संख्या रेखा: Difference between revisions

From Vigyanwiki
(ा्गू)
No edit summary
 
(29 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Geometrical representation of real numbers}}
{{short description|Geometrical representation of real numbers}}
प्राथमिक गणित में, एक संख्या रेखा एक स्नातक की सीधी रेखा की एक चित्र है जो वास्तविक संख्याओं के लिए अमूर्त के रूप में कार्य करती है, जिसे <math>\mathbb{R}</math> द्वारा दर्शाया जाता है। एक संख्या रेखा के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।<ref>{{cite book | last1=Stewart | first1=James B. | last2 = Redlin | first2 = Lothar | last3=Watson | first3=Saleem | authorlink=James Stewart (mathematician) | title=College Algebra | publisher=[[Brooks Cole]]  | year=2008 | edition = 5th | pages=13&ndash;19 | isbn=978-0-495-56521-5}}</ref>  
प्राथमिक गणित में, संख्या रेखा एक स्नातक की सीधी रेखा की एक चित्र है, जो वास्तविक संख्याओं के लिए अमूर्त के रूप में कार्य करती है, जिसे <math>\mathbb{R}</math> द्वारा दर्शाया जाता है। संख्या रेखा के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।<ref>{{cite book | last1=Stewart | first1=James B. | last2 = Redlin | first2 = Lothar | last3=Watson | first3=Saleem | authorlink=James Stewart (mathematician) | title=College Algebra | publisher=[[Brooks Cole]]  | year=2008 | edition = 5th | pages=13&ndash;19 | isbn=978-0-495-56521-5}}</ref>  


पूर्णांक अक्सर विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है, जो समान रूप से रेखा के स्थान पर होते हैं। यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, जो प्रत्येक दिशा में हमेशा के लिए जारी रहती हैं, और पूर्णांकों के बीच की संख्याएँ भी शामिल हैं। यह प्रायः सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल किया जाता है।
पूर्णांक प्रायः विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है, जो समान रूप से रेखा के स्थान पर होते हैं। यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, जो प्रत्येक दिशा में हमेशा के लिए जारी रहती हैं, और पूर्णांकों के बीच की संख्याएँ भी शामिल हैं। यह प्रायः सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल किया जाता है।


[[File:Number-line.svg|center|संख्या रेखा]]
[[File:Number-line.svg|center|संख्या रेखा]]
उन्नत गणित में, अभिव्यक्ति वास्तविक संख्या रेखा, या वास्तविक रेखा का उपयोग आम तौर पर उपर्युक्त अवधारणा को इंगित करने के लिए किया जाता है कि एक सीधी रेखा पर हर बिंदु एक वास्तविक संख्या से मेल खाता है, और इसके विपरीत।
उन्नत गणित में, संख्या रेखा को एक वास्तविक रेखा के रूप में कहा जा सकता है, जिसे औपचारिक रूप से सभी वास्तविक संख्याओं के सेट आर के रूप में परिभाषित किया गया है, जिसे ज्यामितीय स्थान के रूप में देखा जाता है, अर्थात् आयाम एक का यूक्लिडियन स्थान। इसे एक वेक्टर स्पेस (या एफिन स्पेस), एक मीट्रिक स्पेस, एक टोपोलॉजिकल स्पेस, एक माप स्थान, या एक रैखिक निरंतरता के रूप में सोचा जा सकता है।


== इतिहास ==
== इतिहास ==
संचालन उद्देश्यों के लिए उपयोग की जाने वाली संख्या लाइन का पहला उल्लेख जॉन वालिस के बीजगणित के ग्रंथ में पाया गया है।<ref>Wallis, John (1685). ''Treatise of algebra''. http://lhldigital.lindahall.org/cdm/ref/collection/math/id/11231 pp. 265</ref> अपने ग्रंथ में, वालिस एक व्यक्ति के रूपक के नीचे, आगे और पीछे की ओर बढ़ने के मामले में एक संख्या रेखा पर जोड़ और घटाव का वर्णन करते हैं
संचालन उद्देश्यों के लिए उपयोग की जाने वाली संख्या लाइन का पहला उल्लेख जॉन वालिस के बीजगणित के ग्रंथ में पाया गया है।<ref>Wallis, John (1685). ''Treatise of algebra''. http://lhldigital.lindahall.org/cdm/ref/collection/math/id/11231 pp. 265</ref> अपने ग्रंथ में, वालिस ने चलने वाले व्यक्ति के रूपक के तहत, आगे और पीछे जाने के मामले में एक संख्या रेखा पर जोड़ और घटाव का वर्णन किया है।
 
संचालन के लिए उल्लेख के बिना एक पहले का चित्रण, हालांकि, जॉन नेपियर में पाया जाता है लघुगणक की सराहनीय तालिका का विवरण, जो बाएं से दाएं पंक्तिबद्ध मूल्यों 1 से 12 तक दिखाता है।<ref>Napier, John (1616). ''A description of the admirable table of logarithmes'' https://www.math.ru.nl/werkgroepen/gmfw/bronnen/napier1.html</ref>
 
लोकप्रिय धारणा के विपरीत, रेने डेसकार्टेस(Rene Descartes) के मूल ला गोमेट्री में एक संख्या रेखा नहीं है, जिसे परिभाषित किया गया है कि हम आज इसका उपयोग करते हैं, हालांकि यह एक समन्वय प्रणाली का उपयोग करता है। विशेष रूप से, डेसकार्टेस(Descartes) के काम में लाइनों पर मैप की गई विशिष्ट संख्याएं नहीं हैं, केवल अमूर्त मात्राएं हैं।<ref>Núñez, Rafael (2017). ''How Much Mathematics Is "Hardwired", If Any at All'' Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98</ref>


संचालन के लिए उल्लेख के बिना एक पहले का चित्रण, हालांकि, जॉन नेपियर के लॉगरिदम की सराहनीय तालिका का विवरण पाया जाता है, जो कि 12 के माध्यम से 1 के माध्यम से बाएं से दाएं तक मान दिखाता है।<ref>Napier, John (1616). ''A description of the admirable table of logarithmes'' https://www.math.ru.nl/werkgroepen/gmfw/bronnen/napier1.html</ref> लोकप्रिय धारणा के विपरीत, रेने डेसकार्टेस के मूल ला गोमेट्री में एक नंबर लाइन की सुविधा नहीं है, जैसा कि हम आज इसका उपयोग करते हैं, हालांकि यह एक समन्वय प्रणाली का उपयोग करता है। विशेष रूप से, डेसकार्टेस के काम में लाइनों पर मैप किए गए विशिष्ट संख्याएं नहीं होती हैं, केवल अमूर्त मात्राएँ हैं ।<ref>Núñez, Rafael (2017). ''How Much Mathematics Is "Hardwired", If Any at All'' Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98</ref>




== संख्या रेखा अंकित करना ==
== संख्या रेखा अंकित करना ==
एक संख्या रेखा को आमतौर पर क्षैतिज होने के रूप में दर्शाया जाता है, लेकिन एक कार्टेशियन समन्वय समतल में ऊर्ध्वाधर अक्ष (y- अक्ष) भी एक संख्या रेखा है।<ref name=purple>[http://www.purplemath.com/modules/plane.htm Introduction to the x,y-plane] {{Webarchive|url=https://web.archive.org/web/20151109025636/http://www.purplemath.com/modules/plane.htm |date=2015-11-09 }} "Purplemath" Retrieved 2015-11-13</ref> एक रीति  के अनुसार, सकारात्मक संख्या हमेशा शून्य के दाईं ओर होती है, नकारात्मक संख्या हमेशा शून्य के बाईं ओर होती है, और लाइन के दोनों छोरों पर तीर का मतलब यह है कि यह सुझाव देना है कि लाइन सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है। एक अन्य सम्मेलन केवल एक तीर का उपयोग करता है जो उस दिशा को इंगित करता है जिसमें संख्या बढ़ती है।<ref name=purple/> यह रेखा ज्यामिति के नियमों के अनुसार सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है जो एक अनंत रेखा के रूप में समापन बिंदु के बिना एक रेखा को परिभाषित करती है, एक अर्धरेखा के रूप में एक समापन बिंदु के साथ एक पंक्ति, और एक लाइन खंड के रूप में दो समापन बिंदुओं के साथ एक पंक्ति।
एक संख्या रेखा को आमतौर पर क्षैतिज होने के रूप में दर्शाया जाता है, लेकिन कार्तीय निर्देशांक तल में ऊर्ध्वाधर अक्ष (y-अक्ष) भी एक संख्या रेखा होती है। एक परंपरा के अनुसार, धनात्मक संख्याएँ हमेशा शून्य के दाईं ओर होती हैं, ऋणात्मक संख्याएँ हमेशा शून्य के बाईं ओर होती हैं, और रेखा के दोनों सिरों पर तीर के निशान यह संकेत देने के लिए होते हैं कि रेखा सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है। एक अन्य सम्मेलन में केवल एक तीर का उपयोग किया जाता है जो उस दिशा को इंगित करता है जिसमें संख्याएं बढ़ती हैं। रेखा ज्यामिति के नियमों के अनुसार सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है जो एक रेखा को अनंत रेखा के रूप में परिभाषित करती है, एक रेखा के रूप में एक समापन बिंदु के साथ एक रेखा, और एक रेखा खंड के रूप में दो समापन बिंदुओं के साथ एक रेखा।


== संख्या की तुलना ==
==संख्या की तुलना==
यदि कोई विशेष संख्या, संख्या रेखा पर दाईं ओर एक और संख्या की तुलना में दाईं ओर है, तो पहली संख्या दूसरे से अधिक है (समकक्ष, दूसरा पहले से कम है)। उनके बीच की दूरी उनके अंतर की परिमाण है - यानी, यह पहली संख्या को घटाकर दूसरे नंबर को मापता है, या समकक्ष रूप से दूसरे नंबर का निरपेक्ष मान घटाता है। इस अंतर को लेना घटाव की प्रक्रिया है।
यदि कोई विशेष संख्या दूसरी संख्या की तुलना में संख्या रेखा पर दाईं ओर अधिक है, तो पहली संख्या दूसरी से बड़ी है (समतुल्य रूप से, दूसरी पहली से छोटी है)। उनके बीच की दूरी उनके अंतर का परिमाण है &#x2014; यानी, यह पहली संख्या को घटाकर दूसरे नंबर को मापता है, या समकक्ष रूप से दूसरे नंबर का निरपेक्ष मान घटाता है। इस अंतर को लेना घटाव की प्रक्रिया है।


इस प्रकार, उदाहरण के लिए, 0 और कुछ अन्य संख्या के बीच एक लाइन खंड की लंबाई बाद की संख्या के परिमाण का प्रतिनिधित्व करती है।
इस प्रकार, उदाहरण के लिए, 0 और कुछ अन्य संख्या के बीच एक लाइन खंड की लंबाई बाद की संख्या के परिमाण का प्रतिनिधित्व करती है।


दो नंबरों को 0 से एक संख्या में से एक तक की लंबाई को चयन करके जोड़ा जा सकता है, और इसे फिर से उस अंत के साथ नीचे रखा जा सकता है जो 0 को दूसरी संख्या के ऊपर रखा गया था।
0 से किसी एक संख्या तक की लंबाई को "उठाकर" दो संख्याओं को [[:hi:जोड़|जोड़ा]] जा सकता है, और इसे फिर से उस अंत के साथ नीचे रखा जा सकता है जो 0 को दूसरी संख्या के ऊपर रखा गया था।


इस उदाहरण में दो संख्याओं को गुणा किया जा सकता है: 5 × 3 को गुणा करने के लिए, ध्यान दें कि यह 5 + 5 + 5 के समान है, इसलिए लंबाई को 0 से 5 तक चयन करें और इसे 5 के दाईं ओर रखें, और फिर चुनें उस लंबाई को फिर से ऊपर रखें और इसे पिछले परिणाम के दाईं ओर रखें। यह एक परिणाम देता है जो 5 प्रत्येक की 3 संयुक्त लंबाई है; चूंकि प्रक्रिया 15 पर समाप्त होती है, हम पाते हैं कि 5 × 3 = 15।
इस उदाहरण में दो संख्याओं को गुणा किया जा सकता है: 5 × 3 को गुणा करने के लिए, ध्यान दें कि यह 5 + 5 + 5 के समान है, इसलिए लंबाई को 0 से 5 तक चयन करें और इसे 5 के दाईं ओर रखें, और फिर चुनें उस लंबाई को फिर से ऊपर रखें और इसे पिछले परिणाम के दाईं ओर रखें। यह एक परिणाम देता है जो 5 प्रत्येक की 3 संयुक्त लंबाई है; चूंकि प्रक्रिया 15 पर समाप्त होती है, हम पाते हैं कि 5 × 3 = 15.


विभाजन को निम्नलिखित उदाहरण के रूप में किया जा सकता है: 6 को 2 से विभाजित करने के लिए- यानी, यह पता लगाने के लिए कि कितनी बार 2 कितनी बार 6 में जाता है - ध्यान दें कि 0 से 2 तक की लंबाई 0 से 6 तक लंबाई की शुरुआत में होती है; पूर्व की लंबाई का चयन करें और इसे फिर से अपनी मूल स्थिति के दाईं ओर रखें, अंत में पूर्व में 0 पर अब 2 पर रखा गया है, और फिर लंबाई को फिर से अपनी नवीनतम स्थिति के दाईं ओर ले जाएं। यह लंबाई 2 के दाहिने छोर को लंबाई के दाहिने छोर से 0 से 6 तक रखता है। चूंकि 2 की तीन लंबाई की लंबाई 6 की लंबाई 6 है, 2,6 तीन बार (यानी, 6 / 2 = 3) में चला जाता है।
विभाजन निम्नलिखित उदाहरण के रूप में किया जा सकता है: 6 को 2 से विभाजित करने के लिए- यानी, यह पता लगाने के लिए कि कितनी बार 2 कितनी बार 6 में जाता है - ध्यान दें कि 0 से 2 तक की लंबाई 0 से 6 तक लंबाई की शुरुआत में होती है; पिछली लंबाई को उठाएं और इसे फिर से अपनी मूल स्थिति के दाईं ओर रखें, जिसका अंत पूर्व में 0 पर अब 2 पर रखा गया है, और फिर लंबाई को फिर से अपनी नवीनतम स्थिति के दाईं ओर ले जाएं। यह लंबाई 2 के दाहिने छोर को 0 से 6 तक की लंबाई के दाहिने छोर पर रखता है। चूँकि 2 की तीन लम्बाइयाँ 6 को भरती हैं, 2 6 में तीन बार जाता है (अर्थात 6/2 = 3)


<gallery widths=300>
<gallery widths=300>
Line 37: Line 40:




== संख्या रेखा के भाग ==
 
 
 
 
 
 
 
 
 
==संख्या रेखा के भाग==
[[File:Intervalo real 04.svg|thumb|बंद अंतराल {{math|[a,b]}}।]]
[[File:Intervalo real 04.svg|thumb|बंद अंतराल {{math|[a,b]}}।]]
दो संख्याओं के बीच संख्या रेखा के खंड को एक अंतराल कहा जाता है।यदि अनुभाग में दोनों संख्याएँ शामिल हैं, तो इसे एक बंद अंतराल कहा जाता है, जबकि यदि यह दोनों संख्याओं को बाहर करता है तो इसे एक खुला अंतराल कहा जाता है।यदि इसमें संख्याओं में से एक शामिल है, लेकिन दूसरे को नहीं, तो इसे अर्ध-खुला अंतराल कहा जाता है।
दो संख्याओं के बीच संख्या रेखा के खंड को अंतराल कहा जाता है। यदि खंड में दोनों संख्याएं शामिल हैं तो इसे एक बंद अंतराल कहा जाता है, जबकि यदि यह दोनों संख्याओं को शामिल नहीं करता है तो इसे एक खुला अंतराल कहा जाता है। यदि इसमें एक संख्या शामिल है लेकिन दूसरी नहीं है, तो इसे अर्ध-खुला अंतराल कहा जाता है।


एक विशेष बिंदु से एक दिशा में हमेशा के लिए फैले सभी बिंदुओं को एक अर्ध रेखा के रूप में जाना जाता है। यदि अर्ध रेखा में विशेष बिंदु शामिल है, तो यह एक बंद अर्ध रेखा है;अन्यथा यह एक खुली अर्ध रेखा है।
एक विशेष बिंदु से एक दिशा में हमेशा के लिए फैले सभी बिंदुओं को एक अर्ध रेखा के रूप में जाना जाता है। यदि अर्ध रेखा में विशेष बिंदु शामिल है, तो यह एक बंद अर्ध रेखा है; अन्यथा यह एक खुली अर्ध रेखा है।


== अवधारणा का विस्तार ==
==अवधारणा का विस्तार==


=== लॉगरिदमिक स्केल(लघुगणक मापक) ===
===लॉगरिदमिक स्केल(लघुगणक मापक)===
[[Image:LogLog exponentials.svg|thumb|Y & nbsp; = & nbsp; x & nbsp; (नीला), y & nbsp; = & nbsp; x; x;<sup>2 </sup> & nbsp; (हरा), और y & nbsp; = & nbsp; x; x;<sup>3 < /sup> & nbsp; (लाल)।1 हैं।]]
[[Image:LogLog exponentials.svg|thumb|लॉग-लॉग प्लॉट&nbsp;=&nbsp;''एक्स''&nbsp;(नीला), ''वाई''&nbsp;=&nbsp;''एक्स'' <sup>2</sup>&nbsp;(हरा), और ''y''&nbsp;=&nbsp;''एक्स'' <sup>3</sup>&nbsp;(लाल)]]
संख्या रेखा पर, दो बिंदुओं के बीच की दूरी इकाई लंबाई है यदि और केवल यदि प्रतिनिधित्व संख्याओं का अंतर 1 बराबर होता है। अन्य विकल्प संभव हैं।
संख्या रेखा पर, दो बिंदुओं के बीच की दूरी इकाई की लंबाई है यदि और केवल तभी जब प्रतिनिधित्व की गई संख्याओं का अंतर 1 के बराबर होता है। अन्य विकल्प संभव हैं।


सबसे आम विकल्पों में से एक लॉगरिदमिक स्केल है, जो एक लाइन पर सकारात्मक संख्याओं का प्रतिनिधित्व है, जैसे कि दो बिंदुओं की दूरी इकाई लंबाई है, यदि प्रतिनिधित्व संख्याओं के अनुपात में एक निश्चित मूल्य है, तो आमतौर पर 10। ऐसे लघुगणक पैमाने में, मूल 1 का प्रतिनिधित्व करता है;दाईं ओर एक इंच, एक में 10, एक इंच के दाईं ओर 10 है {{nowrap|1=10×10 = 100}}, फिर {{nowrap|1=10×100 = 1000 = 10<sup>3</sup>}}, फिर {{nowrap|1=10×1000 = 10,000 = 10<sup>4</sup>}}, आदि इसी तरह, 1 के बाईं ओर एक इंच, एक है {{nowrap|1=1/10 = 10<sup>–1</sup>}}, फिर {{nowrap|1=1/100 = 10<sup>–2</sup>}}, आदि।
सबसे आम विकल्पों में से एक लॉगरिदमिक स्केल है, जो एक लाइन पर सकारात्मक संख्याओं का प्रतिनिधित्व है, जैसे कि दो बिंदुओं की दूरी इकाई लंबाई है, यदि प्रतिनिधित्व संख्याओं के अनुपात में एक निश्चित मूल्य है, तो आमतौर पर 10। ऐसे लघुगणक पैमाने में, मूल 1 का प्रतिनिधित्व करता है; दाईं ओर एक इंच, एक में 10, एक इंच के दाईं ओर 10 है {{nowrap|1=10×10 = 100}}, फिर {{nowrap|1=10×100 = 1000 = 10<sup>3</sup>}}, फिर {{nowrap|1=10×1000 = 10,000 = 10<sup>4</sup>}}, आदि। इसी तरह, 1 के बाईं ओर एक इंच, एक है, {{nowrap|1=1/10 = 10<sup>–1</sup>}} फिर {{nowrap|1=1/100 = 10<sup>–2</sup>}}, आदि।


यह दृष्टिकोण उपयोगी है, जब कोई प्रतिनिधित्व करना चाहता है, एक ही आकृति पर, परिमाण के बहुत अलग क्रम के साथ मूल्य।उदाहरण के लिए, किसी को ब्रह्मांड में मौजूद विभिन्न निकायों के आकार का प्रतिनिधित्व करने के लिए एक लघुगणक पैमाने की आवश्यकता होती है, आमतौर पर, एक फोटॉन, एक इलेक्ट्रॉन, एक परमाणु, एक अणु, एक मानव, पृथ्वी, सौर प्रणाली, एक आकाशगंगा, और दृश्य ब्रह्मांड।
यह दृष्टिकोण उपयोगी है, जब कोई एक ही आकृति पर, [[:hi:परिमाण की कोटि|परिमाण के बहुत भिन्न क्रम वाले]] मानों का प्रतिनिधित्व करना चाहता है। उदाहरण के लिए, किसी को [[:hi:ब्रह्माण्ड|ब्रह्मांड]] में मौजूद विभिन्न निकायों के आकार का एक साथ प्रतिनिधित्व करने के लिए एक लघुगणकीय पैमाने की आवश्यकता होती है, आमतौर पर, एक [[:hi:फोटॉन|फोटॉन]], एक [[:hi:इलेक्ट्रॉन|इलेक्ट्रॉन]], एक [[:hi:परमाणु|परमाणु]], एक [[:hi:अणु|अणु]], एक [[:hi:होमो सेपियन्स|मानव]], [[:hi:पृथ्वी|पृथ्वी]], [[:hi:सौर मण्डल|सौर मंडल]], एक [[:hi:मन्दाकिनी|आकाशगंगा]], और दृश्यमान ब्रह्मांड।


लघुगणक मापक का उपयोग स्लाइड नियमों में लघुगणक मापक पर लंबाई को जोड़ने या घटाने के लिए संख्याओं को गुणा करने या विभाजित करने के लिए किया जाता है।
लॉगरिदमिक स्केल का उपयोग [[:hi:विसर्पी गणक|स्लाइड नियमों]] में लॉगरिदमिक स्केल पर लंबाई जोड़कर या घटाकर संख्याओं को गुणा या विभाजित करने के लिए किया जाता है।
[[File:slide rule example3.svg|frame|center|एक स्लाइड नियम के दो लघुगणकीय मापक]]
[[File:slide rule example3.svg|frame|center|एक स्लाइड नियम के दो लघुगणकीय मापक]]




=== संख्या रेखाओं का संयोजन ===
===संख्या रेखाओं का संयोजन===
वास्तविक संख्या रेखा पर समकोण पर मूल के माध्यम से खींची गई एक लाइन का उपयोग काल्पनिक संख्याओं का प्रतिनिधित्व करने के लिए किया जा सकता है। काल्पनिक लाइन नामक यह लाइन, संख्या रेखा को एक जटिल संख्या समतल तक बढ़ाती है, जिसमें जटिल संख्याओं का प्रतिनिधित्व करते हैं।
मूल से होकर वास्तविक संख्या रेखा पर समकोण पर खींची गई रेखा का उपयोग [[:hi:काल्पनिक संख्या|काल्पनिक संख्याओं]] को निरूपित करने के लिए किया जा सकता है। यह रेखा, जिसे [[:hi:काल्पनिक रेखा (गणित)|काल्पनिक रेखा]] कहा जाता है, संख्या रेखा को एक [[:hi:जटिल विमान|सम्मिश्र संख्या तल]] तक विस्तारित करती है, जिसमें [[:hi:समिश्र संख्या|सम्मिश्र संख्याओं]] का प्रतिनिधित्व करने वाले बिंदु होते हैं।


वैकल्पिक रूप से, एक वास्तविक संख्या रेखा को एक वास्तविक संख्या के संभावित मूल्यों को निरूपित करने के लिए क्षैतिज रूप से खींचा जा सकता है, जिसे आमतौर पर ''x'' कहा जाता है, और एक और वास्तविक संख्या रेखा को एक और वास्तविक संख्या के संभावित मूल्यों को निरूपित करने के लिए लंबवत रूप से खींचा जा सकता है, जिसे आमतौर पर ''y'' कहा जाता है। साथ में इन पंक्तियों को एक कार्टेशियन समन्वय प्रणाली के रूप में जाना जाता है, और समतल में कोई भी बिंदु वास्तविक संख्याओं की एक जोड़ी के मूल्य का प्रतिनिधित्व करता है। इसके अलावा, कार्टेशियन समन्वय प्रणाली को स्क्रीन (या पेज) से बाहर आने वाले तीसरे नंबर लाइन की कल्पना करके खुद को बढ़ाया जा सकता है, जो कि ''z'' नामक तीसरे चर को मापता है। सकारात्मक संख्या स्क्रीन की तुलना में दर्शक की आंखों के करीब होती है, जबकि नकारात्मक संख्या स्क्रीन के पीछे होती है; बड़ी संख्या स्क्रीन से दूर हैं। फिर त्रिआयामी स्थान में कोई भी बिंदु जो हम रहते हैं, वास्तविक संख्याओं की तिकड़ी के मूल्यों का प्रतिनिधित्व करता है।
वैकल्पिक रूप से, एक वास्तविक संख्या के संभावित मूल्यों को दर्शाने के लिए एक वास्तविक संख्या रेखा क्षैतिज रूप से खींची जा सकती है, जिसे आमतौर पर ''x'' कहा जाता है, और दूसरी वास्तविक संख्या रेखा को दूसरी वास्तविक संख्या के संभावित मूल्यों को दर्शाने के लिए लंबवत रूप से खींचा जा सकता है, जिसे आमतौर पर ''y'' कहा जाता है। साथ में ये रेखाएं एक [[:hi:कार्तीय निर्देशांक पद्धति|कार्टेशियन समन्वय प्रणाली]] के रूप में जानी जाती हैं, और विमान में कोई भी बिंदु वास्तविक संख्याओं की एक जोड़ी के मूल्य का प्रतिनिधित्व करता है। इसके अलावा, कार्टेशियन समन्वय प्रणाली को तीसरी संख्या रेखा "स्क्रीन (या पृष्ठ) से बाहर आने" की कल्पना करके बढ़ाया जा सकता है, जिसे ''z'' नामक तीसरे चर को मापना है। सकारात्मक संख्याएं स्क्रीन की तुलना में दर्शक की आंखों के अधिक निकट होती हैं, जबकि ऋणात्मक संख्याएं "स्क्रीन के पीछे" होती हैं; बड़ी संख्या स्क्रीन से दूर हैं। फिर त्रि-आयामी अंतरिक्ष में कोई भी बिंदु जिसमें हम रहते हैं, वास्तविक संख्याओं की तिकड़ी के मूल्यों का प्रतिनिधित्व करता है।


== यह भी देखें ==
==यह भी देखें==
*कालक्रम
*कालक्रम
*जटिल समतल
*जटिल समतल
Line 78: Line 90:
*{{Commonscatinline|Number lines}}
*{{Commonscatinline|Number lines}}


{{DEFAULTSORT:Number Line}}[[Category: प्राथमिक गणित]]]
{{DEFAULTSORT:Number Line}}
[[Category: गणितीय जोड़तोड़]]]
[[Category: एक आयामी समन्वय प्रणाली]]]


[[Ja: 直線#座標]]
[[Ja: 直線#座標]]
[[Category:Machine Translated Page]]


 
[[Category:Articles with short description|Number Line]]
[[Category: Machine Translated Page]]
[[Category:CS1|Number Line]]
[[Category:Commons category link is locally defined|Number Line]]
[[Category:Pages with broken file links|Number Line]]
[[Category:Pages with reference errors|Number Line]]
[[Category:Pages with template loops|Number Line]]
[[Category:Short description with empty Wikidata description|Number Line]]
[[Category:Templates using TemplateData|Number Line]]
[[Category:Wikipedia pages with incorrect protection templates|Cite book/TemplateData]]

Latest revision as of 09:14, 31 August 2022

प्राथमिक गणित में, संख्या रेखा एक स्नातक की सीधी रेखा की एक चित्र है, जो वास्तविक संख्याओं के लिए अमूर्त के रूप में कार्य करती है, जिसे द्वारा दर्शाया जाता है। संख्या रेखा के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।[1]

पूर्णांक प्रायः विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है, जो समान रूप से रेखा के स्थान पर होते हैं। यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, जो प्रत्येक दिशा में हमेशा के लिए जारी रहती हैं, और पूर्णांकों के बीच की संख्याएँ भी शामिल हैं। यह प्रायः सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल किया जाता है।

संख्या रेखा

उन्नत गणित में, संख्या रेखा को एक वास्तविक रेखा के रूप में कहा जा सकता है, जिसे औपचारिक रूप से सभी वास्तविक संख्याओं के सेट आर के रूप में परिभाषित किया गया है, जिसे ज्यामितीय स्थान के रूप में देखा जाता है, अर्थात् आयाम एक का यूक्लिडियन स्थान। इसे एक वेक्टर स्पेस (या एफिन स्पेस), एक मीट्रिक स्पेस, एक टोपोलॉजिकल स्पेस, एक माप स्थान, या एक रैखिक निरंतरता के रूप में सोचा जा सकता है।

इतिहास

संचालन उद्देश्यों के लिए उपयोग की जाने वाली संख्या लाइन का पहला उल्लेख जॉन वालिस के बीजगणित के ग्रंथ में पाया गया है।[2] अपने ग्रंथ में, वालिस ने चलने वाले व्यक्ति के रूपक के तहत, आगे और पीछे जाने के मामले में एक संख्या रेखा पर जोड़ और घटाव का वर्णन किया है।

संचालन के लिए उल्लेख के बिना एक पहले का चित्रण, हालांकि, जॉन नेपियर में पाया जाता है लघुगणक की सराहनीय तालिका का विवरण, जो बाएं से दाएं पंक्तिबद्ध मूल्यों 1 से 12 तक दिखाता है।[3]

लोकप्रिय धारणा के विपरीत, रेने डेसकार्टेस(Rene Descartes) के मूल ला गोमेट्री में एक संख्या रेखा नहीं है, जिसे परिभाषित किया गया है कि हम आज इसका उपयोग करते हैं, हालांकि यह एक समन्वय प्रणाली का उपयोग करता है। विशेष रूप से, डेसकार्टेस(Descartes) के काम में लाइनों पर मैप की गई विशिष्ट संख्याएं नहीं हैं, केवल अमूर्त मात्राएं हैं।[4]


संख्या रेखा अंकित करना

एक संख्या रेखा को आमतौर पर क्षैतिज होने के रूप में दर्शाया जाता है, लेकिन कार्तीय निर्देशांक तल में ऊर्ध्वाधर अक्ष (y-अक्ष) भी एक संख्या रेखा होती है। एक परंपरा के अनुसार, धनात्मक संख्याएँ हमेशा शून्य के दाईं ओर होती हैं, ऋणात्मक संख्याएँ हमेशा शून्य के बाईं ओर होती हैं, और रेखा के दोनों सिरों पर तीर के निशान यह संकेत देने के लिए होते हैं कि रेखा सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है। एक अन्य सम्मेलन में केवल एक तीर का उपयोग किया जाता है जो उस दिशा को इंगित करता है जिसमें संख्याएं बढ़ती हैं। रेखा ज्यामिति के नियमों के अनुसार सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है जो एक रेखा को अनंत रेखा के रूप में परिभाषित करती है, एक रेखा के रूप में एक समापन बिंदु के साथ एक रेखा, और एक रेखा खंड के रूप में दो समापन बिंदुओं के साथ एक रेखा।

संख्या की तुलना

यदि कोई विशेष संख्या दूसरी संख्या की तुलना में संख्या रेखा पर दाईं ओर अधिक है, तो पहली संख्या दूसरी से बड़ी है (समतुल्य रूप से, दूसरी पहली से छोटी है)। उनके बीच की दूरी उनके अंतर का परिमाण है — यानी, यह पहली संख्या को घटाकर दूसरे नंबर को मापता है, या समकक्ष रूप से दूसरे नंबर का निरपेक्ष मान घटाता है। इस अंतर को लेना घटाव की प्रक्रिया है।

इस प्रकार, उदाहरण के लिए, 0 और कुछ अन्य संख्या के बीच एक लाइन खंड की लंबाई बाद की संख्या के परिमाण का प्रतिनिधित्व करती है।

0 से किसी एक संख्या तक की लंबाई को "उठाकर" दो संख्याओं को जोड़ा जा सकता है, और इसे फिर से उस अंत के साथ नीचे रखा जा सकता है जो 0 को दूसरी संख्या के ऊपर रखा गया था।

इस उदाहरण में दो संख्याओं को गुणा किया जा सकता है: 5 × 3 को गुणा करने के लिए, ध्यान दें कि यह 5 + 5 + 5 के समान है, इसलिए लंबाई को 0 से 5 तक चयन करें और इसे 5 के दाईं ओर रखें, और फिर चुनें उस लंबाई को फिर से ऊपर रखें और इसे पिछले परिणाम के दाईं ओर रखें। यह एक परिणाम देता है जो 5 प्रत्येक की 3 संयुक्त लंबाई है; चूंकि प्रक्रिया 15 पर समाप्त होती है, हम पाते हैं कि 5 × 3 = 15.

विभाजन निम्नलिखित उदाहरण के रूप में किया जा सकता है: 6 को 2 से विभाजित करने के लिए- यानी, यह पता लगाने के लिए कि कितनी बार 2 कितनी बार 6 में जाता है - ध्यान दें कि 0 से 2 तक की लंबाई 0 से 6 तक लंबाई की शुरुआत में होती है; पिछली लंबाई को उठाएं और इसे फिर से अपनी मूल स्थिति के दाईं ओर रखें, जिसका अंत पूर्व में 0 पर अब 2 पर रखा गया है, और फिर लंबाई को फिर से अपनी नवीनतम स्थिति के दाईं ओर ले जाएं। यह लंबाई 2 के दाहिने छोर को 0 से 6 तक की लंबाई के दाहिने छोर पर रखता है। चूँकि 2 की तीन लम्बाइयाँ 6 को भरती हैं, 2 6 में तीन बार जाता है (अर्थात 6/2 = 3)।






संख्या रेखा के भाग

बंद अंतराल [a,b]

दो संख्याओं के बीच संख्या रेखा के खंड को अंतराल कहा जाता है। यदि खंड में दोनों संख्याएं शामिल हैं तो इसे एक बंद अंतराल कहा जाता है, जबकि यदि यह दोनों संख्याओं को शामिल नहीं करता है तो इसे एक खुला अंतराल कहा जाता है। यदि इसमें एक संख्या शामिल है लेकिन दूसरी नहीं है, तो इसे अर्ध-खुला अंतराल कहा जाता है।

एक विशेष बिंदु से एक दिशा में हमेशा के लिए फैले सभी बिंदुओं को एक अर्ध रेखा के रूप में जाना जाता है। यदि अर्ध रेखा में विशेष बिंदु शामिल है, तो यह एक बंद अर्ध रेखा है; अन्यथा यह एक खुली अर्ध रेखा है।

अवधारणा का विस्तार

लॉगरिदमिक स्केल(लघुगणक मापक)

लॉग-लॉग प्लॉट = एक्स (नीला), वाई = एक्स 2 (हरा), और y = एक्स 3 (लाल)।

संख्या रेखा पर, दो बिंदुओं के बीच की दूरी इकाई की लंबाई है यदि और केवल तभी जब प्रतिनिधित्व की गई संख्याओं का अंतर 1 के बराबर होता है। अन्य विकल्प संभव हैं।

सबसे आम विकल्पों में से एक लॉगरिदमिक स्केल है, जो एक लाइन पर सकारात्मक संख्याओं का प्रतिनिधित्व है, जैसे कि दो बिंदुओं की दूरी इकाई लंबाई है, यदि प्रतिनिधित्व संख्याओं के अनुपात में एक निश्चित मूल्य है, तो आमतौर पर 10। ऐसे लघुगणक पैमाने में, मूल 1 का प्रतिनिधित्व करता है; दाईं ओर एक इंच, एक में 10, एक इंच के दाईं ओर 10 है 10×10 = 100, फिर 10×100 = 1000 = 103, फिर 10×1000 = 10,000 = 104, आदि। इसी तरह, 1 के बाईं ओर एक इंच, एक है, 1/10 = 10–1 फिर 1/100 = 10–2, आदि।

यह दृष्टिकोण उपयोगी है, जब कोई एक ही आकृति पर, परिमाण के बहुत भिन्न क्रम वाले मानों का प्रतिनिधित्व करना चाहता है। उदाहरण के लिए, किसी को ब्रह्मांड में मौजूद विभिन्न निकायों के आकार का एक साथ प्रतिनिधित्व करने के लिए एक लघुगणकीय पैमाने की आवश्यकता होती है, आमतौर पर, एक फोटॉन, एक इलेक्ट्रॉन, एक परमाणु, एक अणु, एक मानव, पृथ्वी, सौर मंडल, एक आकाशगंगा, और दृश्यमान ब्रह्मांड।

लॉगरिदमिक स्केल का उपयोग स्लाइड नियमों में लॉगरिदमिक स्केल पर लंबाई जोड़कर या घटाकर संख्याओं को गुणा या विभाजित करने के लिए किया जाता है।

एक स्लाइड नियम के दो लघुगणकीय मापक


संख्या रेखाओं का संयोजन

मूल से होकर वास्तविक संख्या रेखा पर समकोण पर खींची गई रेखा का उपयोग काल्पनिक संख्याओं को निरूपित करने के लिए किया जा सकता है। यह रेखा, जिसे काल्पनिक रेखा कहा जाता है, संख्या रेखा को एक सम्मिश्र संख्या तल तक विस्तारित करती है, जिसमें सम्मिश्र संख्याओं का प्रतिनिधित्व करने वाले बिंदु होते हैं।

वैकल्पिक रूप से, एक वास्तविक संख्या के संभावित मूल्यों को दर्शाने के लिए एक वास्तविक संख्या रेखा क्षैतिज रूप से खींची जा सकती है, जिसे आमतौर पर x कहा जाता है, और दूसरी वास्तविक संख्या रेखा को दूसरी वास्तविक संख्या के संभावित मूल्यों को दर्शाने के लिए लंबवत रूप से खींचा जा सकता है, जिसे आमतौर पर y कहा जाता है। साथ में ये रेखाएं एक कार्टेशियन समन्वय प्रणाली के रूप में जानी जाती हैं, और विमान में कोई भी बिंदु वास्तविक संख्याओं की एक जोड़ी के मूल्य का प्रतिनिधित्व करता है। इसके अलावा, कार्टेशियन समन्वय प्रणाली को तीसरी संख्या रेखा "स्क्रीन (या पृष्ठ) से बाहर आने" की कल्पना करके बढ़ाया जा सकता है, जिसे z नामक तीसरे चर को मापना है। सकारात्मक संख्याएं स्क्रीन की तुलना में दर्शक की आंखों के अधिक निकट होती हैं, जबकि ऋणात्मक संख्याएं "स्क्रीन के पीछे" होती हैं; बड़ी संख्या स्क्रीन से दूर हैं। फिर त्रि-आयामी अंतरिक्ष में कोई भी बिंदु जिसमें हम रहते हैं, वास्तविक संख्याओं की तिकड़ी के मूल्यों का प्रतिनिधित्व करता है।

यह भी देखें

  • कालक्रम
  • जटिल समतल
  • Cuisenaire छड़ें
  • विस्तारित वास्तविक संख्या रेखा
  • हाइपरल नंबर लाइन
  • संख्या रूप (न्यूरोलॉजिकल घटना)
  • Intercept_theorem#the_construction_of_a_decimal_number | दशमलव संख्या का निर्माण

संदर्भ

  1. Stewart, James B.; Redlin, Lothar; Watson, Saleem (2008). College Algebra (5th ed.). Brooks Cole. pp. 13–19. ISBN 978-0-495-56521-5.
  2. Wallis, John (1685). Treatise of algebra. http://lhldigital.lindahall.org/cdm/ref/collection/math/id/11231 pp. 265
  3. Napier, John (1616). A description of the admirable table of logarithmes https://www.math.ru.nl/werkgroepen/gmfw/bronnen/napier1.html
  4. Núñez, Rafael (2017). How Much Mathematics Is "Hardwired", If Any at All Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98


बाहरी संबंध