। यह जानबूझकर प्रदर्शित करना है कि केवल परिवर्तन परिणाम अपर्याप्त है।
इस उदाहरण को पिछले उदाहरण से जो अलग करता है वह केवल आरओसी है। यह जानबूझकर प्रदर्शित करना है कि केवल परिवर्तन परिणाम अपर्याप्त है।
{{Clear}}
{{Clear}}


=== उदाहरण निष्कर्ष ===
=== उदाहरण निष्कर्ष ===
उदाहरण 2 और 3 स्पष्ट रूप से दिखाते हैं कि एक्स [एन] का जेड-ट्रांसफॉर्म एक्स (जेड) अद्वितीय है जब और केवल आरओसी निर्दिष्ट करते समय। कार्य-कारण और प्रतिकार-विरोधी स्थितियों के लिए ध्रुव-शून्य भूखंड बनाना दर्शाता है कि किसी भी स्थितियों के लिए ROC में वह ध्रुव सम्मलित  नहीं है जो 0.5 पर है। यह कई ध्रुवों वाले स्थिति  तक फैला हुआ है: ROC में कभी भी खंभे नहीं होंगे।
उदाहरण 2 और 3 स्पष्ट रूप से दिखाते हैं कि एक्स [एन] का जेड-ट्रांसफॉर्म एक्स (जेड) अद्वितीय है जब और केवल आरओसी निर्दिष्ट करते समय। कार्य-कारण और प्रतिकार-विरोधी स्थितियों के लिए ध्रुव-शून्य भूखंड बनाना दर्शाता है कि किसी भी स्थितियों के लिए आरओसी में वह ध्रुव सम्मलित  नहीं है जो 0.5 पर है। यह कई ध्रुवों वाले स्थिति  तक फैला हुआ है: आरओसी में कभी भी खंभे नहीं होंगे।


उदाहरण 2 में, कारण प्रणाली एक आरओसी उत्पन्न करती है जिसमें सम्मलित  है {{abs|''z''}} = ∞ जबकि उदाहरण 3 में एंटीकॉज़ल प्रणाली एक आरओसी उत्पन्न करता है जिसमें सम्मलित  है {{abs|''z''}} = 0.
उदाहरण 2 में, कारण प्रणाली एक आरओसी उत्पन्न करती है जिसमें सम्मलित  है {{abs|''z''}} = ∞ जबकि उदाहरण 3 में एंटीकॉज़ल प्रणाली एक आरओसी उत्पन्न करता है जिसमें सम्मलित  है {{abs|''z''}} = 0.
Line 147: Line 147:
0.5 और 0.75 पर डंडे हैं। आरओसी 0.5 < होगा {{abs|''z''}} < 0.75, जिसमें न तो मूल और न ही अनंत सम्मलित  है। इस प्रकार  की प्रणाली को मिश्रित-कारणात्मक प्रणाली कहा जाता है क्योंकि इसमें एक कारण शब्द (0.5) होता है।<sup>n</sup>u[n] और एक कारण-विरोधी शब्द −(0.75)<sup>n</sup>यू[−n−1].
0.5 और 0.75 पर डंडे हैं। आरओसी 0.5 < होगा {{abs|''z''}} < 0.75, जिसमें न तो मूल और न ही अनंत सम्मलित  है। इस प्रकार  की प्रणाली को मिश्रित-कारणात्मक प्रणाली कहा जाता है क्योंकि इसमें एक कारण शब्द (0.5) होता है।<sup>n</sup>u[n] और एक कारण-विरोधी शब्द −(0.75)<sup>n</sup>यू[−n−1].


नियंत्रण सिद्धांत # अकेले आरओसी को जानकर प्रणाली की स्थिरता भी निर्धारित की जा सकती है। यदि  ROC में यूनिट सर्कल है (अर्थात , {{abs|''z''}} = 1) तो प्रणाली स्थिर है। उपरोक्त प्रणालियों में कारण प्रणाली (उदाहरण 2) स्थिर है क्योंकि {{abs|''z''}} > 0.5 में यूनिट सर्कल है।
नियंत्रण सिद्धांत # अकेले आरओसी को जानकर प्रणाली की स्थिरता भी निर्धारित की जा सकती है। यदि  आरओसी में यूनिट वृत्त है (अर्थात , {{abs|''z''}} = 1) तो प्रणाली स्थिर है। उपरोक्त प्रणालियों में कारण प्रणाली (उदाहरण 2) स्थिर है क्योंकि {{abs|''z''}} > 0.5 में यूनिट वृत्त है।


आइए मान लें कि हमें आरओसी के बिना एक प्रणाली का जेड- ट्रांसफॉर्म  प्रदान किया गया है (अर्थात , एक अस्पष्ट एक्स [एन])। हम एक अद्वितीय एक्स [एन] निर्धारित कर सकते हैं बशर्ते हम निम्नलिखित चाहते हैं:
आइए मान लें कि हमें आरओसी के बिना एक प्रणाली का जेड- ट्रांसफॉर्म  प्रदान किया गया है (अर्थात , एक अस्पष्ट एक्स [एन])। हम एक अद्वितीय एक्स [एन] निर्धारित कर सकते हैं बशर्ते हम निम्नलिखित चाहते हैं:
Line 153: Line 153:
* कारणता
* कारणता


स्थिरता के लिए आरओसी में यूनिट सर्कल होना चाहिए। यदि  हमें एक कारण प्रणाली की आवश्यकता है तो आरओसी में अनंत होना चाहिए और प्रणाली फलन दाएं तरफा अनुक्रम होगा। यदि  हमें एक एंटीकॉज़ल प्रणाली की आवश्यकता है तो आरओसी में मूल होना चाहिए और प्रणाली फलन बाएं तरफा अनुक्रम होगा। यदि हमें स्थिरता और कार्य-कारण दोनों की आवश्यकता है, तो प्रणाली फलन के सभी ध्रुवों को यूनिट सर्कल के अंदर होना चाहिए।
स्थिरता के लिए आरओसी में यूनिट वृत्त होना चाहिए। यदि  हमें एक कारण प्रणाली की आवश्यकता है तो आरओसी में अनंत होना चाहिए और प्रणाली फलन दाएं तरफा अनुक्रम होगा। यदि  हमें एक एंटीकॉज़ल प्रणाली की आवश्यकता है तो आरओसी में मूल होना चाहिए और प्रणाली फलन बाएं तरफा अनुक्रम होगा। यदि हमें स्थिरता और कार्य-कारण दोनों की आवश्यकता है, तो प्रणाली फलन के सभी ध्रुवों को यूनिट वृत्त के अंदर होना चाहिए।


अद्वितीय x [n] तब पाया जा सकता है।
अद्वितीय x [n] तब पाया जा सकता है।
Line 223: Line 223:
| <math> (1-z^{-1})X(z)</math>
| <math> (1-z^{-1})X(z)</math>
|  
|  
| Contains the intersection of ROC of ''X''<sub>1</sub>(''जेड'' ) and ''जेड''  ≠ 0
| Contains the intersection of आरओसी of ''X''<sub>1</sub>(''जेड'' ) and ''जेड''  ≠ 0
  |-
  |-
  ! First difference forward
  ! First difference forward
Line 283: Line 283:
\end{align} </math>
\end{align} </math>
| ROC, if <math>X(z)</math> is rational;
| ROC, if <math>X(z)</math> is rational;
ROC possibly excluding the boundary, if <math>X(z)</math> is irrational<ref name = forouzan>{{cite journal  | journal = Electronics Letters| title = Region of convergence of derivative of Z transform  | author = A. R. Forouzan  | volume = 52  | issue = 8  | pages = 617–619  | year = 2016| doi = 10.1049/el.2016.0189| bibcode = 2016ElL....52..617F | s2cid = 124802942 }}</ref>
 
आरओसी possibly excluding the boundary, if <math>X(z)</math> is irrational<ref name = forouzan>{{cite journal  | journal = Electronics Letters| title = Region of convergence of derivative of Z transform  | author = A. R. Forouzan  | volume = 52  | issue = 8  | pages = 617–619  | year = 2016| doi = 10.1049/el.2016.0189| bibcode = 2016ElL....52..617F | s2cid = 124802942 }}</ref>
  |-
  |-
  ! [[Convolution]]
  ! [[Convolution]]
Line 300: Line 301:
| <math>R_{x_1,x_2}(z)=X_1^*(\tfrac{1}{z^*})X_2(z)</math>
| <math>R_{x_1,x_2}(z)=X_1^*(\tfrac{1}{z^*})X_2(z)</math>
|
|
| Contains the intersection of ROC of <math>X_1(\tfrac{1}{z^*})</math> and <math>X_2(z)</math>
| Contains the intersection of आरओसी of <math>X_1(\tfrac{1}{z^*})</math> and <math>X_2(z)</math>
  |-
  |-
  ! Accumulation
  ! Accumulation
Line 322: Line 323:
[[प्रारंभिक मूल्य प्रमेय]]: यदि ''x''[''n''] कारण है, तो
[[प्रारंभिक मूल्य प्रमेय]]: यदि ''x''[''n''] कारण है, तो
:<math>x[0]=\lim_{z\to \infty}X(z).</math>
:<math>x[0]=\lim_{z\to \infty}X(z).</math>
[[अंतिम मूल्य प्रमेय]]: यदि (''जेड''  − 1)''X''(''जेड'' ) के ध्रुव इकाई चक्र के अंदर हैं, तो
[[अंतिम मूल्य प्रमेय]]: यदि (''जेड''  − 1)''X''(''जेड'' ) के ध्रुव इकाई वृत्त के अंदर हैं, तो
:<math>x[\infty]=\lim_{z\to 1}(z-1)X(z).</math>
:<math>x[\infty]=\lim_{z\to 1}(z-1)X(z).</math>


Line 386: Line 387:
{{further|Discrete-time Fourier transform#Relationship to the Z-transform}}
{{further|Discrete-time Fourier transform#Relationship to the Z-transform}}


के मूल्यों के लिए <math>z</math> क्षेत्र में <math>|z|=1</math>, जिसे यूनिट सर्कल के रूप में जाना जाता है, हम परिभाषित करके एकल, वास्तविक चर, ω के कार्य के रूप में परिवर्तन को व्यक्त कर सकते हैं <math>z=e^{j \omega}</math>. और द्वि-पार्श्व परिवर्तन फूरियर श्रृंखला में कम हो जाता है:
के मूल्यों के लिए <math>z</math> क्षेत्र में <math>|z|=1</math>, जिसे यूनिट वृत्त के रूप में जाना जाता है, हम परिभाषित करके एकल, वास्तविक चर, ω के कार्य के रूप में परिवर्तन को व्यक्त कर सकते हैं <math>z=e^{j \omega}</math>. और द्वि-पार्श्व परिवर्तन फूरियर श्रृंखला में कम हो जाता है:


{{NumBlk|:|<math>\sum_{n=-\infty}^{\infty} x[n]\ z^{-n} = \sum_{n=-\infty}^{\infty} x[n]\ e^{-j\omega n},</math>|{{EquationRef|Eq.4}}}}
{{NumBlk|:|<math>\sum_{n=-\infty}^{\infty} x[n]\ z^{-n} = \sum_{n=-\infty}^{\infty} x[n]\ e^{-j\omega n},</math>|{{EquationRef|Eq.4}}}}
Line 417: Line 418:
कुछ कार्यों को परिवर्तित करने के लिए <math>H(s)</math> लाप्लास डोमेन में एक फलन के लिए <math>H(z)</math> जेड-डोमेन ([[ बिलिनियर रूपांतरण | बिलिनियर  ट्रांसफॉर्म]]  ) में, या
कुछ कार्यों को परिवर्तित करने के लिए <math>H(s)</math> लाप्लास डोमेन में एक फलन के लिए <math>H(z)</math> जेड-डोमेन ([[ बिलिनियर रूपांतरण | बिलिनियर  ट्रांसफॉर्म]]  ) में, या
:<math>z =e^{sT}\approx \frac{1+sT/2}{1-sT/2}</math>
:<math>z =e^{sT}\approx \frac{1+sT/2}{1-sT/2}</math>
जेड-डोमेन से लेपलेस डोमेन तक। द्विरेखीय परिवर्तन के माध्यम से, जटिल एस-समतल (लाप्लास ट्रांसफॉर्म का) जटिल जेड-समतल (जेड-ट्रांसफॉर्म का) में मैप किया जाता है। जबकि यह मैपिंग (आवश्यक ) नॉनलाइनियर है, यह उपयोगी है कि यह पूरे को मैप करता है <math>j\omega</math> जेड-समतल में यूनिट सर्कल पर एस-समतल की धुरी। इस प्रकार, फूरियर  ट्रांसफॉर्म  (जो लाप्लास  ट्रांसफॉर्म  है जिसका मूल्यांकन किया गया है <math>j\omega</math> अक्ष) असतत-समय फूरियर  ट्रांसफॉर्म  बन जाता है। यह मानता है कि फूरियर  ट्रांसफॉर्म  उपस्थित  है; अर्थात  कि <math>j\omega</math> अक्ष लाप्लास परिवर्तन के अभिसरण के क्षेत्र में है।
जेड-डोमेन से लेपलेस डोमेन तक। द्विरेखीय परिवर्तन के माध्यम से, जटिल एस-समतल (लाप्लास ट्रांसफॉर्म का) जटिल जेड-समतल (जेड-ट्रांसफॉर्म का) में मैप किया जाता है। जबकि यह मैपिंग (आवश्यक ) नॉनलाइनियर है, यह उपयोगी है कि यह पूरे को मैप करता है <math>j\omega</math> जेड-समतल में यूनिट वृत्त पर एस-समतल की धुरी। इस प्रकार, फूरियर  ट्रांसफॉर्म  (जो लाप्लास  ट्रांसफॉर्म  है जिसका मूल्यांकन किया गया है <math>j\omega</math> अक्ष) असतत-समय फूरियर  ट्रांसफॉर्म  बन जाता है। यह मानता है कि फूरियर  ट्रांसफॉर्म  उपस्थित  है; अर्थात  कि <math>j\omega</math> अक्ष लाप्लास परिवर्तन के अभिसरण के क्षेत्र में है।


=== तारांकित  ट्रांसफॉर्म ===
=== तारांकित  ट्रांसफॉर्म ===

Revision as of 23:49, 12 March 2023

गणित और संकेत संसाधन में, जेड ट्रांसफॉर्म , वास्तविक संख्या या जटिल संख्याओं के अनुक्रम को एक असतत समय संकेत को परिवर्तित करता है, जो कि एक जटिल आवृत्ति-डोमेन जेड या जेड समतल प्रतिनिधित्व में परिवर्तित करता है।

लिन, पॉल ए. (1986). "लाप्लास रूपांतरण और जेड-रूपांतरण के लिए". इलेक्ट्रॉनिक सिग्नल और सिस्टम. लंडन: मैकमिलन शिक्षा यूके. pp. 225–272. doi:10.1007/978-1-349-18461-3_6. ISBN 978-0-333-39164-8. लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म फूरियर ट्रांसफॉर्म से निकटता से संबंधित हैं। जेड-ट्रांसफॉर्म असतत संकेतों और प्रणालियों से निपटने के लिए विशेष रूप से उपयुक्त है। यह असतत-समय फूरियर ट्रांसफ़ॉर्म की तुलना में अधिक कॉम्पैक्ट और सुविधाजनक संकेतन प्रदान करता है।

जेड-ट्रांसफॉर्म लाप्लास ट्रांसफॉर्म का असतत प्रतिरूप है। जेड-ट्रांसफॉर्म असतत समय प्रणालियों के अंतर समीकरणों को बीजगणितीय समीकरणों में परिवर्तित करता है, जो असतत समय प्रणाली विश्लेषण को सरल करता है। लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म आमरूप में होते है सिवाय इसके कि लाप्लास ट्रांसफॉर्म लगातार समय के संकेतों और प्रणालियों से संबंधित होते है। समय-पैमाने की गणना के सिद्धांत में इस समानता की खोज की गई है।

जबकि लैपलेस एस-डोमेन की काल्पनिक रेखा पर निरंतर-समय के फूरियर ट्रांसफॉर्म का मूल्यांकन किया जाता है, असतत-समय फूरियर ट्रांसफॉर्म का मूल्यांकन जेड-डोमेन के यूनिट वृत्त पर किया जाता है। जो लगभग एस-डोमेन के बाएँ आधा समतल के रूप में है, जो अब जटिल इकाई वृत्त के अंदर है; यूनिट वृत्त के बाहर जेड-डोमेन क्या है, जो लगभग एस डोमेन के दाहिने आधे समतल से मेल खाती है।

.डिजिटल फिल्टर डिजाइन करने का एक साधन एनालॉग डिजाइन को उनको एक बिलिनियर ट्रांसफॉर्म पर ले जाना है, जो उन्हें एस डोमेन से जेड डोमेन के मानचित्र में भेजता है और फिर निरीक्षण प्रकलन या संख्यात्मक सन्निकटन द्वारा डिजीटल फिल्टर का उत्पादन करता है। इस तरह की विधियां जटिल एकता के आसपास के क्षेत्र में यथार्थ नहीं होते हैं, अर्थात कम आवृत्तियों को छोड़कर सटीक रूप में नहीं होती हैं।

इतिहास

इस परीक्षण का मूल विचार जो अब जेड-ट्रांसफ़ॉर्मेशन तथा लैपलेस के नाम से भी जाना जाता था और इसे 1947 में डब्ल्यू. ह्यूरविक्ज़ द्वारा फिर से प्रस्तुत किया गया था।[1][2] और अन्य लोगों ने रडार के साथ प्रयोग में लाये जाने वाले सैंपल-डेटा कंट्रोल प्रणाली के उपचार के विधियों के रूप में पुनः आरंभ किया। यह रैखिक, स्थिर-गुणांक अंतर समीकरणों को हल करने का एक आसान विधि प्रदान करता है। इसे बाद में, 1952 में कोलंबिया विश्वविद्यालय में सैंपल्ड-डेटा कंट्रोल ग्रुप में जॉन आर. रागाजिनी और लोत्फी ए. ज़ादेह द्वारा इस नाम का ट्रांसफॉर्म किया गया।[3][4]

संशोधित या उन्नत जेड- ट्रांसफॉर्म बाद में ई.आई. जूरी द्वारा विकसित और लोकप्रिय किया गया था[5][6]

जेड- ट्रांसफॉर्म के भीतर निहित विचार को गणितीय साहित्य में कार्यों को उत्पन्न करने की विधि के रूप में भी जाना जाता है जिसे 1730 के आरंभ में पता लगाया जा सकता है जब इसे अब्राहम डी मोइवरे द्वारा संभाव्यता सिद्धांत के संयोजन के साथ प्रस्तुत किया गया था।[7] गणितीय दृष्टि से जेड- ट्रांसफॉर्म को लॉरेंट श्रृंखला के रूप में भी देखा जा सकता है जहां एक विश्लेषणात्मक कार्य के (लॉरेंट) विस्तार के रूप में विचाराधीन संख्याओं के अनुक्रम को देखता है।

परिभाषा

जेड -ट्रांसफ़ॉर्म को या तो एक तरफा या दो तरफा रूपान्तरण के रूप में परिभाषित किया जाता है। जैसे हम एक तरफा लैपलेस ट्रांसफॉर्मेशन और दो तरफा लैपलेस ट्रांसफॉर्मेशन करते है। जैक्सन, लेलैंड बी. (1996). "जेड ट्रांसफॉर्म". डिजिटल फिल्टर और सिग्नल प्रोसेसिंग. बोस्टन, एमए: स्प्रिंगर यू.एस. pp. 29–54. doi:10.1007/978-1-4757-2458-5_3. ISBN 978-1-4419-5153-3. जेड रूपांतरण डिस्क्रीट-टाइम प्रणाली के रुप में होता है, जो लाप्लास रूपांतरण निरंतर-टाइम प्रणाली के लिए होता है। जेड एक जटिल चर के रुप में होता है। इसे कभी-कभी दो तरफा जेड परिवर्तन के रूप में संदर्भित किया जाता है, जिसमें एक तरफा जेड परिवर्तन n = 0 से अनंत तक के योग को छोड़कर समान होता है। एक तरफा परिवर्तन का प्राथमिक उपयोग कारण अनुक्रमों के लिए होता है, जिस स्थिति में दो परिवर्तन वैसे भी समान रुप में होता है। इसलिए, हम यह भेद नहीं कर सकते है और x(n) को केवल जेड रूपांतरण के रूप में संदर्भित करते है।

द्विपक्षीय जेड- ट्रांसफॉर्म

असतत-समय संकेत का द्विपक्षीय या दो तरफा जेड- ट्रांसफॉर्म औपचारिक शक्ति श्रृंखला के रूप में परिभाषित होती है।

 

 

 

 

(Eq.1)

जहाँ एक पूर्णांक है और सामान्यतः, एक सम्मिश्र संख्या के रुप में है।

जहाँ , का परिमाण है और काल्पनिक इकाई के रुप में है और कांति में जटिल तर्क के रुप में है जिसे रेडियंस में कोण या चरण भी कहा जाता है।

एकतरफा जेड-ट्रांसफॉर्म

वैकल्पिक रूप से, ऐसे स्थिति में जहां केवल के लिए ही परिभाषित किया गया है एकतरफा या एकपक्षीय जेड-ट्रांसफॉर्म को इस रूप में परिभाषित किया जाता है।

 

 

 

 

(Eq.2)

सिग्नल प्रोसेसिंग में, इस परिभाषा का उपयोग परिमित आवेग प्रतिक्रिया असतत-समय कारण प्रणाली की आवृत्ति प्रतिक्रिया के जेड - परिवर्तन का मूल्यांकन करने के लिए किया जाता है।

एकतरफा जेड-ट्रांसफॉर्म का एक महत्वपूर्ण उदाहरण प्रायिकता उत्पन्न करने वाला कार्य होता है, जहां घटक की संभावना होती है कि एक असतत यादृच्छिक चर मान लेता है और फलन को सामान्यतः के रूप में लिखा जाता है। .के अनुसार संभाव्यता सिद्धांत के संदर्भ में नीचे दिए गए जेड-रूपांतरण के गुणों की उपयोगी व्याख्या दी गई है।

इनवर्स जेड-ट्रांसफॉर्म

प्रतिलोम जेड -ट्रांसफॉर्म को इस प्रकार दर्शाया गया है

 

 

 

 

(Eq.3)

जहाँ सी एक वामावर्त बंद पथ के रुप में होता है, जो मूल को घेरता है और पूरी तरह से अभिसरण की त्रिज्या (आरओसी) के क्षेत्र में होती है। ऐसे स्थितियों में जहां आरओसी कारणात्मक रुप में होते है जैसे उदाहरण 2 दिखाया गया है, इसका मतलब है कि पथ सी .के सभी ध्रुवों को घेरना चाहिए।

इस परिरेखा समाकलन का एक विशेष स्थिति तब होता है जब सी इकाई वृत्त के रुप में होता है। इस समोच्च का उपयोग तब किया जा सकता है जब आरओसी में यूनिट वृत्त के रुप में सम्मलित होता है, जिसकी सदैव गारंटी होती है स्थिर रुप में होता है अर्थात जब सभी ध्रुव इकाई वृत्त के अंदर होते है। इस समोच्च के साथ, व्युत्क्रम जेड - ट्रांसफॉर्म इकाई चक्र के चारों ओर जेड-रूपांतरण के आवधिक मूल्यों के व्युत्क्रम असतत-समय फूरियर रूपांतरण, या फूरियर श्रृंखला को सरल करता है।

 

 

 

 

(Eq.4)

एन की एक परिमित सीमा के साथ जेड- ट्रांसफॉर्म और समान दूरी वाले जेड मानों की एक सीमित संख्या को ब्लूस्टीन के एफएफटी एल्गोरिदम के माध्यम से कुशलतापूर्वक गणना की जा सकती है। असतत-समय फूरियर ट्रांसफॉर्म (DTFT) - असतत फूरियर ट्रांसफॉर्म (DFT) के साथ भ्रमित नहीं होना - इस प्रकार के जेड-ट्रांसफॉर्म का एक विशेष स्थिति है जो जेड को यूनिट वृत्त पर झूठ बोलने के लिए प्रतिबंधित करता है।

अभिसरण का क्षेत्र

अभिसरण का त्रिज्या (आरओसी) जटिल समतल में बिंदुओं का समूह है जिसके लिए जेड-रूपांतर योग अभिसरण करता है।


उदाहरण 1 (कोई आरओसी नहीं)

होने देना . अंतराल (−∞, ∞) पर x[n] का विस्तार करने पर यह बन जाता है

राशि देख रहे हैं

इसलिए, जेड का कोई मान नहीं है जो इस शर्त को पूरा करता हो।

उदाहरण 2 (कारण आरओसी)

के रूप में दिखाया गया है = 0.5 को धराशायी काले घेरे के रूप में दिखाया गया है

होने देना (जहाँ u हैवीसाइड स्टेप फंक्शन है)। अंतराल (−∞, ∞) पर x[n] का विस्तार करने पर यह बन जाता है

राशि देख रहे हैं

अंतिम समानता अनंत ज्यामितीय श्रृंखला से उत्पन्न होती है और समानता केवल तभी होती है |0.5z−1| <1, जिसे जेड के रूप में फिर से लिखा जा सकता है |z|> 0.5। इस प्रकार, आरओसी है |z|> 0.5। इस स्थितियों में आरओसी एक जटिल समतल है, जिसकी त्रिज्या 0.5 की एक डिस्क के साथ छिद्रित होती है।

उदाहरण 3 (कारण विरोधी आरओसी)

के रूप में दिखाया गया है = 0.5 को धराशायी काले घेरे के रूप में दिखाया गया है

होने देना (जहाँ u हीविसाइड स्टेप फंक्शन है)। अंतराल (−∞, ∞) पर x[n] का विस्तार करने पर यह बन जाता है

राशि देख रहे हैं

अनंत ज्यामितीय श्रृंखला का उपयोग करते हुए, समानता केवल तभी होती है जब |0.5−1z| <1 जिसे जेड के रूप में फिर से लिखा जा सकता है |z| <0.5। इस प्रकार, आरओसी है |z| <0.5। इस स्थितियों में आरओसी मूल बिंदु पर केंद्रित और 0.5 त्रिज्या की एक डिस्क है।

इस उदाहरण को पिछले उदाहरण से जो अलग करता है वह केवल आरओसी है। यह जानबूझकर प्रदर्शित करना है कि केवल परिवर्तन परिणाम अपर्याप्त है।

उदाहरण निष्कर्ष

उदाहरण 2 और 3 स्पष्ट रूप से दिखाते हैं कि एक्स [एन] का जेड-ट्रांसफॉर्म एक्स (जेड) अद्वितीय है जब और केवल आरओसी निर्दिष्ट करते समय। कार्य-कारण और प्रतिकार-विरोधी स्थितियों के लिए ध्रुव-शून्य भूखंड बनाना दर्शाता है कि किसी भी स्थितियों के लिए आरओसी में वह ध्रुव सम्मलित नहीं है जो 0.5 पर है। यह कई ध्रुवों वाले स्थिति तक फैला हुआ है: आरओसी में कभी भी खंभे नहीं होंगे।

उदाहरण 2 में, कारण प्रणाली एक आरओसी उत्पन्न करती है जिसमें सम्मलित है |z| = ∞ जबकि उदाहरण 3 में एंटीकॉज़ल प्रणाली एक आरओसी उत्पन्न करता है जिसमें सम्मलित है |z| = 0.

के रूप में दिखाया गया है <0.75

कई ध्रुवों वाले प्रणाली में एक आरओसी होना संभव है जिसमें कोई भी सम्मलित न हो |z| = ∞ न ही |z| = 0. आरओसी एक गोलाकार बैंड बनाता है। उदाहरण के लिए,

0.5 और 0.75 पर डंडे हैं। आरओसी 0.5 < होगा |z| < 0.75, जिसमें न तो मूल और न ही अनंत सम्मलित है। इस प्रकार की प्रणाली को मिश्रित-कारणात्मक प्रणाली कहा जाता है क्योंकि इसमें एक कारण शब्द (0.5) होता है।nu[n] और एक कारण-विरोधी शब्द −(0.75)nयू[−n−1].

नियंत्रण सिद्धांत # अकेले आरओसी को जानकर प्रणाली की स्थिरता भी निर्धारित की जा सकती है। यदि आरओसी में यूनिट वृत्त है (अर्थात , |z| = 1) तो प्रणाली स्थिर है। उपरोक्त प्रणालियों में कारण प्रणाली (उदाहरण 2) स्थिर है क्योंकि |z| > 0.5 में यूनिट वृत्त है।

आइए मान लें कि हमें आरओसी के बिना एक प्रणाली का जेड- ट्रांसफॉर्म प्रदान किया गया है (अर्थात , एक अस्पष्ट एक्स [एन])। हम एक अद्वितीय एक्स [एन] निर्धारित कर सकते हैं बशर्ते हम निम्नलिखित चाहते हैं:

  • स्थिरता
  • कारणता

स्थिरता के लिए आरओसी में यूनिट वृत्त होना चाहिए। यदि हमें एक कारण प्रणाली की आवश्यकता है तो आरओसी में अनंत होना चाहिए और प्रणाली फलन दाएं तरफा अनुक्रम होगा। यदि हमें एक एंटीकॉज़ल प्रणाली की आवश्यकता है तो आरओसी में मूल होना चाहिए और प्रणाली फलन बाएं तरफा अनुक्रम होगा। यदि हमें स्थिरता और कार्य-कारण दोनों की आवश्यकता है, तो प्रणाली फलन के सभी ध्रुवों को यूनिट वृत्त के अंदर होना चाहिए।

अद्वितीय x [n] तब पाया जा सकता है।

गुण

Properties of the जेड -transform
Time domain जेड -domain Proof ROC
Notation
Linearity Contains ROC1 ∩ ROC2
Time expansion

with

Decimation ohio-state.edu  or  ee.ic.ac.uk
Time delay

with and

ROC, except जेड = 0 if k > 0 and जेड = ∞ if k < 0
Time advance

with

Bilateral जेड -transform:

Unilateral जेड -transform:[8]

First difference backward

with x[n] = 0 for n < 0

Contains the intersection of आरओसी of X1(जेड ) and जेड ≠ 0
First difference forward
Time reversal
Scaling in the जेड -domain
Complex conjugation
Real part
Imaginary part
Differentiation ROC, if is rational;

आरओसी possibly excluding the boundary, if is irrational[9]

Convolution Contains ROC1 ∩ ROC2
Cross-correlation Contains the intersection of आरओसी of and
Accumulation
Multiplication -

पारसेवल की प्रमेय

प्रारंभिक मूल्य प्रमेय: यदि x[n] कारण है, तो

अंतिम मूल्य प्रमेय: यदि (जेड − 1)X(जेड ) के ध्रुव इकाई वृत्त के अंदर हैं, तो


== सामान्य जेड-ट्रांसफॉर्म जोड़े == की तालिका यहाँ:

हीविसाइड स्टेप फंक्शन|यूनिट (या हीविसाइड) स्टेप फंक्शन है और

क्रोनकर डेल्टा#डिजिटल सिग्नल प्रोसेसिंग|डिस्क्रीट-टाइम यूनिट इम्पल्स फंक्शन (cf Dirac डिराक डेल्टा फलन एक सतत-समय संस्करण है) है। दो कार्यों को एक साथ चुना जाता है जिससे कि यूनिट स्टेप फलन यूनिट इंपल्स फलन का संचय (रनिंग टोटल) हो।

Signal, जेड -transform, ROC
1 1 all जेड
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 , for positive integer [9]
18 , for positive integer [9]
19
20
21
22


फूरियर श्रृंखला और फूरियर ट्रांसफॉर्म से संबंध

के मूल्यों के लिए क्षेत्र में , जिसे यूनिट वृत्त के रूप में जाना जाता है, हम परिभाषित करके एकल, वास्तविक चर, ω के कार्य के रूप में परिवर्तन को व्यक्त कर सकते हैं . और द्वि-पार्श्व परिवर्तन फूरियर श्रृंखला में कम हो जाता है:

 

 

 

 

(Eq.4)

जिसे असतत-समय फूरियर ट्रांसफॉर्म (DTFT) के रूप में भी जाना जाता है अनुक्रम। यह 2π-पीरियॉडिक फलन एक निरंतर फूरियर ट्रांसफॉर्म का आवधिक योग है, जो इसे व्यापक रूप से उपयोग किया जाने वाला विश्लेषण उपकरण बनाता है। इसे समझने के लिए आइए किसी भी फलन का फूरियर ट्रांसफॉर्म हो, , जिनके नमूने कुछ अंतराल पर, टी, एक्स [एन] अनुक्रम के बराबर हैं। तब x [n] अनुक्रम का DTFT निम्नानुसार लिखा जा सकता है।

 

 

 

 

(Eq.5)

जब T के पास सेकंड की इकाई होती है, हेटर्स ़ की इकाइयाँ हैं। दोनों श्रृंखलाओं की तुलना से पता चलता हैएक सामान्यीकृत आवृत्ति (डिजिटल सिग्नल प्रोसेसिंग) # प्रति नमूना रेडियन की इकाई के साथ वैकल्पिक सामान्यीकरण है। मान ω = 2π से मेल खाती है . और अब, प्रतिस्थापन के साथ  Eq.4 फूरियर ट्रांसफॉर्म के संदर्भ में व्यक्त किया जा सकता है, X(•):

 

 

 

 

(Eq.6)

जैसे ही पैरामीटर T बदलता है, की अलग-अलग शर्तें Eq.5 f-अक्ष के साथ-साथ दूर या पास-पास जाएँ। में Eq.6 चूंकि , केंद्र 2 रहते हैंπ इसके अतिरिक्त , जबकि उनकी चौड़ाई फैलती या सिकुड़ती है। जब अनुक्रम x(nT) एक LTI प्रणाली की आवेग प्रतिक्रिया का प्रतिनिधित्व करता है, तो इन कार्यों को इसकी आवृत्ति प्रतिक्रिया के रूप में भी जाना जाता है। जब अनुक्रम आवधिक है, इसका DTFT एक या अधिक हार्मोनिक आवृत्तियों पर भिन्न होता है, और अन्य सभी आवृत्तियों पर शून्य होता है। यह अधिकांशतः हार्मोनिक आवृत्तियों पर आयाम-भिन्न डिराक डेल्टा कार्यों के उपयोग द्वारा दर्शाया जाता है। आवधिकता के कारण, अद्वितीय आयामों की केवल एक सीमित संख्या होती है, जो बहुत सरल असतत फूरियर ट्रांसफॉर्म (डीएफटी) द्वारा आसानी से गणना की जाती है। (देखनाDiscrete-time Fourier transform § Periodic data.)

लेपलेस ट्रांसफॉर्म से संबंध

बिलिनियर ट्रांसफॉर्म

द्विरेखीय परिवर्तन का उपयोग निरंतर-समय के फिल्टर (लाप्लास डोमेन में प्रतिनिधित्व) को असतत-समय के फिल्टर (जेड-डोमेन में प्रतिनिधित्व) में परिवर्तित करने के लिए किया जा सकता है, और इसके विपरीत। निम्नलिखित प्रतिस्थापन प्रयोग किया जाता है:

कुछ कार्यों को परिवर्तित करने के लिए लाप्लास डोमेन में एक फलन के लिए जेड-डोमेन ( बिलिनियर ट्रांसफॉर्म ) में, या

जेड-डोमेन से लेपलेस डोमेन तक। द्विरेखीय परिवर्तन के माध्यम से, जटिल एस-समतल (लाप्लास ट्रांसफॉर्म का) जटिल जेड-समतल (जेड-ट्रांसफॉर्म का) में मैप किया जाता है। जबकि यह मैपिंग (आवश्यक ) नॉनलाइनियर है, यह उपयोगी है कि यह पूरे को मैप करता है जेड-समतल में यूनिट वृत्त पर एस-समतल की धुरी। इस प्रकार, फूरियर ट्रांसफॉर्म (जो लाप्लास ट्रांसफॉर्म है जिसका मूल्यांकन किया गया है अक्ष) असतत-समय फूरियर ट्रांसफॉर्म बन जाता है। यह मानता है कि फूरियर ट्रांसफॉर्म उपस्थित है; अर्थात कि अक्ष लाप्लास परिवर्तन के अभिसरण के क्षेत्र में है।

तारांकित ट्रांसफॉर्म

एक समय-नमूना फलन के एक तरफा जेड- ट्रांसफॉर्म , एक्स (जेड) को देखते हुए, संबंधित 'तारांकित परिवर्तन' एक लाप्लास परिवर्तन उत्पन्न करता है और नमूना पैरामीटर पर निर्भरता को पुनर्स्थापित करता है, टी:

व्युत्क्रम लाप्लास परिवर्तन एक गणितीय अमूर्तता है जिसे एक आवेग-नमूना फलन के रूप में जाना जाता है।

रैखिक निरंतर-गुणांक अंतर समीकरण

रैखिक स्थिर-गुणांक अंतर (LCCD) समीकरण ऑटोरेग्रेसिव मूविंग एवरेज मॉडल | ऑटोरेग्रेसिव मूविंग-एवरेज समीकरण पर आधारित एक रैखिक प्रणाली के लिए एक प्रतिनिधित्व है।

उपरोक्त समीकरण के दोनों पक्षों को α द्वारा विभाजित किया जा सकता है0, यदि यह शून्य नहीं है, तो α को सामान्य करना0 = 1 और एलसीसीडी समीकरण लिखा जा सकता है

LCCD समीकरण का यह रूप इसे और अधिक स्पष्ट करने के लिए अनुकूल है कि वर्तमान आउटपुट y[n] पिछले आउटपुट y[n - p], वर्तमान इनपुट x[n], और पिछले इनपुट x[n - q] का एक कार्य है। .

स्थानांतरण समारोह

उपरोक्त समीकरण के जेड- ट्रांसफॉर्म (रैखिकता और समय-स्थानांतरण कानूनों का उपयोग करके) उत्पन्न

और परिणामों को पुनर्व्यवस्थित करना


शून्य और ध्रुव

बीजगणित के मौलिक प्रमेय से अंश में एक फलन का M मूल होता है (H के शून्य के अनुरूप) और हर में N मूल (ध्रुवों के अनुरूप) होता है। स्थानांतरण प्रकार्य को शून्य और ध्रुवों के संदर्भ में फिर से लिखना

जहां क्यूkके वें शून्य और पी हैkकेथ पोल है। शून्य और ध्रुव सामान्यतः जटिल होते हैं और जब जटिल समतल (जेड-प्लेन) पर प्लॉट किया जाता है तो इसे ध्रुव-शून्य प्लॉट कहा जाता है।

इसके अतिरिक्त , जेड = 0 और जेड = ∞ पर शून्य और ध्रुव भी उपस्थित हो सकते हैं। यदि हम इन ध्रुवों और शून्यों के साथ-साथ बहु-क्रम शून्यों और ध्रुवों को ध्यान में रखते हैं, तो शून्य और ध्रुवों की संख्या हमेशा बराबर होती है।

विभाजक को विभाजित करके, आंशिक अंश अपघटन का उपयोग किया जा सकता है, जिसे पश्चात समय डोमेन में परिवर्तित किया जा सकता है। ऐसा करने से आवेग प्रतिक्रिया और प्रणाली के रैखिक निरंतर गुणांक अंतर समीकरण का परिणाम होगा।

आउटपुट प्रतिक्रिया

यदि ऐसी प्रणाली एच (जेड) सिग्नल एक्स (जेड) द्वारा संचालित होती है तो आउटपुट वाई (जेड) = एच (जेड) एक्स (जेड) होता है। Y(जेड ) पर आंशिक अंश अपघटन करके और फिर व्युत्क्रम जेड - ट्रांसफॉर्म करके आउटपुट y[n] पाया जा सकता है। व्यवहार में, यह अधिकांशतः आंशिक रूप से विघटित करने के लिए उपयोगी होता है Y (जेड ) का एक रूप उत्पन्न करने के लिए उस मात्रा को जेड से गुणा करने से पहले, जिसमें आसानी से गणना योग्य व्युत्क्रम जेड - ट्रांसफॉर्म के साथ शब्द हैं।

यह भी देखें

संदर्भ

  1. E. R. Kanasewich (1981). Time Sequence Analysis in Geophysics. University of Alberta. pp. 186, 249. ISBN 978-0-88864-074-1.
  2. E. R. Kanasewich (1981). भूभौतिकी में समय अनुक्रम विश्लेषण (3rd ed.). University of Alberta. pp. 185–186. ISBN 978-0-88864-074-1.
  3. Ragazzini, J. R.; Zadeh, L. A. (1952). "नमूना-डेटा सिस्टम का विश्लेषण". Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry. 71 (5): 225–234. doi:10.1109/TAI.1952.6371274. S2CID 51674188.
  4. Cornelius T. Leondes (1996). डिजिटल नियंत्रण प्रणाली कार्यान्वयन और कम्प्यूटेशनल तकनीक. Academic Press. p. 123. ISBN 978-0-12-012779-5.
  5. Eliahu Ibrahim Jury (1958). Sampled-Data Control Systems. John Wiley & Sons.
  6. Eliahu Ibrahim Jury (1973). Theory and Application of the Z-Transform Method. Krieger Pub Co. ISBN 0-88275-122-0.
  7. Eliahu Ibrahim Jury (1964). Theory and Application of the Z-Transform Method. John Wiley & Sons. p. 1.
  8. Bolzern, Paolo; Scattolini, Riccardo; Schiavoni, Nicola (2015). Fondamenti di Controlli Automatici (in italiano). MC Graw Hill Education. ISBN 978-88-386-6882-1.
  9. 9.0 9.1 9.2 A. R. Forouzan (2016). "Region of convergence of derivative of Z transform". Electronics Letters. 52 (8): 617–619. Bibcode:2016ElL....52..617F. doi:10.1049/el.2016.0189. S2CID 124802942.


अग्रिम पठन

  • Refaat El Attar, Lecture notes on जेड -Transform, Lulu Press, Morrisville NC, 2005. ISBN 1-4116-1979-X.
  • Ogata, Katsuhiko, Discrete Time Control Systems 2nd Ed, Prentice-Hall Inc, 1995, 1987. ISBN 0-13-034281-5.
  • Alan V. Oppenheim and Ronald W. Schafer (1999). Discrete-Time Signal Processing, 2nd Edition, Prentice Hall Signal Processing Series. ISBN 0-13-754920-2.


बाहरी संबंध